Switching overvoltages protection of power electronics converters with gate turn-off thyristors

dc.citation.epage110
dc.citation.issue2
dc.citation.spage103
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorФедів, Євген
dc.contributor.authorСівакова, Ольга
dc.contributor.authorЛисяк, Владислав
dc.contributor.authorКорчак, Михайло
dc.contributor.authorFediv, Yevhen
dc.contributor.authorSivakova, Olha
dc.contributor.authorLysiak, Vladyslav
dc.contributor.authorKorchak, Mykhailo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-19T07:59:53Z
dc.date.available2023-09-19T07:59:53Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractЗа допомогою розроблених моделей у середовищі візуального програмування “Simulink” пакета прикладних програм “Matlab” із використанням бібліотек “SimPowerSystem” та “Simscape Electrical” здійснено порівняльний аналіз способів та технічних засобів для обмеження комутаційних перенапруг у силових перетворювачах струму, які керовані відмиканням двоопераційних тиристорів. Вибір конкретного засобу обмеження є індивідуальним для кожного перетворювача і залежить від багатьох факторів – потужності перетворювача, вольт-амперних характеристик тиристорів, параметрів мережі живлення тощо. Дослідження показали, що найефективнішим захистом від імпульсів напруги з малою тривалістю та значною амплітудою є застосування обмежувальних діодів “Transient Voltage Suppressors”, дія яких ґрунтується на використанні явища лавинного пробою на проміжку часу режиму відмикання тиристора.
dc.description.abstractUsing the developed models in the “Simulink” visual programming environment of the “Matlab” application package using the “SimPowerSystem” and “Simscape Electrical” libraries, a comparative analysis of methods and techniques for limiting switching overvoltages in power converters, which are controlled by unlocking two-operation thyristors, was performed. The choice of a specific means of limitation is individual for each converter and depends on many factors - the power of the converter, the current-voltage characteristics of thyristors, the parameters of the power supply, and so on. Studies have shown that the most effective protection against voltage pulses with short duration and significant amplitude is the use of “Transient Voltage Suppressors” limiting diodes, the action of which is based on the use of avalanche breakdown during the time of thyristor unlocking.
dc.format.extent103-110
dc.format.pages8
dc.identifier.citationSwitching overvoltages protection of power electronics converters with gate turn-off thyristors / Yevhen Fediv, Olha Sivakova, Vladyslav Lysiak, Mykhailo Korchak // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 103–110.
dc.identifier.citationenSwitching overvoltages protection of power electronics converters with gate turn-off thyristors / Yevhen Fediv, Olha Sivakova, Vladyslav Lysiak, Mykhailo Korchak // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 103–110.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60141
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (7), 2021
dc.relation.references[1] Intelligent electrical networks: elements and modes: For general. ed. acad. NAS of Ukraine O.V. Kyrylenko. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2016. 400 p. (in Ukrainian).
dc.relation.references[2] Fediv, Y., Sivakova, O., Korchak, M. (2019). Model of Virtual Source of Reactive Power for Smart Electrical Supply Systems. 2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE). 15–18 Sept. 2019, Lviv–Slavske, Ukraine. DOI:10.1109/CPEE47179.2019.8949159.
dc.relation.references[3] Fediv, Y., Sivakova, O., Korchak, M. (2020). Multi operated virtual power plan in smart grid, Adv. Sci. Technol. Eng. Syst. J. 5(6), 256-260 (2020). DOI:10.25046/aj050630
dc.relation.references[4] Korchak, M., Sivakova, O., Fediv, Y. (2018). Virtual source of reactive power in electricity supply systems of household consumers, Proceedings of international forum “Litteris et Artibus”, November 22–24 th, 2018, Lviv, Ukraine. DOI: 10.23939/lea2018.0116.
dc.relation.references[5] Soskov, A., Salabaeva, N., Forkun, Y., Glebova, M. Methods of overvoltage limitation in modern dc semiconductor switching apparatus and their calculation. Eastern-European Journal of Enterprise Technologies. 3/8 (81) 2016. DOI:10.15587/1729-4061.2016.72533.
dc.relation.references[6] Electrical Installations Code. Minenergovuhillia of Ukraine, 2017. 617 p. (in Ukrainian).
dc.relation.references[7] Magnusson J., Saers R., Liljestrand L., Engdahl G.. Separation of the Energy Absorption and Overvoltage Protection in Solid-State Breakers by the Use of Parallel Varistors. IEEE transactions on power electronics, vol. 29, no. 6, June 2014. DOI:10.1109/TPEL.2013.2272857.
dc.relation.references[8] TND335/D. Transient Overvoltage Protection, ON Semiconductor, Semiconductor Components Industries. LLC, 2008.
dc.relation.references[9] AN 1826/0104. Transient Protection Solution: Transil diode versus Varistor / Bremond, A., Karoui, C. STMicroelectronics.
dc.relation.references[10] Han, S. M., Huh, C. S., Choi, J. S. A Validation of Conventional Protection Devices in Protecting EMP Threats. Progress in Electromagnetic Research, 2011, Vol. 119.
dc.relation.references[11] Howell, T. Comparing Circuit Protection Technologies for 48 V DC in High Surge Environments. Protection Engineers Group Conference, Dallas, March 14–16, 2017.
dc.relation.references[12] Novikov, P. Protection of power Transistor. Part 1. Overvoltage. Power Electronics, No. 4 (37), 2012, 10–14 (in Russian)
dc.relation.references[13] Mathworks HelpCenter Documentation. https://www.mathworks.com/help/physmod/sps/powersys/ug/building-and-customizing-nonlinearmodels.html.
dc.relation.references[14] Goldman, J. Selecting Protection Devices: TVS Diodes vs. MetalOxide Varistors. Power Electronics. 2010. June 1.
dc.relation.references[15] IEC 60255-1. Measuring relays and protection equipment – Part 11: Voltage dips, short interruptions, variations and ripple on auxiliary power supply port.
dc.relation.referencesen[1] Intelligent electrical networks: elements and modes: For general. ed. acad. NAS of Ukraine O.V. Kyrylenko. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2016. 400 p. (in Ukrainian).
dc.relation.referencesen[2] Fediv, Y., Sivakova, O., Korchak, M. (2019). Model of Virtual Source of Reactive Power for Smart Electrical Supply Systems. 2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE). 15–18 Sept. 2019, Lviv–Slavske, Ukraine. DOI:10.1109/CPEE47179.2019.8949159.
dc.relation.referencesen[3] Fediv, Y., Sivakova, O., Korchak, M. (2020). Multi operated virtual power plan in smart grid, Adv. Sci. Technol. Eng. Syst. J. 5(6), 256-260 (2020). DOI:10.25046/aj050630
dc.relation.referencesen[4] Korchak, M., Sivakova, O., Fediv, Y. (2018). Virtual source of reactive power in electricity supply systems of household consumers, Proceedings of international forum "Litteris et Artibus", November 22–24 th, 2018, Lviv, Ukraine. DOI: 10.23939/lea2018.0116.
dc.relation.referencesen[5] Soskov, A., Salabaeva, N., Forkun, Y., Glebova, M. Methods of overvoltage limitation in modern dc semiconductor switching apparatus and their calculation. Eastern-European Journal of Enterprise Technologies. 3/8 (81) 2016. DOI:10.15587/1729-4061.2016.72533.
dc.relation.referencesen[6] Electrical Installations Code. Minenergovuhillia of Ukraine, 2017. 617 p. (in Ukrainian).
dc.relation.referencesen[7] Magnusson J., Saers R., Liljestrand L., Engdahl G.. Separation of the Energy Absorption and Overvoltage Protection in Solid-State Breakers by the Use of Parallel Varistors. IEEE transactions on power electronics, vol. 29, no. 6, June 2014. DOI:10.1109/TPEL.2013.2272857.
dc.relation.referencesen[8] TND335/D. Transient Overvoltage Protection, ON Semiconductor, Semiconductor Components Industries. LLC, 2008.
dc.relation.referencesen[9] AN 1826/0104. Transient Protection Solution: Transil diode versus Varistor, Bremond, A., Karoui, C. STMicroelectronics.
dc.relation.referencesen[10] Han, S. M., Huh, C. S., Choi, J. S. A Validation of Conventional Protection Devices in Protecting EMP Threats. Progress in Electromagnetic Research, 2011, Vol. 119.
dc.relation.referencesen[11] Howell, T. Comparing Circuit Protection Technologies for 48 V DC in High Surge Environments. Protection Engineers Group Conference, Dallas, March 14–16, 2017.
dc.relation.referencesen[12] Novikov, P. Protection of power Transistor. Part 1. Overvoltage. Power Electronics, No. 4 (37), 2012, 10–14 (in Russian)
dc.relation.referencesen[13] Mathworks HelpCenter Documentation. https://www.mathworks.com/help/physmod/sps/powersys/ug/building-and-customizing-nonlinearmodels.html.
dc.relation.referencesen[14] Goldman, J. Selecting Protection Devices: TVS Diodes vs. MetalOxide Varistors. Power Electronics. 2010. June 1.
dc.relation.referencesen[15] IEC 60255-1. Measuring relays and protection equipment – Part 11: Voltage dips, short interruptions, variations and ripple on auxiliary power supply port.
dc.relation.urihttps://www.mathworks.com/help/physmod/sps/powersys/ug/building-and-customizing-nonlinearmodels.html
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectкомутаційні перенапруги
dc.subjectсиловий перетворювач струму
dc.subjectтиристор
dc.subjectобмежувальний діод
dc.subjectваристор
dc.subjectswitching overvoltages
dc.subjectcurrent power converters
dc.subjectthyristor
dc.subjectlimiting diode
dc.subjectvaristor
dc.titleSwitching overvoltages protection of power electronics converters with gate turn-off thyristors
dc.title.alternativeЗахист від комутаційних перенапруг силових перетворювачів струму з вимикаючими тиристорами
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v7n2_Fediv_Y-Switching_overvoltages_protection_103-110.pdf
Size:
412.22 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v7n2_Fediv_Y-Switching_overvoltages_protection_103-110__COVER.png
Size:
426.42 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: