Сенсори газів на наноструктурах: сучасний стан та перспективи досліджень

dc.citation.epage131
dc.citation.issue885
dc.citation.journalTitleВісник Національного університету «Львівська політехніка». Серія: Радіоелектроніка та телекомунікації
dc.citation.spage113
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБурий, О. А.
dc.contributor.authorУбізський, С. Б.
dc.contributor.authorBuryy, O.
dc.contributor.authorUbizskii, S. B.
dc.coverage.placenameЛьвів
dc.date.accessioned2018-11-15T08:53:04Z
dc.date.available2018-11-15T08:53:04Z
dc.date.created2017-03-28
dc.date.issued2017-03-28
dc.description.abstractПроаналізовано основні досягнення у галузі розроблення газових сенсорів резис- тивного типу, зокрема, створення нових наноархітектур, які дають змогу істотно покра- щити робочі характеристики сенсорів. Показано, що використання у таких структурах середовищ на основі нанокристалів перовськитів дасть можливість в перспективі забез- печити переваги над сенсорами на традиційних напівпровідникових оксидах металів.
dc.description.abstractThe analysis of the progress in the field of the resistive gas sensors elaboration is carried out. Particularly, the novel nanoarchitectures that allow to essentially increase the sensors operating characteristics are described. As it is shown, high sensitivity, fast response, short recovery time, a considerable number of detected gases, low detection limit (about 1 ppm), reliability, compactness, relative simplicity of fabrication and low cost can be achieved due to nanostructured resistive gas sensors using. The improvement of characteristics of such sensors, particularly, their sensitivity, is caused by significant decrease of inter-particle barriers in nanopowders or other nanostructures. The elaboration of nanostructured gas sensors based on perovskite nanocrystalline media will ensures the advantages in comparison with traditional semiconductor oxide gas sensors. Particularly, their stability and selectivity are eventually higher and the operating temperature is lower than the ones of traditional SnO2- or ZnO-based gas sensors. The other advantages of perovskites are the possibility of isomorphic substitution of atoms that allows to change their compostion in the wide range, relative simplicity and the modest cost of nanopowder sintering by sol-gel technique. At the current time, however, the selectivity of perovskite nanostructured resistive gas sensors is not high enough that stipulates the additional investigations for the improvement of this parameter. The possible directions of these investigations are defining of the optimal composition of the material as well the determination of optimal grain size and porosity. One more important task is the construction of the realistic mathematical models of nanostructured gas sensors that allows to foresee the possible ways of such optimization.
dc.format.extent113-131
dc.format.pages19
dc.identifier.citationБурий О. А. Сенсори газів на наноструктурах: сучасний стан та перспективи досліджень / О. А. Бурий, С. Б. Убізський // Вісник Національного університету «Львівська політехніка». Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2017. — № 885. — С. 113–131.
dc.identifier.citationenBuryy O. Nanostructured gas sensors: the state of the art and perspectives for research / O. Buryy, S. B. Ubizskii // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Radioelektronika ta telekomunikatsii. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2017. — No 885. — P. 113–131.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/43033
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofВісник Національного університету «Львівська політехніка». Серія: Радіоелектроніка та телекомунікації, 885, 2017
dc.relation.references1. Мікроелектронні сенсори фізичних величин (2003). За ред. З. Ю. Готри, Львів, Ліга-прес.
dc.relation.references2. Xin Zhou, Songyi Lee, Zhaochao Xu and Juyoung Yoon (2015), “Recent Progress on the Development of Chemosensors for Gases”, Chemical Reviews, vol. 115, pp. 7944–8000.
dc.relation.references3. Il-Doo Kim, Rothschild A. and Tuller H. L. (2013) “Advances and new directions in gas-sensing devices”, Acta Mat., vol. 51, pp. 974 – 1000.
dc.relation.references4. Yu-Feng Sun, Shao-Bo Liu, Fan-Li Meng, Jin-Yun Liu, Zhen Jin, Ling-Tao Kong and Jin-Huai Liu (2012) “Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review”, Sensors, vol. 12, pp. 2610–2631.
dc.relation.references5. Ling Zhang, Jifan Hu, Peng Song, Hongwei Qin, Kang An, Xingdong Wang and Minhua Jiang (2006) “CO-sensing properties of perovskite La0.68Pb0.32FeO3”, Sens. Actuators, vol. 119, pp. 315–318.
dc.relation.references6. Jing Zhao, Yinping Liu, Xiaowei Li, Geyu Lu, Lu You, Xishuang Liang, Fengmin Liu, Tong Zhang and Yu Du (2013) “Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route”, Sens. Actuators, vol. 181, pp. 802–809.
dc.relation.references7. Peng Song, Hongwei Qin, Shanxing Huang, Xing Liu, Rui Zhang, Jifan Hu and Minhua Jiang (2007) “Characteristics and sensing properties of La0.8Pb0.2Fe1-xNixO3 system for CO gas sensors”, Mater. Sci. Eng. B, vol. 138, pp. 193–197.
dc.relation.references8. Ru Zhang, Jifan Hu, Zhouxiang Han, Ma Zhajo, Zhanlei Wu, Yongjia Zhang and Hongwei Qin (2010)”Electrical and CO-sensing properties of of NdFe1-xCoxO3 perovskite system”, J. of Rare Earth, vol. 28, pp. 591–595.
dc.relation.references9. Truong Giang Ho, Thai Duy Ha, Quang Ngan Pham, Hong Thai Giang, Thi Anh Thu Do and Ngoc Toan Nguyen (2011) “Nanosized perovskite oxide NdFeO3 as material for carbon-monoxide catalytic gas sensor”, Adv. Nat. Sci.: Nanosci. Nanotechnol, vol.2, 015012 (4 pp.).
dc.relation.references10. Yoshiteru Itagaki, Masami Mori, Yuuki Hosoya, Hiromichi Aono and Yoshihiko Sadaoka (2007) “O3 and NO2 sensing properties of SmFe1-xCoxO3”, Sensors and Actuators B, vol. 122,pp. 315–320.
dc.relation.references11. Bukhari S. M. and Giorgi J. B. (2013) “Ni doped Sm0.95Ce0.05FeO3-d perovskite based sensors for hydrogen detection”, Sens. Actuators B, vol. 181, pp. 153–158.
dc.relation.references12. Mulmi S., Hassan A., Pereira-Almao P. and Thangadurai V. (2013) “Detecting CO2 at ppm level in synthetic air using mixed conducting double perovskite-type metal oxides”, Sens. Actuators, vol. 176, pp. 598–605.
dc.relation.references13. Tsuyoshi Arakawa, Ken-Ichi Takada, Yoshikazu Tsunemine and Jiro Shiokawa (1988) “CO gas sensitivities of reduced perovskite oxide LaCoO3−x”, Sens. Actuators, vol. 14, pp. 215–221.
dc.relation.references14. Fort A., Mugnaini M., Pasquini I., Rocchi S., Romualdi L., Vignoli V., Spinicci R. and Gregorkiewitz M. (2011) “Development and characterization of low power perovskite CO gas sensors”, Proc. of the 2011 IEEE Instrumentation and Measurement Technology Conference, 4 p.
dc.relation.references15. Guangzhi Dong, Huiqing Fan, Hailin Tian, Jiawen Fang and Qiang Li (2015) “Gas-sensing and electrical properties of perovskite structure p-type bariumsubstituted bismuth ferrite”, RSC Advances, vol. 5, pp. 29618–29623.
dc.relation.references16. Balamurugan C. and Lee D.–W. (2015) “Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection”, Sens. Actuators B, vol. 221, pp. 857–866.
dc.relation.references17. Marikutsa A., Rumyantseva M., Baranchikov A. and Gaskov A. (2015) “Nanocrystalline BaSnO3 as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO2”, Materials, vol. 8, pp. 6437–6454.
dc.relation.references18. Shen Yu-Sheng and Zhang Tian-Shu (1993) “Preparation, structure and gas-sensing properties of ultramicro ZnSnO3 powder”, Sensors and Actuators B, vol. 12, pp. 5–9.
dc.relation.references19. Xiaohua Jia, Huiqing Fan, Xiangdong Lou and Jiaqiang Xu (2009) “Synthesis and gas sensing properties of perovskite CdSnO3 nanoparticles”, Appl. Phys. A, vol. 94, pp.837–841.
dc.relation.references20. Orton J. W. and Powell M. J. (1980) “The Hall effect in polycrystalline and powedered semiconductors”, Rep. Prog. Phys., vol. 43, pp. 1263–1307.
dc.relation.references21. Rothschield A. and Komem Y. (2004)”The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors”, J. Appl. Phys., vol. 95,pp. 6374–6380.
dc.relation.references22. Rothschield A. and Komem Y. (2004) “On the Relationship Between the Grain Size and Gas-Sensitivity of Chemo-Resistive Metal-Oxide Gas Sensors with Nanosized Grains”, J. Electroceram., vol. 13, pp. 697–701.
dc.relation.references23. Sukharev V. Y. (1993) “Percolation model of adsorption-induced response of the electrical characteristics of polycrystalline semiconductor adsorbents”, J. Chem. Soc. Faraday Trans., vol.89, pp. 559–572.
dc.relation.references24. Williams D. E. and Pratt K. F.E. (2000)”Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides”, Sensors Actuat. B: Chem., vol. 70, pp. 214–221.
dc.relation.references25. Chabanis G., Parkin I. P. and Williams D. E. (2003) “A simple equivalent circuit model to represent microstructure effects on the response of semiconducting oxide-based gas sensors”, Meas. Sci. Technol.,vol. 14, pp. 76–81.
dc.relation.referencesen1. Mikroelektronni sensory fizychnykh velychyn (2003). ed. Z. Yu. Hotry, Lviv, Liha-pres.
dc.relation.referencesen2. Xin Zhou, Songyi Lee, Zhaochao Xu and Juyoung Yoon (2015), "Recent Progress on the Development of Chemosensors for Gases", Chemical Reviews, vol. 115, pp. 7944–8000.
dc.relation.referencesen3. Il-Doo Kim, Rothschild A. and Tuller H. L. (2013) "Advances and new directions in gas-sensing devices", Acta Mat., vol. 51, pp. 974 – 1000.
dc.relation.referencesen4. Yu-Feng Sun, Shao-Bo Liu, Fan-Li Meng, Jin-Yun Liu, Zhen Jin, Ling-Tao Kong and Jin-Huai Liu (2012) "Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review", Sensors, vol. 12, pp. 2610–2631.
dc.relation.referencesen5. Ling Zhang, Jifan Hu, Peng Song, Hongwei Qin, Kang An, Xingdong Wang and Minhua Jiang (2006) "CO-sensing properties of perovskite La0.68Pb0.32FeO3", Sens. Actuators, vol. 119, pp. 315–318.
dc.relation.referencesen6. Jing Zhao, Yinping Liu, Xiaowei Li, Geyu Lu, Lu You, Xishuang Liang, Fengmin Liu, Tong Zhang and Yu Du (2013) "Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route", Sens. Actuators, vol. 181, pp. 802–809.
dc.relation.referencesen7. Peng Song, Hongwei Qin, Shanxing Huang, Xing Liu, Rui Zhang, Jifan Hu and Minhua Jiang (2007) "Characteristics and sensing properties of La0.8Pb0.2Fe1-xNixO3 system for CO gas sensors", Mater. Sci. Eng. B, vol. 138, pp. 193–197.
dc.relation.referencesen8. Ru Zhang, Jifan Hu, Zhouxiang Han, Ma Zhajo, Zhanlei Wu, Yongjia Zhang and Hongwei Qin (2010)"Electrical and CO-sensing properties of of NdFe1-xCoxO3 perovskite system", J. of Rare Earth, vol. 28, pp. 591–595.
dc.relation.referencesen9. Truong Giang Ho, Thai Duy Ha, Quang Ngan Pham, Hong Thai Giang, Thi Anh Thu Do and Ngoc Toan Nguyen (2011) "Nanosized perovskite oxide NdFeO3 as material for carbon-monoxide catalytic gas sensor", Adv. Nat. Sci., Nanosci. Nanotechnol, vol.2, 015012 (4 pp.).
dc.relation.referencesen10. Yoshiteru Itagaki, Masami Mori, Yuuki Hosoya, Hiromichi Aono and Yoshihiko Sadaoka (2007) "O3 and NO2 sensing properties of SmFe1-xCoxO3", Sensors and Actuators B, vol. 122,pp. 315–320.
dc.relation.referencesen11. Bukhari S. M. and Giorgi J. B. (2013) "Ni doped Sm0.95Ce0.05FeO3-d perovskite based sensors for hydrogen detection", Sens. Actuators B, vol. 181, pp. 153–158.
dc.relation.referencesen12. Mulmi S., Hassan A., Pereira-Almao P. and Thangadurai V. (2013) "Detecting CO2 at ppm level in synthetic air using mixed conducting double perovskite-type metal oxides", Sens. Actuators, vol. 176, pp. 598–605.
dc.relation.referencesen13. Tsuyoshi Arakawa, Ken-Ichi Takada, Yoshikazu Tsunemine and Jiro Shiokawa (1988) "CO gas sensitivities of reduced perovskite oxide LaCoO3−x", Sens. Actuators, vol. 14, pp. 215–221.
dc.relation.referencesen14. Fort A., Mugnaini M., Pasquini I., Rocchi S., Romualdi L., Vignoli V., Spinicci R. and Gregorkiewitz M. (2011) "Development and characterization of low power perovskite CO gas sensors", Proc. of the 2011 IEEE Instrumentation and Measurement Technology Conference, 4 p.
dc.relation.referencesen15. Guangzhi Dong, Huiqing Fan, Hailin Tian, Jiawen Fang and Qiang Li (2015) "Gas-sensing and electrical properties of perovskite structure p-type bariumsubstituted bismuth ferrite", RSC Advances, vol. 5, pp. 29618–29623.
dc.relation.referencesen16. Balamurugan C. and Lee D.–W. (2015) "Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection", Sens. Actuators B, vol. 221, pp. 857–866.
dc.relation.referencesen17. Marikutsa A., Rumyantseva M., Baranchikov A. and Gaskov A. (2015) "Nanocrystalline BaSnO3 as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO2", Materials, vol. 8, pp. 6437–6454.
dc.relation.referencesen18. Shen Yu-Sheng and Zhang Tian-Shu (1993) "Preparation, structure and gas-sensing properties of ultramicro ZnSnO3 powder", Sensors and Actuators B, vol. 12, pp. 5–9.
dc.relation.referencesen19. Xiaohua Jia, Huiqing Fan, Xiangdong Lou and Jiaqiang Xu (2009) "Synthesis and gas sensing properties of perovskite CdSnO3 nanoparticles", Appl. Phys. A, vol. 94, pp.837–841.
dc.relation.referencesen20. Orton J. W. and Powell M. J. (1980) "The Hall effect in polycrystalline and powedered semiconductors", Rep. Prog. Phys., vol. 43, pp. 1263–1307.
dc.relation.referencesen21. Rothschield A. and Komem Y. (2004)"The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors", J. Appl. Phys., vol. 95,pp. 6374–6380.
dc.relation.referencesen22. Rothschield A. and Komem Y. (2004) "On the Relationship Between the Grain Size and Gas-Sensitivity of Chemo-Resistive Metal-Oxide Gas Sensors with Nanosized Grains", J. Electroceram., vol. 13, pp. 697–701.
dc.relation.referencesen23. Sukharev V. Y. (1993) "Percolation model of adsorption-induced response of the electrical characteristics of polycrystalline semiconductor adsorbents", J. Chem. Soc. Faraday Trans., vol.89, pp. 559–572.
dc.relation.referencesen24. Williams D. E. and Pratt K. F.E. (2000)"Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides", Sensors Actuat. B: Chem., vol. 70, pp. 214–221.
dc.relation.referencesen25. Chabanis G., Parkin I. P. and Williams D. E. (2003) "A simple equivalent circuit model to represent microstructure effects on the response of semiconducting oxide-based gas sensors", Meas. Sci. Technol.,vol. 14, pp. 76–81.
dc.rights.holder© Національний університет “Львівська політехніка”, 2017
dc.rights.holder© Бурий О. А., Убізський С. Б., 2017
dc.subjectсенсори газів
dc.subjectнаноструктуровані матеріали
dc.subjectперовськіти
dc.subjectgas sensors
dc.subjectnanostructures materials
dc.subjectperovskites
dc.subject.udc537.312
dc.titleСенсори газів на наноструктурах: сучасний стан та перспективи досліджень
dc.title.alternativeNanostructured gas sensors: the state of the art and perspectives for research
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2017n885_Buryy_O-Nanostructured_gas_sensors_113-131.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2017n885_Buryy_O-Nanostructured_gas_sensors_113-131__COVER.png
Size:
416.75 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3 KB
Format:
Plain Text
Description: