Temporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data
dc.citation.epage | 20 | |
dc.citation.issue | 2 (29) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Марченко, О. М. | |
dc.contributor.author | Перій, С. С. | |
dc.contributor.author | Тартачинська, З. Р. | |
dc.contributor.author | Балян, А. П. | |
dc.contributor.author | Marchenko, A. N. | |
dc.contributor.author | Perii, S. S. | |
dc.contributor.author | Tartachynska, Z. R. | |
dc.contributor.author | Balian, A. P. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-06-20T08:16:12Z | |
dc.date.available | 2023-06-20T08:16:12Z | |
dc.date.created | 2020-02-25 | |
dc.date.issued | 2020-02-25 | |
dc.description.abstract | Головною метою роботи є дослідження довгих часових рядів UT/CSR для коефіцієнтів гармонік другого ступеня гравітаційного поля Землі, отриманих за даними SLR. Якщо динамічна еліптичність відома, вони дають змогу знаходити різні механічні та геометричні параметри Землі, що змінюється в часі, протягом таких періодів: (а) з 1976 до 2020 рр. на основі щомісячних та тижневих розв’язків коефіцієнта C20 ; (b) з 1992 до 2020 рр. на основі щомісячних та тижневих розв’язків ненульових коефіцієнтів , пов’язаних із системою головних осей інерції, що дає змогу будувати моделі їхніх довгострокових варіацій. Потенціал залежного від часу гравітаційного квадруполя V2 згідно із теорією Максвелла використано для виведення нових точних формул визначення орієнтації головних осей інерції A , B , C через положення двох квадрупольних осей. Отже, залежні від часу механічні та геометричні параметри Землі, зокрема гравітаційний квадруполь, головні осі та головні моменти інерції, обчислювали у кожен момент часу протягом останніх 27,5 року з 1992 до 2020 рр. Однак їхня лінійна зміна у всіх розглянутих параметрах достатньо невизначена через різну поведінку на певних інтервалах часу, включаючи варіації знака різних ефектів через стрибок часових рядів 20 Ct протягом 1998–2002 рр. Моделі 3D та 1D густини Землі, задані обмеженим розв’язком 3D моментів густини всередині еліпсоїда обертання, отримано з умовами збереження залежного від часу гравітаційного потенціалу від нульового до другого степеня, динамічної еліптичності, полярного стиснення, основних радіальних стрибків густини, прийнятих для моделі PREM, і довгоперіодичної зміни в просторово-часовому розподілі густини планети. Важливо зазначити, що у разі розв’язування оберненої задачі залежність від часу в тензорі інерції Землі виникає внаслідок зміни густини Землі, але не залежить від змін її форми, про що свідчать відповідні рівняння, де стиснення скасовується. | |
dc.description.abstract | This study aims to derive the Earth’s temporally varying Earth’s tensor of inertia based on the dynamical ellipticity. Earth’s mechanical and geometrical parameters during the following periods: (a) from 1976 to 2020 based on monthly and weekly solutions of the coefficient C20 . The potential of the time-dependent gravitational quadrupole V2 according to Maxwell theory was used to derive the new exact formulas for the orientation of the principal axes A , B , C via location of the two quadrupole axes. Hence, the Earth’s time-dependent mechanical and geometrical parameters, including the gravitational quadrupole, the principal axes and the principal moments of inertia were computed at each moment during the past 27.5 years from 1992 to 2020. However, their linear change in all the considered parameters is rather unclear because of their various behavior on different timeintervals including variations of a sign of the considered effects due to a jump in the time-series )(20 tC during the time-period 1998–2002. The Earth’s 3D and 1D density models were constructed based on the restricted solution of the 3D Cartesian moments inside the ellipsoid of the revolution. They were derived with conditions to conserve the time-dependent gravitational potential from zero to second degree, the dynamical ellipticity, the polar flattening, basic radial jumps of density as sampled for the PREM model, and the long-term variations in space-time mass density distribution. It is important to note that in solving the inverse problem, the time dependence in the Earth's inertia tensor arises due to changes in the Earth's density, but does not depend on changes in its shape, which is confirmed by the corresponding equations where flattening is canceled. | |
dc.format.extent | 5-20 | |
dc.format.pages | 16 | |
dc.identifier.citation | Temporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data / A. N. Marchenko, S. S. Perii, Z. R. Tartachynska, A. P. Balian // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 5–20. | |
dc.identifier.citationen | Temporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data / A. N. Marchenko, S. S. Perii, Z. R. Tartachynska, A. P. Balian // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 5–20. | |
dc.identifier.doi | doi.org/10.23939/jgd2020.02.005 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59298 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 2 (29), 2020 | |
dc.relation.ispartof | Geodynamics, 2 (29), 2020 | |
dc.relation.references | Bourda, G., & Capitaine, N. (2004). Precession, | |
dc.relation.references | nutation, and space geodetic determination of the | |
dc.relation.references | Earth’s variable gravity field. Astronomy & | |
dc.relation.references | Astrophysics, 428(2), 691–702. DOI: 10.1051/0004-6361:20041533 | |
dc.relation.references | Bullard, E. C. (1954). The interior of the Earth. In: | |
dc.relation.references | The Earth as a Planet (G. P. Kuiper, ed). Univ. of Chicago Press, 57–137. | |
dc.relation.references | Bullen, K. E. (1975). The Earth’s Density. Chapman and Hall, London. | |
dc.relation.references | Burša, M., Groten E., & Šìma, Z. (2008). Steady | |
dc.relation.references | Change in Flattening of the Earth: The Precession | |
dc.relation.references | Constant and its Long-term Variation. The | |
dc.relation.references | Astronomical Journal, 135(3):1021–1023, | |
dc.relation.references | doi.org/10.1088/0004-6256/135/3/1021 | |
dc.relation.references | Capitaine N., Wallace, P. T., & Chapront, J. (2003). | |
dc.relation.references | Expressions for IAU 2000 precession quantities. | |
dc.relation.references | Astronomy & Astrophysics, 412(2), 567–586. | |
dc.relation.references | DOI: 10.1051/0004-6361:20031539 | |
dc.relation.references | Capitaine, N., Mathews, P. M., Dehant, V., Wallace, P. T., | |
dc.relation.references | & Lambert, S. B. (2009). On the IAU 2000/2006 | |
dc.relation.references | precession–nutation and comparison with other | |
dc.relation.references | models and VLBI observations. Celestial Mechanics | |
dc.relation.references | and Dynamical Astronomy, 103(2), 179–190, | |
dc.relation.references | DOI 10.1007/s10569-008-9179-9 | |
dc.relation.references | Cheng, M. K., Eanes, R. J., Shum, C. K., Schutz, B. E., & | |
dc.relation.references | Tapley, B. D. (1989). Temporal variations in low | |
dc.relation.references | degree zonal harmonics from Starlette orbit | |
dc.relation.references | analysis. Geophysical Research Letters, 16(5), 393–396. | |
dc.relation.references | Chen, W., & Shen, W. (2010). New estimates of the | |
dc.relation.references | inertia tensor and rotation of the triaxial nonrigid | |
dc.relation.references | Earth. Journal of Geophysical Research: Solid | |
dc.relation.references | Earth, 115: B12419. doi:10.1029/2009JB00709. | |
dc.relation.references | Chen, W., Li, J. C., Ray, J., Shen, W. B., & Huang, C. L. | |
dc.relation.references | (2015). Consistent estimates of the dynamic figure | |
dc.relation.references | parameters of the earth. Journal of Geodesy, 89(2), 179–188. DOI 10.1007/s00190-014-0768-y | |
dc.relation.references | Cheng, M., & Tapley, B. D. (2004). Variations in the | |
dc.relation.references | Earth’s oblateness during the past 28 years. | |
dc.relation.references | Journal of Geophysical Research: Solid Earth, 109, B09402, doi:10.1029/2004JB003028, 2004 | |
dc.relation.references | Cheng, M., Ries, J. C., & Tapley, B. D. (2011). | |
dc.relation.references | Variations of the Earth’s figure axis from | |
dc.relation.references | satellite Research: Solid Earth, 116. B01409, | |
dc.relation.references | doi:10.1029/2010JB000850. | |
dc.relation.references | Cheng, M., Tapley, B. D., & Ries, J. C. (2013). | |
dc.relation.references | Deceleration in the Earth’s oblateness. Journal of | |
dc.relation.references | Geophysical Research: Solid Earth, 118(2), 740–747, doi:10.1002/jgrb.50058. | |
dc.relation.references | Cheng, M., & Ries, J. (2017). The unexpected signal | |
dc.relation.references | in GRACE estimates of C20. Journal of Geodesy, 91(8), 897–914. DOI 10.1007/s00190-016-0995-5 | |
dc.relation.references | Cox, C. M., & Chao, B. F. (2002). Detection of a | |
dc.relation.references | large-scale mass redistribution in the terrestrial | |
dc.relation.references | system since 1998. Science, 297(5582), 831–833. | |
dc.relation.references | Darwin, G. H. (1883). IV. On the figure of equilibrium | |
dc.relation.references | of a planet of heterogeneous density. Proceedings | |
dc.relation.references | of the Royal Society of London, 36 (228–231), 158–166. | |
dc.relation.references | Dehant, V. et al. (1999) Considerations concerning | |
dc.relation.references | the non-rigid Earth nutation theory. Celestial | |
dc.relation.references | Mechanics and Dynamical Astronomy, 72, pp. 245–309. | |
dc.relation.references | Dziewonski, A. M., & Anderson, D. L. (1981). | |
dc.relation.references | Preliminary reference Earth model. Physics of the | |
dc.relation.references | earth and planetary interiors, 25(4), 297–356. | |
dc.relation.references | Fukushima, T. (2003). A new precession formula. The | |
dc.relation.references | Astronomical Journal, 126(1), 494–534. | |
dc.relation.references | Grafarend, E., Engels, J., & Varga, P. (2000). The | |
dc.relation.references | temporal variation of the spherical and Cartesian | |
dc.relation.references | multipoles of the gravity field: the generalized | |
dc.relation.references | MacCullagh representation. Journal of Geodesy, 74(7–8), 519–530. | |
dc.relation.references | Groten, E. (2004). Fundamental parameters and | |
dc.relation.references | current (2004) best estimates of the parameters of | |
dc.relation.references | common relevance to astronomy, geodesy, and | |
dc.relation.references | geodynamics. Journal of Geodesy, 77, 724–797, doi:10.1007/s00190-003-0373-y | |
dc.relation.references | IERS Standards (1989). (IERS Technical Note; 3). | |
dc.relation.references | Chapter 14: Radiation Pressure Reflectance Model. | |
dc.relation.references | Paris: Central Bureau of IERS-Observatoire de Paris. | |
dc.relation.references | Liu, J. C., & Capitaine, N. (2017). Evaluation of a | |
dc.relation.references | possible upgrade of the IAU 2006 precession. | |
dc.relation.references | Astronomy & Astrophysics, 597, A83. DOI: 10.1051/0004-6361/201628717 | |
dc.relation.references | Lambeck, K. (1971). Determination of the Earth’s | |
dc.relation.references | pole of rotation from laser range observations to | |
dc.relation.references | satellites. Bulletin Géodésique (1946–1975), 101(1), 263–281. | |
dc.relation.references | Marchenko A.N. (1979) The gravitational quadrupole | |
dc.relation.references | of a planet. Letters in Soviet Astronomical | |
dc.relation.references | Journal, No. 5, 198–200. | |
dc.relation.references | Marchenko A.N. (1998) Parameterization of the | |
dc.relation.references | Earth’s gravity field. Point and line singularities. | |
dc.relation.references | Lviv Astronomical and Geodetic Society, Lviv. | |
dc.relation.references | Marchenko, A. N. (2000). Earth’s radial density profiles based on Gauss’ and Roche’s distributions. | |
dc.relation.references | Bolletino di Geodesia e Scienze Affini, 59(3), 201–220. | |
dc.relation.references | Marchenko, A. N., & Abrikosov, O. A. (2001). | |
dc.relation.references | Evolution of the Earth's principal axes and | |
dc.relation.references | moments of inertia: The canonical form of | |
dc.relation.references | solution. Journal of Geodesy, 74(9), 655–669. | |
dc.relation.references | Marchenko A. N. (2003) A note on the eigenvalueeigenvector problem. In: Festschrift dedicated to | |
dc.relation.references | Helmut Moritz on his 70th birthday. (Ed. | |
dc.relation.references | N. Kühtreiber) Institute for Geodesy, Graz University of Technology. Graz (Austria), pp. 143–152. | |
dc.relation.references | Marchenko, A. N., & Schwintzer, P. (2003). Estimation | |
dc.relation.references | of the Earth's tensor of inertia from recent global | |
dc.relation.references | gravity field solutions. Journal of geodesy, 76(9–10), 495–509. | |
dc.relation.references | Marchenko, A. N. (2009a). Current estimation of the | |
dc.relation.references | Earth’s mechanical and geometrical parameters. | |
dc.relation.references | In: M. G. Sideris (ed.), Observing our Changing | |
dc.relation.references | Earth. International Association of Geodesy | |
dc.relation.references | Symposia 133. Springer-Verlag, Berlin, Heidelberg, | |
dc.relation.references | pp. 473–481 | |
dc.relation.references | Marchenko A.N. (2009b) The Earth’s global density | |
dc.relation.references | distribution and gravitational potential energy. In: | |
dc.relation.references | M. G. Sideris (ed.), Observing our Changing | |
dc.relation.references | Earth, International Association of Geodesy | |
dc.relation.references | Symposia 133. Springer-Verlag, Berlin, Heidelberg, | |
dc.relation.references | pp. 483–491. | |
dc.relation.references | Marchenko, A. N., & Lopushansky, A. N. (2018). | |
dc.relation.references | Change in the Zonal Harmonic Coefficient C20, | |
dc.relation.references | Earth’s Polar Flattening, and Dynamical Ellipticity | |
dc.relation.references | from SLR Data. Geodynamics, 2(25), 5–14. | |
dc.relation.references | (http://dx.doi.org/10.4401/ag-7049) | |
dc.relation.references | Published by Lviv Polytechnic National | |
dc.relation.references | University. ISSN: 1992-142X (Print), 2519–2663 | |
dc.relation.references | (Online), Lviv, Ukraine | |
dc.relation.references | Mathews, P. M., Herring, T. A., & Buffett, B. A. (2002). | |
dc.relation.references | Modeling of nutation and precession: New nutation | |
dc.relation.references | series for nonrigid Earth and insights into the | |
dc.relation.references | Earth’s interior. Journal of Geophysical Research: | |
dc.relation.references | Solid Earth, 107(B4), 10.1029/2001JB000390. | |
dc.relation.references | Maxwell, J. K. (1881). A Treatise on Electricity and | |
dc.relation.references | Magnetism. 2nd Edition, Oxford, Vol. 1, 179–214. | |
dc.relation.references | Mescheryakov, G. A. (1991). Problems of the potential | |
dc.relation.references | theory and generalized Earth. Nauka, Moscow, 203 p. (in Russian) | |
dc.relation.references | Mescheryakov, G. A, & Deineka, J. P. (1977). A | |
dc.relation.references | variant of the Earth’s mechanical model. Geofysikalni | |
dc.relation.references | Sbornik. XXV, Travaux de l’Inst. Géophysique | |
dc.relation.references | de l’Académie Tchécoslovaque des Science, | |
dc.relation.references | No. 478, pp. 9–19. | |
dc.relation.references | Moritz, H. (1990). The Figure of the Earth. Theoretical | |
dc.relation.references | Geodesy and Earth’sInterior, Wichmann, Karlsruhe. | |
dc.relation.references | Moritz, H. & I. I. Muller (1987). Earth Rotation. | |
dc.relation.references | Theory and observation, Ungar, New York. | |
dc.relation.references | Melchior, P. (1978). The tides of the planet Earth. | |
dc.relation.references | Pergamon. | |
dc.relation.references | Petit, G, & Luzum, B (eds) (2010). IERS conventions | |
dc.relation.references | (2010), IERS Technical Notes 36. Observatoire | |
dc.relation.references | de Paris, Paris. | |
dc.relation.references | Rochester, M. G., & Smylie, D. E. (1974). On changes in | |
dc.relation.references | the trace of the Earth's inertia tensor. Journal of | |
dc.relation.references | Geophysical Research, 79(32), 4948–4951. | |
dc.relation.references | Rubincam, D. P. (1984). Postglacial rebound observed by | |
dc.relation.references | LAGEOS and the effective viscosity of the lower | |
dc.relation.references | mantle. Journal of Geophysical Research: Solid | |
dc.relation.references | Earth, 89(B2), 1077–1087. | |
dc.relation.references | Schwintzer, P., Reigber, C., Massmann, F. H., Barth, W., | |
dc.relation.references | Raimondo, J. C., Gerstl, M., ... & Lemoine, J. M. | |
dc.relation.references | (1991). A new Earth gravity field model in | |
dc.relation.references | support of ERS 1 and SPOT2: GRIM4-S1/C1, | |
dc.relation.references | final report. German Space Agency and French | |
dc.relation.references | Space Agency., Munich/Toulouse. | |
dc.relation.references | Souchay, J., & Folgueira, M. (1998). The effect of | |
dc.relation.references | zonal tides on the dynamical ellipticity of the | |
dc.relation.references | Earth and its influence on the nutation. Earth, | |
dc.relation.references | Moon, and Planets, 81(3), 201–216. | |
dc.relation.references | Williams, J. G. (1994). Contributions to the Earth's | |
dc.relation.references | obliquity rate, precession, and nutation. The | |
dc.relation.references | Astronomical Journal, 108, 711–724. | |
dc.relation.references | Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., | |
dc.relation.references | Eanes, R. J., & Tapley, B. D. (1983). Secular | |
dc.relation.references | variation of Earth’s gravitational harmonic J2 | |
dc.relation.references | coefficient from Lageos and nontidal acceleration | |
dc.relation.references | of Earth rotation. Nature, 303(5920), 757–762. | |
dc.relation.referencesen | Bourda, G., & Capitaine, N. (2004). Precession, | |
dc.relation.referencesen | nutation, and space geodetic determination of the | |
dc.relation.referencesen | Earth’s variable gravity field. Astronomy & | |
dc.relation.referencesen | Astrophysics, 428(2), 691–702. DOI: 10.1051/0004-6361:20041533 | |
dc.relation.referencesen | Bullard, E. C. (1954). The interior of the Earth. In: | |
dc.relation.referencesen | The Earth as a Planet (G. P. Kuiper, ed). Univ. of Chicago Press, 57–137. | |
dc.relation.referencesen | Bullen, K. E. (1975). The Earth’s Density. Chapman and Hall, London. | |
dc.relation.referencesen | Burša, M., Groten E., & Šìma, Z. (2008). Steady | |
dc.relation.referencesen | Change in Flattening of the Earth: The Precession | |
dc.relation.referencesen | Constant and its Long-term Variation. The | |
dc.relation.referencesen | Astronomical Journal, 135(3):1021–1023, | |
dc.relation.referencesen | doi.org/10.1088/0004-6256/135/3/1021 | |
dc.relation.referencesen | Capitaine N., Wallace, P. T., & Chapront, J. (2003). | |
dc.relation.referencesen | Expressions for IAU 2000 precession quantities. | |
dc.relation.referencesen | Astronomy & Astrophysics, 412(2), 567–586. | |
dc.relation.referencesen | DOI: 10.1051/0004-6361:20031539 | |
dc.relation.referencesen | Capitaine, N., Mathews, P. M., Dehant, V., Wallace, P. T., | |
dc.relation.referencesen | & Lambert, S. B. (2009). On the IAU 2000/2006 | |
dc.relation.referencesen | precession–nutation and comparison with other | |
dc.relation.referencesen | models and VLBI observations. Celestial Mechanics | |
dc.relation.referencesen | and Dynamical Astronomy, 103(2), 179–190, | |
dc.relation.referencesen | DOI 10.1007/s10569-008-9179-9 | |
dc.relation.referencesen | Cheng, M. K., Eanes, R. J., Shum, C. K., Schutz, B. E., & | |
dc.relation.referencesen | Tapley, B. D. (1989). Temporal variations in low | |
dc.relation.referencesen | degree zonal harmonics from Starlette orbit | |
dc.relation.referencesen | analysis. Geophysical Research Letters, 16(5), 393–396. | |
dc.relation.referencesen | Chen, W., & Shen, W. (2010). New estimates of the | |
dc.relation.referencesen | inertia tensor and rotation of the triaxial nonrigid | |
dc.relation.referencesen | Earth. Journal of Geophysical Research: Solid | |
dc.relation.referencesen | Earth, 115: B12419. doi:10.1029/2009JB00709. | |
dc.relation.referencesen | Chen, W., Li, J. C., Ray, J., Shen, W. B., & Huang, C. L. | |
dc.relation.referencesen | (2015). Consistent estimates of the dynamic figure | |
dc.relation.referencesen | parameters of the earth. Journal of Geodesy, 89(2), 179–188. DOI 10.1007/s00190-014-0768-y | |
dc.relation.referencesen | Cheng, M., & Tapley, B. D. (2004). Variations in the | |
dc.relation.referencesen | Earth’s oblateness during the past 28 years. | |
dc.relation.referencesen | Journal of Geophysical Research: Solid Earth, 109, B09402, doi:10.1029/2004JB003028, 2004 | |
dc.relation.referencesen | Cheng, M., Ries, J. C., & Tapley, B. D. (2011). | |
dc.relation.referencesen | Variations of the Earth’s figure axis from | |
dc.relation.referencesen | satellite Research: Solid Earth, 116. B01409, | |
dc.relation.referencesen | doi:10.1029/2010JB000850. | |
dc.relation.referencesen | Cheng, M., Tapley, B. D., & Ries, J. C. (2013). | |
dc.relation.referencesen | Deceleration in the Earth’s oblateness. Journal of | |
dc.relation.referencesen | Geophysical Research: Solid Earth, 118(2), 740–747, doi:10.1002/jgrb.50058. | |
dc.relation.referencesen | Cheng, M., & Ries, J. (2017). The unexpected signal | |
dc.relation.referencesen | in GRACE estimates of P.20. Journal of Geodesy, 91(8), 897–914. DOI 10.1007/s00190-016-0995-5 | |
dc.relation.referencesen | Cox, C. M., & Chao, B. F. (2002). Detection of a | |
dc.relation.referencesen | large-scale mass redistribution in the terrestrial | |
dc.relation.referencesen | system since 1998. Science, 297(5582), 831–833. | |
dc.relation.referencesen | Darwin, G. H. (1883). IV. On the figure of equilibrium | |
dc.relation.referencesen | of a planet of heterogeneous density. Proceedings | |
dc.relation.referencesen | of the Royal Society of London, 36 (228–231), 158–166. | |
dc.relation.referencesen | Dehant, V. et al. (1999) Considerations concerning | |
dc.relation.referencesen | the non-rigid Earth nutation theory. Celestial | |
dc.relation.referencesen | Mechanics and Dynamical Astronomy, 72, pp. 245–309. | |
dc.relation.referencesen | Dziewonski, A. M., & Anderson, D. L. (1981). | |
dc.relation.referencesen | Preliminary reference Earth model. Physics of the | |
dc.relation.referencesen | earth and planetary interiors, 25(4), 297–356. | |
dc.relation.referencesen | Fukushima, T. (2003). A new precession formula. The | |
dc.relation.referencesen | Astronomical Journal, 126(1), 494–534. | |
dc.relation.referencesen | Grafarend, E., Engels, J., & Varga, P. (2000). The | |
dc.relation.referencesen | temporal variation of the spherical and Cartesian | |
dc.relation.referencesen | multipoles of the gravity field: the generalized | |
dc.relation.referencesen | MacCullagh representation. Journal of Geodesy, 74(7–8), 519–530. | |
dc.relation.referencesen | Groten, E. (2004). Fundamental parameters and | |
dc.relation.referencesen | current (2004) best estimates of the parameters of | |
dc.relation.referencesen | common relevance to astronomy, geodesy, and | |
dc.relation.referencesen | geodynamics. Journal of Geodesy, 77, 724–797, doi:10.1007/s00190-003-0373-y | |
dc.relation.referencesen | IERS Standards (1989). (IERS Technical Note; 3). | |
dc.relation.referencesen | Chapter 14: Radiation Pressure Reflectance Model. | |
dc.relation.referencesen | Paris: Central Bureau of IERS-Observatoire de Paris. | |
dc.relation.referencesen | Liu, J. C., & Capitaine, N. (2017). Evaluation of a | |
dc.relation.referencesen | possible upgrade of the IAU 2006 precession. | |
dc.relation.referencesen | Astronomy & Astrophysics, 597, A83. DOI: 10.1051/0004-6361/201628717 | |
dc.relation.referencesen | Lambeck, K. (1971). Determination of the Earth’s | |
dc.relation.referencesen | pole of rotation from laser range observations to | |
dc.relation.referencesen | satellites. Bulletin Géodésique (1946–1975), 101(1), 263–281. | |
dc.relation.referencesen | Marchenko A.N. (1979) The gravitational quadrupole | |
dc.relation.referencesen | of a planet. Letters in Soviet Astronomical | |
dc.relation.referencesen | Journal, No. 5, 198–200. | |
dc.relation.referencesen | Marchenko A.N. (1998) Parameterization of the | |
dc.relation.referencesen | Earth’s gravity field. Point and line singularities. | |
dc.relation.referencesen | Lviv Astronomical and Geodetic Society, Lviv. | |
dc.relation.referencesen | Marchenko, A. N. (2000). Earth’s radial density profiles based on Gauss’ and Roche’s distributions. | |
dc.relation.referencesen | Bolletino di Geodesia e Scienze Affini, 59(3), 201–220. | |
dc.relation.referencesen | Marchenko, A. N., & Abrikosov, O. A. (2001). | |
dc.relation.referencesen | Evolution of the Earth's principal axes and | |
dc.relation.referencesen | moments of inertia: The canonical form of | |
dc.relation.referencesen | solution. Journal of Geodesy, 74(9), 655–669. | |
dc.relation.referencesen | Marchenko A. N. (2003) A note on the eigenvalueeigenvector problem. In: Festschrift dedicated to | |
dc.relation.referencesen | Helmut Moritz on his 70th birthday. (Ed. | |
dc.relation.referencesen | N. Kühtreiber) Institute for Geodesy, Graz University of Technology. Graz (Austria), pp. 143–152. | |
dc.relation.referencesen | Marchenko, A. N., & Schwintzer, P. (2003). Estimation | |
dc.relation.referencesen | of the Earth's tensor of inertia from recent global | |
dc.relation.referencesen | gravity field solutions. Journal of geodesy, 76(9–10), 495–509. | |
dc.relation.referencesen | Marchenko, A. N. (2009a). Current estimation of the | |
dc.relation.referencesen | Earth’s mechanical and geometrical parameters. | |
dc.relation.referencesen | In: M. G. Sideris (ed.), Observing our Changing | |
dc.relation.referencesen | Earth. International Association of Geodesy | |
dc.relation.referencesen | Symposia 133. Springer-Verlag, Berlin, Heidelberg, | |
dc.relation.referencesen | pp. 473–481 | |
dc.relation.referencesen | Marchenko A.N. (2009b) The Earth’s global density | |
dc.relation.referencesen | distribution and gravitational potential energy. In: | |
dc.relation.referencesen | M. G. Sideris (ed.), Observing our Changing | |
dc.relation.referencesen | Earth, International Association of Geodesy | |
dc.relation.referencesen | Symposia 133. Springer-Verlag, Berlin, Heidelberg, | |
dc.relation.referencesen | pp. 483–491. | |
dc.relation.referencesen | Marchenko, A. N., & Lopushansky, A. N. (2018). | |
dc.relation.referencesen | Change in the Zonal Harmonic Coefficient P.20, | |
dc.relation.referencesen | Earth’s Polar Flattening, and Dynamical Ellipticity | |
dc.relation.referencesen | from SLR Data. Geodynamics, 2(25), 5–14. | |
dc.relation.referencesen | (http://dx.doi.org/10.4401/ag-7049) | |
dc.relation.referencesen | Published by Lviv Polytechnic National | |
dc.relation.referencesen | University. ISSN: 1992-142X (Print), 2519–2663 | |
dc.relation.referencesen | (Online), Lviv, Ukraine | |
dc.relation.referencesen | Mathews, P. M., Herring, T. A., & Buffett, B. A. (2002). | |
dc.relation.referencesen | Modeling of nutation and precession: New nutation | |
dc.relation.referencesen | series for nonrigid Earth and insights into the | |
dc.relation.referencesen | Earth’s interior. Journal of Geophysical Research: | |
dc.relation.referencesen | Solid Earth, 107(B4), 10.1029/2001JB000390. | |
dc.relation.referencesen | Maxwell, J. K. (1881). A Treatise on Electricity and | |
dc.relation.referencesen | Magnetism. 2nd Edition, Oxford, Vol. 1, 179–214. | |
dc.relation.referencesen | Mescheryakov, G. A. (1991). Problems of the potential | |
dc.relation.referencesen | theory and generalized Earth. Nauka, Moscow, 203 p. (in Russian) | |
dc.relation.referencesen | Mescheryakov, G. A, & Deineka, J. P. (1977). A | |
dc.relation.referencesen | variant of the Earth’s mechanical model. Geofysikalni | |
dc.relation.referencesen | Sbornik. XXV, Travaux de l’Inst. Géophysique | |
dc.relation.referencesen | de l’Académie Tchécoslovaque des Science, | |
dc.relation.referencesen | No. 478, pp. 9–19. | |
dc.relation.referencesen | Moritz, H. (1990). The Figure of the Earth. Theoretical | |
dc.relation.referencesen | Geodesy and Earth’sInterior, Wichmann, Karlsruhe. | |
dc.relation.referencesen | Moritz, H. & I. I. Muller (1987). Earth Rotation. | |
dc.relation.referencesen | Theory and observation, Ungar, New York. | |
dc.relation.referencesen | Melchior, P. (1978). The tides of the planet Earth. | |
dc.relation.referencesen | Pergamon. | |
dc.relation.referencesen | Petit, G, & Luzum, B (eds) (2010). IERS conventions | |
dc.relation.referencesen | (2010), IERS Technical Notes 36. Observatoire | |
dc.relation.referencesen | de Paris, Paris. | |
dc.relation.referencesen | Rochester, M. G., & Smylie, D. E. (1974). On changes in | |
dc.relation.referencesen | the trace of the Earth's inertia tensor. Journal of | |
dc.relation.referencesen | Geophysical Research, 79(32), 4948–4951. | |
dc.relation.referencesen | Rubincam, D. P. (1984). Postglacial rebound observed by | |
dc.relation.referencesen | LAGEOS and the effective viscosity of the lower | |
dc.relation.referencesen | mantle. Journal of Geophysical Research: Solid | |
dc.relation.referencesen | Earth, 89(B2), 1077–1087. | |
dc.relation.referencesen | Schwintzer, P., Reigber, C., Massmann, F. H., Barth, W., | |
dc.relation.referencesen | Raimondo, J. C., Gerstl, M., ... & Lemoine, J. M. | |
dc.relation.referencesen | (1991). A new Earth gravity field model in | |
dc.relation.referencesen | support of ERS 1 and SPOT2: GRIM4-S1/P.1, | |
dc.relation.referencesen | final report. German Space Agency and French | |
dc.relation.referencesen | Space Agency., Munich/Toulouse. | |
dc.relation.referencesen | Souchay, J., & Folgueira, M. (1998). The effect of | |
dc.relation.referencesen | zonal tides on the dynamical ellipticity of the | |
dc.relation.referencesen | Earth and its influence on the nutation. Earth, | |
dc.relation.referencesen | Moon, and Planets, 81(3), 201–216. | |
dc.relation.referencesen | Williams, J. G. (1994). Contributions to the Earth's | |
dc.relation.referencesen | obliquity rate, precession, and nutation. The | |
dc.relation.referencesen | Astronomical Journal, 108, 711–724. | |
dc.relation.referencesen | Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., | |
dc.relation.referencesen | Eanes, R. J., & Tapley, B. D. (1983). Secular | |
dc.relation.referencesen | variation of Earth’s gravitational harmonic J2 | |
dc.relation.referencesen | coefficient from Lageos and nontidal acceleration | |
dc.relation.referencesen | of Earth rotation. Nature, 303(5920), 757–762. | |
dc.relation.uri | http://dx.doi.org/10.4401/ag-7049 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2020 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2020 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Marchenko Alexander N., Perii S. S., Tartachynska Z. R., Balian A. P. | |
dc.subject | залежні від часу головні осі та моменти інерції Землі | |
dc.subject | динамічна еліптичність | |
dc.subject | гравітаційний квадруполь | |
dc.subject | теорія прецесії-нутації | |
dc.subject | Temporal change in principal axes and moments of inertia | |
dc.subject | Dynamical ellipticity | |
dc.subject | Gravitational quadrupole | |
dc.subject | Precession-Nutation theory | |
dc.subject.udc | 528.21 / 22 | |
dc.title | Temporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data | |
dc.title.alternative | Часові зміни в тензорі інерції землі та 3D модель густини на основі даних UT/CSR | |
dc.type | Article |
Files
License bundle
1 - 1 of 1