Temporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data

dc.citation.epage20
dc.citation.issue2 (29)
dc.citation.journalTitleГеодинаміка
dc.citation.spage5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМарченко, О. М.
dc.contributor.authorПерій, С. С.
dc.contributor.authorТартачинська, З. Р.
dc.contributor.authorБалян, А. П.
dc.contributor.authorMarchenko, A. N.
dc.contributor.authorPerii, S. S.
dc.contributor.authorTartachynska, Z. R.
dc.contributor.authorBalian, A. P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-20T08:16:12Z
dc.date.available2023-06-20T08:16:12Z
dc.date.created2020-02-25
dc.date.issued2020-02-25
dc.description.abstractГоловною метою роботи є дослідження довгих часових рядів UT/CSR для коефіцієнтів гармонік другого ступеня гравітаційного поля Землі, отриманих за даними SLR. Якщо динамічна еліптичність відома, вони дають змогу знаходити різні механічні та геометричні параметри Землі, що змінюється в часі, протягом таких періодів: (а) з 1976 до 2020 рр. на основі щомісячних та тижневих розв’язків коефіцієнта C20 ; (b) з 1992 до 2020 рр. на основі щомісячних та тижневих розв’язків ненульових коефіцієнтів , пов’язаних із системою головних осей інерції, що дає змогу будувати моделі їхніх довгострокових варіацій. Потенціал залежного від часу гравітаційного квадруполя V2 згідно із теорією Максвелла використано для виведення нових точних формул визначення орієнтації головних осей інерції A , B , C через положення двох квадрупольних осей. Отже, залежні від часу механічні та геометричні параметри Землі, зокрема гравітаційний квадруполь, головні осі та головні моменти інерції, обчислювали у кожен момент часу протягом останніх 27,5 року з 1992 до 2020 рр. Однак їхня лінійна зміна у всіх розглянутих параметрах достатньо невизначена через різну поведінку на певних інтервалах часу, включаючи варіації знака різних ефектів через стрибок часових рядів 20 Ct протягом 1998–2002 рр. Моделі 3D та 1D густини Землі, задані обмеженим розв’язком 3D моментів густини всередині еліпсоїда обертання, отримано з умовами збереження залежного від часу гравітаційного потенціалу від нульового до другого степеня, динамічної еліптичності, полярного стиснення, основних радіальних стрибків густини, прийнятих для моделі PREM, і довгоперіодичної зміни в просторово-часовому розподілі густини планети. Важливо зазначити, що у разі розв’язування оберненої задачі залежність від часу в тензорі інерції Землі виникає внаслідок зміни густини Землі, але не залежить від змін її форми, про що свідчать відповідні рівняння, де стиснення скасовується.
dc.description.abstractThis study aims to derive the Earth’s temporally varying Earth’s tensor of inertia based on the dynamical ellipticity. Earth’s mechanical and geometrical parameters during the following periods: (a) from 1976 to 2020 based on monthly and weekly solutions of the coefficient C20 . The potential of the time-dependent gravitational quadrupole V2 according to Maxwell theory was used to derive the new exact formulas for the orientation of the principal axes A , B , C via location of the two quadrupole axes. Hence, the Earth’s time-dependent mechanical and geometrical parameters, including the gravitational quadrupole, the principal axes and the principal moments of inertia were computed at each moment during the past 27.5 years from 1992 to 2020. However, their linear change in all the considered parameters is rather unclear because of their various behavior on different timeintervals including variations of a sign of the considered effects due to a jump in the time-series )(20 tC during the time-period 1998–2002. The Earth’s 3D and 1D density models were constructed based on the restricted solution of the 3D Cartesian moments inside the ellipsoid of the revolution. They were derived with conditions to conserve the time-dependent gravitational potential from zero to second degree, the dynamical ellipticity, the polar flattening, basic radial jumps of density as sampled for the PREM model, and the long-term variations in space-time mass density distribution. It is important to note that in solving the inverse problem, the time dependence in the Earth's inertia tensor arises due to changes in the Earth's density, but does not depend on changes in its shape, which is confirmed by the corresponding equations where flattening is canceled.
dc.format.extent5-20
dc.format.pages16
dc.identifier.citationTemporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data / A. N. Marchenko, S. S. Perii, Z. R. Tartachynska, A. P. Balian // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 5–20.
dc.identifier.citationenTemporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data / A. N. Marchenko, S. S. Perii, Z. R. Tartachynska, A. P. Balian // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 5–20.
dc.identifier.doidoi.org/10.23939/jgd2020.02.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59298
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2 (29), 2020
dc.relation.ispartofGeodynamics, 2 (29), 2020
dc.relation.referencesBourda, G., & Capitaine, N. (2004). Precession,
dc.relation.referencesnutation, and space geodetic determination of the
dc.relation.referencesEarth’s variable gravity field. Astronomy &
dc.relation.referencesAstrophysics, 428(2), 691–702. DOI: 10.1051/0004-6361:20041533
dc.relation.referencesBullard, E. C. (1954). The interior of the Earth. In:
dc.relation.referencesThe Earth as a Planet (G. P. Kuiper, ed). Univ. of Chicago Press, 57–137.
dc.relation.referencesBullen, K. E. (1975). The Earth’s Density. Chapman and Hall, London.
dc.relation.referencesBurša, M., Groten E., & Šìma, Z. (2008). Steady
dc.relation.referencesChange in Flattening of the Earth: The Precession
dc.relation.referencesConstant and its Long-term Variation. The
dc.relation.referencesAstronomical Journal, 135(3):1021–1023,
dc.relation.referencesdoi.org/10.1088/0004-6256/135/3/1021
dc.relation.referencesCapitaine N., Wallace, P. T., & Chapront, J. (2003).
dc.relation.referencesExpressions for IAU 2000 precession quantities.
dc.relation.referencesAstronomy & Astrophysics, 412(2), 567–586.
dc.relation.referencesDOI: 10.1051/0004-6361:20031539
dc.relation.referencesCapitaine, N., Mathews, P. M., Dehant, V., Wallace, P. T.,
dc.relation.references& Lambert, S. B. (2009). On the IAU 2000/2006
dc.relation.referencesprecession–nutation and comparison with other
dc.relation.referencesmodels and VLBI observations. Celestial Mechanics
dc.relation.referencesand Dynamical Astronomy, 103(2), 179–190,
dc.relation.referencesDOI 10.1007/s10569-008-9179-9
dc.relation.referencesCheng, M. K., Eanes, R. J., Shum, C. K., Schutz, B. E., &
dc.relation.referencesTapley, B. D. (1989). Temporal variations in low
dc.relation.referencesdegree zonal harmonics from Starlette orbit
dc.relation.referencesanalysis. Geophysical Research Letters, 16(5), 393–396.
dc.relation.referencesChen, W., & Shen, W. (2010). New estimates of the
dc.relation.referencesinertia tensor and rotation of the triaxial nonrigid
dc.relation.referencesEarth. Journal of Geophysical Research: Solid
dc.relation.referencesEarth, 115: B12419. doi:10.1029/2009JB00709.
dc.relation.referencesChen, W., Li, J. C., Ray, J., Shen, W. B., & Huang, C. L.
dc.relation.references(2015). Consistent estimates of the dynamic figure
dc.relation.referencesparameters of the earth. Journal of Geodesy, 89(2), 179–188. DOI 10.1007/s00190-014-0768-y
dc.relation.referencesCheng, M., & Tapley, B. D. (2004). Variations in the
dc.relation.referencesEarth’s oblateness during the past 28 years.
dc.relation.referencesJournal of Geophysical Research: Solid Earth, 109, B09402, doi:10.1029/2004JB003028, 2004
dc.relation.referencesCheng, M., Ries, J. C., & Tapley, B. D. (2011).
dc.relation.referencesVariations of the Earth’s figure axis from
dc.relation.referencessatellite Research: Solid Earth, 116. B01409,
dc.relation.referencesdoi:10.1029/2010JB000850.
dc.relation.referencesCheng, M., Tapley, B. D., & Ries, J. C. (2013).
dc.relation.referencesDeceleration in the Earth’s oblateness. Journal of
dc.relation.referencesGeophysical Research: Solid Earth, 118(2), 740–747, doi:10.1002/jgrb.50058.
dc.relation.referencesCheng, M., & Ries, J. (2017). The unexpected signal
dc.relation.referencesin GRACE estimates of C20. Journal of Geodesy, 91(8), 897–914. DOI 10.1007/s00190-016-0995-5
dc.relation.referencesCox, C. M., & Chao, B. F. (2002). Detection of a
dc.relation.referenceslarge-scale mass redistribution in the terrestrial
dc.relation.referencessystem since 1998. Science, 297(5582), 831–833.
dc.relation.referencesDarwin, G. H. (1883). IV. On the figure of equilibrium
dc.relation.referencesof a planet of heterogeneous density. Proceedings
dc.relation.referencesof the Royal Society of London, 36 (228–231), 158–166.
dc.relation.referencesDehant, V. et al. (1999) Considerations concerning
dc.relation.referencesthe non-rigid Earth nutation theory. Celestial
dc.relation.referencesMechanics and Dynamical Astronomy, 72, pp. 245–309.
dc.relation.referencesDziewonski, A. M., & Anderson, D. L. (1981).
dc.relation.referencesPreliminary reference Earth model. Physics of the
dc.relation.referencesearth and planetary interiors, 25(4), 297–356.
dc.relation.referencesFukushima, T. (2003). A new precession formula. The
dc.relation.referencesAstronomical Journal, 126(1), 494–534.
dc.relation.referencesGrafarend, E., Engels, J., & Varga, P. (2000). The
dc.relation.referencestemporal variation of the spherical and Cartesian
dc.relation.referencesmultipoles of the gravity field: the generalized
dc.relation.referencesMacCullagh representation. Journal of Geodesy, 74(7–8), 519–530.
dc.relation.referencesGroten, E. (2004). Fundamental parameters and
dc.relation.referencescurrent (2004) best estimates of the parameters of
dc.relation.referencescommon relevance to astronomy, geodesy, and
dc.relation.referencesgeodynamics. Journal of Geodesy, 77, 724–797, doi:10.1007/s00190-003-0373-y
dc.relation.referencesIERS Standards (1989). (IERS Technical Note; 3).
dc.relation.referencesChapter 14: Radiation Pressure Reflectance Model.
dc.relation.referencesParis: Central Bureau of IERS-Observatoire de Paris.
dc.relation.referencesLiu, J. C., & Capitaine, N. (2017). Evaluation of a
dc.relation.referencespossible upgrade of the IAU 2006 precession.
dc.relation.referencesAstronomy & Astrophysics, 597, A83. DOI: 10.1051/0004-6361/201628717
dc.relation.referencesLambeck, K. (1971). Determination of the Earth’s
dc.relation.referencespole of rotation from laser range observations to
dc.relation.referencessatellites. Bulletin Géodésique (1946–1975), 101(1), 263–281.
dc.relation.referencesMarchenko A.N. (1979) The gravitational quadrupole
dc.relation.referencesof a planet. Letters in Soviet Astronomical
dc.relation.referencesJournal, No. 5, 198–200.
dc.relation.referencesMarchenko A.N. (1998) Parameterization of the
dc.relation.referencesEarth’s gravity field. Point and line singularities.
dc.relation.referencesLviv Astronomical and Geodetic Society, Lviv.
dc.relation.referencesMarchenko, A. N. (2000). Earth’s radial density profiles based on Gauss’ and Roche’s distributions.
dc.relation.referencesBolletino di Geodesia e Scienze Affini, 59(3), 201–220.
dc.relation.referencesMarchenko, A. N., & Abrikosov, O. A. (2001).
dc.relation.referencesEvolution of the Earth's principal axes and
dc.relation.referencesmoments of inertia: The canonical form of
dc.relation.referencessolution. Journal of Geodesy, 74(9), 655–669.
dc.relation.referencesMarchenko A. N. (2003) A note on the eigenvalueeigenvector problem. In: Festschrift dedicated to
dc.relation.referencesHelmut Moritz on his 70th birthday. (Ed.
dc.relation.referencesN. Kühtreiber) Institute for Geodesy, Graz University of Technology. Graz (Austria), pp. 143–152.
dc.relation.referencesMarchenko, A. N., & Schwintzer, P. (2003). Estimation
dc.relation.referencesof the Earth's tensor of inertia from recent global
dc.relation.referencesgravity field solutions. Journal of geodesy, 76(9–10), 495–509.
dc.relation.referencesMarchenko, A. N. (2009a). Current estimation of the
dc.relation.referencesEarth’s mechanical and geometrical parameters.
dc.relation.referencesIn: M. G. Sideris (ed.), Observing our Changing
dc.relation.referencesEarth. International Association of Geodesy
dc.relation.referencesSymposia 133. Springer-Verlag, Berlin, Heidelberg,
dc.relation.referencespp. 473–481
dc.relation.referencesMarchenko A.N. (2009b) The Earth’s global density
dc.relation.referencesdistribution and gravitational potential energy. In:
dc.relation.referencesM. G. Sideris (ed.), Observing our Changing
dc.relation.referencesEarth, International Association of Geodesy
dc.relation.referencesSymposia 133. Springer-Verlag, Berlin, Heidelberg,
dc.relation.referencespp. 483–491.
dc.relation.referencesMarchenko, A. N., & Lopushansky, A. N. (2018).
dc.relation.referencesChange in the Zonal Harmonic Coefficient C20,
dc.relation.referencesEarth’s Polar Flattening, and Dynamical Ellipticity
dc.relation.referencesfrom SLR Data. Geodynamics, 2(25), 5–14.
dc.relation.references(http://dx.doi.org/10.4401/ag-7049)
dc.relation.referencesPublished by Lviv Polytechnic National
dc.relation.referencesUniversity. ISSN: 1992-142X (Print), 2519–2663
dc.relation.references(Online), Lviv, Ukraine
dc.relation.referencesMathews, P. M., Herring, T. A., & Buffett, B. A. (2002).
dc.relation.referencesModeling of nutation and precession: New nutation
dc.relation.referencesseries for nonrigid Earth and insights into the
dc.relation.referencesEarth’s interior. Journal of Geophysical Research:
dc.relation.referencesSolid Earth, 107(B4), 10.1029/2001JB000390.
dc.relation.referencesMaxwell, J. K. (1881). A Treatise on Electricity and
dc.relation.referencesMagnetism. 2nd Edition, Oxford, Vol. 1, 179–214.
dc.relation.referencesMescheryakov, G. A. (1991). Problems of the potential
dc.relation.referencestheory and generalized Earth. Nauka, Moscow, 203 p. (in Russian)
dc.relation.referencesMescheryakov, G. A, & Deineka, J. P. (1977). A
dc.relation.referencesvariant of the Earth’s mechanical model. Geofysikalni
dc.relation.referencesSbornik. XXV, Travaux de l’Inst. Géophysique
dc.relation.referencesde l’Académie Tchécoslovaque des Science,
dc.relation.referencesNo. 478, pp. 9–19.
dc.relation.referencesMoritz, H. (1990). The Figure of the Earth. Theoretical
dc.relation.referencesGeodesy and Earth’sInterior, Wichmann, Karlsruhe.
dc.relation.referencesMoritz, H. & I. I. Muller (1987). Earth Rotation.
dc.relation.referencesTheory and observation, Ungar, New York.
dc.relation.referencesMelchior, P. (1978). The tides of the planet Earth.
dc.relation.referencesPergamon.
dc.relation.referencesPetit, G, & Luzum, B (eds) (2010). IERS conventions
dc.relation.references(2010), IERS Technical Notes 36. Observatoire
dc.relation.referencesde Paris, Paris.
dc.relation.referencesRochester, M. G., & Smylie, D. E. (1974). On changes in
dc.relation.referencesthe trace of the Earth's inertia tensor. Journal of
dc.relation.referencesGeophysical Research, 79(32), 4948–4951.
dc.relation.referencesRubincam, D. P. (1984). Postglacial rebound observed by
dc.relation.referencesLAGEOS and the effective viscosity of the lower
dc.relation.referencesmantle. Journal of Geophysical Research: Solid
dc.relation.referencesEarth, 89(B2), 1077–1087.
dc.relation.referencesSchwintzer, P., Reigber, C., Massmann, F. H., Barth, W.,
dc.relation.referencesRaimondo, J. C., Gerstl, M., ... & Lemoine, J. M.
dc.relation.references(1991). A new Earth gravity field model in
dc.relation.referencessupport of ERS 1 and SPOT2: GRIM4-S1/C1,
dc.relation.referencesfinal report. German Space Agency and French
dc.relation.referencesSpace Agency., Munich/Toulouse.
dc.relation.referencesSouchay, J., & Folgueira, M. (1998). The effect of
dc.relation.referenceszonal tides on the dynamical ellipticity of the
dc.relation.referencesEarth and its influence on the nutation. Earth,
dc.relation.referencesMoon, and Planets, 81(3), 201–216.
dc.relation.referencesWilliams, J. G. (1994). Contributions to the Earth's
dc.relation.referencesobliquity rate, precession, and nutation. The
dc.relation.referencesAstronomical Journal, 108, 711–724.
dc.relation.referencesYoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E.,
dc.relation.referencesEanes, R. J., & Tapley, B. D. (1983). Secular
dc.relation.referencesvariation of Earth’s gravitational harmonic J2
dc.relation.referencescoefficient from Lageos and nontidal acceleration
dc.relation.referencesof Earth rotation. Nature, 303(5920), 757–762.
dc.relation.referencesenBourda, G., & Capitaine, N. (2004). Precession,
dc.relation.referencesennutation, and space geodetic determination of the
dc.relation.referencesenEarth’s variable gravity field. Astronomy &
dc.relation.referencesenAstrophysics, 428(2), 691–702. DOI: 10.1051/0004-6361:20041533
dc.relation.referencesenBullard, E. C. (1954). The interior of the Earth. In:
dc.relation.referencesenThe Earth as a Planet (G. P. Kuiper, ed). Univ. of Chicago Press, 57–137.
dc.relation.referencesenBullen, K. E. (1975). The Earth’s Density. Chapman and Hall, London.
dc.relation.referencesenBurša, M., Groten E., & Šìma, Z. (2008). Steady
dc.relation.referencesenChange in Flattening of the Earth: The Precession
dc.relation.referencesenConstant and its Long-term Variation. The
dc.relation.referencesenAstronomical Journal, 135(3):1021–1023,
dc.relation.referencesendoi.org/10.1088/0004-6256/135/3/1021
dc.relation.referencesenCapitaine N., Wallace, P. T., & Chapront, J. (2003).
dc.relation.referencesenExpressions for IAU 2000 precession quantities.
dc.relation.referencesenAstronomy & Astrophysics, 412(2), 567–586.
dc.relation.referencesenDOI: 10.1051/0004-6361:20031539
dc.relation.referencesenCapitaine, N., Mathews, P. M., Dehant, V., Wallace, P. T.,
dc.relation.referencesen& Lambert, S. B. (2009). On the IAU 2000/2006
dc.relation.referencesenprecession–nutation and comparison with other
dc.relation.referencesenmodels and VLBI observations. Celestial Mechanics
dc.relation.referencesenand Dynamical Astronomy, 103(2), 179–190,
dc.relation.referencesenDOI 10.1007/s10569-008-9179-9
dc.relation.referencesenCheng, M. K., Eanes, R. J., Shum, C. K., Schutz, B. E., &
dc.relation.referencesenTapley, B. D. (1989). Temporal variations in low
dc.relation.referencesendegree zonal harmonics from Starlette orbit
dc.relation.referencesenanalysis. Geophysical Research Letters, 16(5), 393–396.
dc.relation.referencesenChen, W., & Shen, W. (2010). New estimates of the
dc.relation.referenceseninertia tensor and rotation of the triaxial nonrigid
dc.relation.referencesenEarth. Journal of Geophysical Research: Solid
dc.relation.referencesenEarth, 115: B12419. doi:10.1029/2009JB00709.
dc.relation.referencesenChen, W., Li, J. C., Ray, J., Shen, W. B., & Huang, C. L.
dc.relation.referencesen(2015). Consistent estimates of the dynamic figure
dc.relation.referencesenparameters of the earth. Journal of Geodesy, 89(2), 179–188. DOI 10.1007/s00190-014-0768-y
dc.relation.referencesenCheng, M., & Tapley, B. D. (2004). Variations in the
dc.relation.referencesenEarth’s oblateness during the past 28 years.
dc.relation.referencesenJournal of Geophysical Research: Solid Earth, 109, B09402, doi:10.1029/2004JB003028, 2004
dc.relation.referencesenCheng, M., Ries, J. C., & Tapley, B. D. (2011).
dc.relation.referencesenVariations of the Earth’s figure axis from
dc.relation.referencesensatellite Research: Solid Earth, 116. B01409,
dc.relation.referencesendoi:10.1029/2010JB000850.
dc.relation.referencesenCheng, M., Tapley, B. D., & Ries, J. C. (2013).
dc.relation.referencesenDeceleration in the Earth’s oblateness. Journal of
dc.relation.referencesenGeophysical Research: Solid Earth, 118(2), 740–747, doi:10.1002/jgrb.50058.
dc.relation.referencesenCheng, M., & Ries, J. (2017). The unexpected signal
dc.relation.referencesenin GRACE estimates of P.20. Journal of Geodesy, 91(8), 897–914. DOI 10.1007/s00190-016-0995-5
dc.relation.referencesenCox, C. M., & Chao, B. F. (2002). Detection of a
dc.relation.referencesenlarge-scale mass redistribution in the terrestrial
dc.relation.referencesensystem since 1998. Science, 297(5582), 831–833.
dc.relation.referencesenDarwin, G. H. (1883). IV. On the figure of equilibrium
dc.relation.referencesenof a planet of heterogeneous density. Proceedings
dc.relation.referencesenof the Royal Society of London, 36 (228–231), 158–166.
dc.relation.referencesenDehant, V. et al. (1999) Considerations concerning
dc.relation.referencesenthe non-rigid Earth nutation theory. Celestial
dc.relation.referencesenMechanics and Dynamical Astronomy, 72, pp. 245–309.
dc.relation.referencesenDziewonski, A. M., & Anderson, D. L. (1981).
dc.relation.referencesenPreliminary reference Earth model. Physics of the
dc.relation.referencesenearth and planetary interiors, 25(4), 297–356.
dc.relation.referencesenFukushima, T. (2003). A new precession formula. The
dc.relation.referencesenAstronomical Journal, 126(1), 494–534.
dc.relation.referencesenGrafarend, E., Engels, J., & Varga, P. (2000). The
dc.relation.referencesentemporal variation of the spherical and Cartesian
dc.relation.referencesenmultipoles of the gravity field: the generalized
dc.relation.referencesenMacCullagh representation. Journal of Geodesy, 74(7–8), 519–530.
dc.relation.referencesenGroten, E. (2004). Fundamental parameters and
dc.relation.referencesencurrent (2004) best estimates of the parameters of
dc.relation.referencesencommon relevance to astronomy, geodesy, and
dc.relation.referencesengeodynamics. Journal of Geodesy, 77, 724–797, doi:10.1007/s00190-003-0373-y
dc.relation.referencesenIERS Standards (1989). (IERS Technical Note; 3).
dc.relation.referencesenChapter 14: Radiation Pressure Reflectance Model.
dc.relation.referencesenParis: Central Bureau of IERS-Observatoire de Paris.
dc.relation.referencesenLiu, J. C., & Capitaine, N. (2017). Evaluation of a
dc.relation.referencesenpossible upgrade of the IAU 2006 precession.
dc.relation.referencesenAstronomy & Astrophysics, 597, A83. DOI: 10.1051/0004-6361/201628717
dc.relation.referencesenLambeck, K. (1971). Determination of the Earth’s
dc.relation.referencesenpole of rotation from laser range observations to
dc.relation.referencesensatellites. Bulletin Géodésique (1946–1975), 101(1), 263–281.
dc.relation.referencesenMarchenko A.N. (1979) The gravitational quadrupole
dc.relation.referencesenof a planet. Letters in Soviet Astronomical
dc.relation.referencesenJournal, No. 5, 198–200.
dc.relation.referencesenMarchenko A.N. (1998) Parameterization of the
dc.relation.referencesenEarth’s gravity field. Point and line singularities.
dc.relation.referencesenLviv Astronomical and Geodetic Society, Lviv.
dc.relation.referencesenMarchenko, A. N. (2000). Earth’s radial density profiles based on Gauss’ and Roche’s distributions.
dc.relation.referencesenBolletino di Geodesia e Scienze Affini, 59(3), 201–220.
dc.relation.referencesenMarchenko, A. N., & Abrikosov, O. A. (2001).
dc.relation.referencesenEvolution of the Earth's principal axes and
dc.relation.referencesenmoments of inertia: The canonical form of
dc.relation.referencesensolution. Journal of Geodesy, 74(9), 655–669.
dc.relation.referencesenMarchenko A. N. (2003) A note on the eigenvalueeigenvector problem. In: Festschrift dedicated to
dc.relation.referencesenHelmut Moritz on his 70th birthday. (Ed.
dc.relation.referencesenN. Kühtreiber) Institute for Geodesy, Graz University of Technology. Graz (Austria), pp. 143–152.
dc.relation.referencesenMarchenko, A. N., & Schwintzer, P. (2003). Estimation
dc.relation.referencesenof the Earth's tensor of inertia from recent global
dc.relation.referencesengravity field solutions. Journal of geodesy, 76(9–10), 495–509.
dc.relation.referencesenMarchenko, A. N. (2009a). Current estimation of the
dc.relation.referencesenEarth’s mechanical and geometrical parameters.
dc.relation.referencesenIn: M. G. Sideris (ed.), Observing our Changing
dc.relation.referencesenEarth. International Association of Geodesy
dc.relation.referencesenSymposia 133. Springer-Verlag, Berlin, Heidelberg,
dc.relation.referencesenpp. 473–481
dc.relation.referencesenMarchenko A.N. (2009b) The Earth’s global density
dc.relation.referencesendistribution and gravitational potential energy. In:
dc.relation.referencesenM. G. Sideris (ed.), Observing our Changing
dc.relation.referencesenEarth, International Association of Geodesy
dc.relation.referencesenSymposia 133. Springer-Verlag, Berlin, Heidelberg,
dc.relation.referencesenpp. 483–491.
dc.relation.referencesenMarchenko, A. N., & Lopushansky, A. N. (2018).
dc.relation.referencesenChange in the Zonal Harmonic Coefficient P.20,
dc.relation.referencesenEarth’s Polar Flattening, and Dynamical Ellipticity
dc.relation.referencesenfrom SLR Data. Geodynamics, 2(25), 5–14.
dc.relation.referencesen(http://dx.doi.org/10.4401/ag-7049)
dc.relation.referencesenPublished by Lviv Polytechnic National
dc.relation.referencesenUniversity. ISSN: 1992-142X (Print), 2519–2663
dc.relation.referencesen(Online), Lviv, Ukraine
dc.relation.referencesenMathews, P. M., Herring, T. A., & Buffett, B. A. (2002).
dc.relation.referencesenModeling of nutation and precession: New nutation
dc.relation.referencesenseries for nonrigid Earth and insights into the
dc.relation.referencesenEarth’s interior. Journal of Geophysical Research:
dc.relation.referencesenSolid Earth, 107(B4), 10.1029/2001JB000390.
dc.relation.referencesenMaxwell, J. K. (1881). A Treatise on Electricity and
dc.relation.referencesenMagnetism. 2nd Edition, Oxford, Vol. 1, 179–214.
dc.relation.referencesenMescheryakov, G. A. (1991). Problems of the potential
dc.relation.referencesentheory and generalized Earth. Nauka, Moscow, 203 p. (in Russian)
dc.relation.referencesenMescheryakov, G. A, & Deineka, J. P. (1977). A
dc.relation.referencesenvariant of the Earth’s mechanical model. Geofysikalni
dc.relation.referencesenSbornik. XXV, Travaux de l’Inst. Géophysique
dc.relation.referencesende l’Académie Tchécoslovaque des Science,
dc.relation.referencesenNo. 478, pp. 9–19.
dc.relation.referencesenMoritz, H. (1990). The Figure of the Earth. Theoretical
dc.relation.referencesenGeodesy and Earth’sInterior, Wichmann, Karlsruhe.
dc.relation.referencesenMoritz, H. & I. I. Muller (1987). Earth Rotation.
dc.relation.referencesenTheory and observation, Ungar, New York.
dc.relation.referencesenMelchior, P. (1978). The tides of the planet Earth.
dc.relation.referencesenPergamon.
dc.relation.referencesenPetit, G, & Luzum, B (eds) (2010). IERS conventions
dc.relation.referencesen(2010), IERS Technical Notes 36. Observatoire
dc.relation.referencesende Paris, Paris.
dc.relation.referencesenRochester, M. G., & Smylie, D. E. (1974). On changes in
dc.relation.referencesenthe trace of the Earth's inertia tensor. Journal of
dc.relation.referencesenGeophysical Research, 79(32), 4948–4951.
dc.relation.referencesenRubincam, D. P. (1984). Postglacial rebound observed by
dc.relation.referencesenLAGEOS and the effective viscosity of the lower
dc.relation.referencesenmantle. Journal of Geophysical Research: Solid
dc.relation.referencesenEarth, 89(B2), 1077–1087.
dc.relation.referencesenSchwintzer, P., Reigber, C., Massmann, F. H., Barth, W.,
dc.relation.referencesenRaimondo, J. C., Gerstl, M., ... & Lemoine, J. M.
dc.relation.referencesen(1991). A new Earth gravity field model in
dc.relation.referencesensupport of ERS 1 and SPOT2: GRIM4-S1/P.1,
dc.relation.referencesenfinal report. German Space Agency and French
dc.relation.referencesenSpace Agency., Munich/Toulouse.
dc.relation.referencesenSouchay, J., & Folgueira, M. (1998). The effect of
dc.relation.referencesenzonal tides on the dynamical ellipticity of the
dc.relation.referencesenEarth and its influence on the nutation. Earth,
dc.relation.referencesenMoon, and Planets, 81(3), 201–216.
dc.relation.referencesenWilliams, J. G. (1994). Contributions to the Earth's
dc.relation.referencesenobliquity rate, precession, and nutation. The
dc.relation.referencesenAstronomical Journal, 108, 711–724.
dc.relation.referencesenYoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E.,
dc.relation.referencesenEanes, R. J., & Tapley, B. D. (1983). Secular
dc.relation.referencesenvariation of Earth’s gravitational harmonic J2
dc.relation.referencesencoefficient from Lageos and nontidal acceleration
dc.relation.referencesenof Earth rotation. Nature, 303(5920), 757–762.
dc.relation.urihttp://dx.doi.org/10.4401/ag-7049
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2020
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2020
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Marchenko Alexander N., Perii S. S., Tartachynska Z. R., Balian A. P.
dc.subjectзалежні від часу головні осі та моменти інерції Землі
dc.subjectдинамічна еліптичність
dc.subjectгравітаційний квадруполь
dc.subjectтеорія прецесії-нутації
dc.subjectTemporal change in principal axes and moments of inertia
dc.subjectDynamical ellipticity
dc.subjectGravitational quadrupole
dc.subjectPrecession-Nutation theory
dc.subject.udc528.21 / 22
dc.titleTemporal changes in the earth’s tensor of inertia and the 3D density model based on the UT/CSR data
dc.title.alternativeЧасові зміни в тензорі інерції землі та 3D модель густини на основі даних UT/CSR
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020n2_Marchenko_A_N-Temporal_changes_in_the_5-20.pdf
Size:
993.75 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020n2_Marchenko_A_N-Temporal_changes_in_the_5-20__COVER.png
Size:
451.63 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: