Study of the Resistance to Degradation of Al2O3/Al2TiO5 Composites for Possible Use as Bone Tissue

dc.citation.epage403
dc.citation.issue3
dc.citation.spage398
dc.contributor.affiliationUniversidad Autónoma del Estado de México
dc.contributor.affiliationUniversidad Autónoma del Estado de México
dc.contributor.affiliationUniversidad Politécnica de Victoria
dc.contributor.authorRefugio-Garcia, Elizabeth
dc.contributor.authorVázquez-Huerta, Gerardo
dc.contributor.authorArce-Aguilera, Fernando
dc.contributor.authorHerrera-Hernández, Héctor
dc.contributor.authorOsorio-Ramos, Jessica
dc.contributor.authorMiranda-Hernández, José G.
dc.contributor.authorRodriguez-Garcia, José A.
dc.contributor.authorRocha-Rangel, Enrique
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T12:00:14Z
dc.date.available2024-01-22T12:00:14Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractВивчено стійкість до деградації композитів Al2O3/Al2TiO5 у розчині Хенкса, який імітує синовіальну рідину людини, при контакті з кістковими тканинами. За допомогою електрохімічного імпедансу встановлено, що опір поляризації композиту збільшується з підвищенням кількості Al2TiO5 та часу спікання.
dc.description.abstractIn this work we studied the response to degradation of Al2O3/Al2TiO5 composites in a Hanks’ solution, which simulates human synovial fluid in contact with bone tissues. Electrochemical impedance study determined that the resistance to polarization of composite rises with increases in the amount of Al2TiO5 and with the sintering time.
dc.format.extent398-403
dc.format.pages6
dc.identifier.citationStudy of the Resistance to Degradation of Al2O3/Al2TiO5 Composites for Possible Use as Bone Tissue / Elizabeth Refugio-Garcia, Gerardo Vázquez-Huerta, Fernando Arce-Aguilera, Héctor Herrera-Hernández, Jessica Osorio-Ramos, José G. Miranda-Hernández, José A. Rodriguez-Garcia, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 398–403.
dc.identifier.citationenStudy of the Resistance to Degradation of Al2O3/Al2TiO5 Composites for Possible Use as Bone Tissue / Elizabeth Refugio-Garcia, Gerardo Vázquez-Huerta, Fernando Arce-Aguilera, Héctor Herrera-Hernández, Jessica Osorio-Ramos, José G. Miranda-Hernández, José A. Rodriguez-Garcia, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 398–403.
dc.identifier.doidoi.org/10.23939/chcht16.03.398
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61004
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (16), 2022
dc.relation.references[1] Duffo, G. Biomateriales; Ministerio de Educación: Buenos Aires, Argentina, 2011.
dc.relation.references[2] Hernández-Montes, V.; Betancur-Henao, C.; Santa-Marín, J. Titanium Dioxide Coatings on Magnesium Alloys for Biomaterials: A Review. Dyna 2017, 84, 261. https://doi.org/10.15446/dyna.v84n200.59664
dc.relation.references[3] Peláez Abellán, E.; Rocha Sousa, L.; Hizau dos Santos Utuni, V.; Guastaldi, A.C. Estudio por Impedancia de Superficies Anodizadas en Implantes de Titanio. Revista Cubana de Química 2006, 18, 274.
dc.relation.references[4] Mahmoudi, M.; Maleki-Ghaleh, H.; Kavanlouei, M.; Aghaie, E. Effect of Al2O3–Ti Composite Coating on Corrosion Behavior of TiAl6V4 Alloy. Mater. Corros. 2015, 66, 479-485. https://doi.org/10.1002/maco.201307486
dc.relation.references[5] Reyes, F.; Galindo, J.; Aperador, W. Analysis of Properties and Degradation of the Alloy Fe- 3.31 Mn - 21.2 Al - 5.6 Cr - 0.7 C- 0.2 Ti. Revista ION [Online] 2012, 25, 31-37. http://www.scielo.org.co/scielo.php?pid=S0120-100X2012000300005&script=s... (accessed March 12, 2020)
dc.relation.references[6] Sharma, A.; Singh, A. Corrosion and Wear Study of Ni-P-PTFE-Al2O3 Coating: The Effect of Heat Treatment. Cent. Eur. J. Eng. 2014, 4, 80-89. https://doi.org/10.2478/s13531-013-0137-2
dc.relation.references[7] Arcos, D. Calcium Phosphate Bioceramics: Chapter 3. In Bio-Ceramics with Clinical Applications; Vallet-Regí, M., Ed.; John Wiley & Sons, 2014; pp 23-71. https://doi.org/10.1002/9781118406748.ch3
dc.relation.references[8] Vallet-Regí, M. Evolution of Bioceramics within the Field of Biomaterials. Comptes Rendus Chimie 2010, 13, 174-185. https://doi.org/10.1016/j.crci.2009.03.004
dc.relation.references[9] Montufar, E.B.; Casas-Luna, M.; Horynová, M.; Tkachenko, S.; Fohlerová, Z.; Diaz-de-la-Torre, S.; Dvořák, K.; Čelko, L.; Kaiser, J. High Strength, Biodegradable and Cytocompatible Alpha Tricalcium Phosphate-Iron Composites for Temporal Reduction of Bone Fractures. Acta Biomater. 2018, 70, 293-303. https://doi.org/10.1016/j.actbio.2018.02.002
dc.relation.references[10] Mehrali, M.; Moghaddam, E.; Shirazi, S.F.S.; Baradaran, S.; Mehrali, M.; Latibari, S.T.; Metselaar, H.S.C.; Kadri, N.A.; Zandi, K.; Osman, N.A.A. Synthesis, Mechanical Properties, and in Vitro Biocompatibility with Osteoblasts of Calcium Silicate–Reduced Graphene Oxide Composites. ACS Appl. Mater. Interfaces 2014, 6, 3947-3962. https://doi.org/10.1021/am500845x
dc.relation.references[11] Habibe, A.F.; Souza, R.C., Maeda, L.D.; Bicalho, L.A.; Barboza, M.J.R.; Santos, C. Biocerâmicas à Base de ZrO2-Tetragonal Obtidas por Sinterização via Fase Líquida. Tecnologia Em Metalurgia e Materiais 2008, 4, 23-29. https://doi.org/10.4322/tmm.00403005
dc.relation.references[12] Handbook of Bionanocomposites; Ahmed, S., Kanchi, S., Eds.; Pan Stanford Publishing Ltd, 2018.
dc.relation.references[13] Álvarez-Bustamante, R.; Negrón-Silva, G.; Abreu-Quijano, M.; Herrera-Hernández, H.; Romero-Romo, M.; Cuán, A.; Palomar-Pardavé, M. Electrochemical Study of 2-Mercaptoimidazole as a Novel Corrosion Inhibitor for Steels. Electrochim. Acta 2009, 54, 5393-5399. https://doi.org/10.1016/j.electacta.2009.04.029
dc.relation.references[14] Garfias-Garcia E., Colin-Paniagua F.A.; Herrera-Hernández H.; Juarez-Garcia, J.M.; Palomar-Pardavé, M.E.; Romero-Romo, M.R. Electrochemical and Microscopy Study of Localized Corrosion on a Sensitized Stainless Steel AISI 304. ECS Trans. 2010, 29, 93-102. https://doi.org/10.1149/1.3532307
dc.relation.references[15] Herrera-Hernández, H.; Franco-Tronco, M.I.; Miranda-Hernández, J.G.; Hernández-Sánchez, E.; Espinoza-Vázquez, A.; Fajardo, G. Gel de Aloe-vera Como Potencial Inhibidor de la Corrosión del Acero de Refuerzo Estructural. Avances en Ciencias e Ingeniería 2015, 6, 9-23.
dc.relation.references[16] Aperador-Chaparro, W.; Bautista-Ruiz, J.H.; Mejía, A.S. Determinación por Visión Artificial del Factor de Degradación en Aleaciones Biocompatibles. Informacion Tecnologica 2013, 24, 109-120. https://doi.org/10.4067/S0718-07642013000200012
dc.relation.references[17] Nishida, A.; Kim, W.-C.; Yoshida, T.; Oka, Y.; Yamada, N.; Nakase, M.; Ikoma, K.; Fujiwara, H.; Ishikawa, N.; Ikegaya, H. et al. A New Method for the Estimation of Age at Death by Using Electrical Impedance: A Preliminary Study. Leg. Med. 2015, 17, 560-568. https://doi.org/10.1016/j.legalmed.2015.07.003
dc.relation.references[18] Claussen, N.; Wu, S.; Holz, D. Reaction Bonding of Aluminum Oxide (RBAO) Composites: Processing, Reaction Mechanisms and Properties. J. Eur. Ceram. Soc. 1994, 14, 97-109. https://doi.org/10.1016/0955-2219(94)90097-3
dc.relation.references[19] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371-372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.references[20] Montes Rodríguez, M. Bachelor Thesis, ESIQIE-IPN, México, 2007.
dc.relation.references[21] Ohya, Y.; Kawauchi, Y.; Ban, T. Cation Distribution of Pseudobrookite-Type Titanates and their Phase Stability. J. Ceram. Soc. Japan 2017, 125, 695-700. https://doi.org/10.2109/jcersj2.17086
dc.relation.referencesen[1] Duffo, G. Biomateriales; Ministerio de Educación: Buenos Aires, Argentina, 2011.
dc.relation.referencesen[2] Hernández-Montes, V.; Betancur-Henao, C.; Santa-Marín, J. Titanium Dioxide Coatings on Magnesium Alloys for Biomaterials: A Review. Dyna 2017, 84, 261. https://doi.org/10.15446/dyna.v84n200.59664
dc.relation.referencesen[3] Peláez Abellán, E.; Rocha Sousa, L.; Hizau dos Santos Utuni, V.; Guastaldi, A.C. Estudio por Impedancia de Superficies Anodizadas en Implantes de Titanio. Revista Cubana de Química 2006, 18, 274.
dc.relation.referencesen[4] Mahmoudi, M.; Maleki-Ghaleh, H.; Kavanlouei, M.; Aghaie, E. Effect of Al2O3–Ti Composite Coating on Corrosion Behavior of TiAl6V4 Alloy. Mater. Corros. 2015, 66, 479-485. https://doi.org/10.1002/maco.201307486
dc.relation.referencesen[5] Reyes, F.; Galindo, J.; Aperador, W. Analysis of Properties and Degradation of the Alloy Fe- 3.31 Mn - 21.2 Al - 5.6 Cr - 0.7 C- 0.2 Ti. Revista ION [Online] 2012, 25, 31-37. http://www.scielo.org.co/scielo.php?pid=S0120-100X2012000300005&script=s... (accessed March 12, 2020)
dc.relation.referencesen[6] Sharma, A.; Singh, A. Corrosion and Wear Study of Ni-P-PTFE-Al2O3 Coating: The Effect of Heat Treatment. Cent. Eur. J. Eng. 2014, 4, 80-89. https://doi.org/10.2478/s13531-013-0137-2
dc.relation.referencesen[7] Arcos, D. Calcium Phosphate Bioceramics: Chapter 3. In Bio-Ceramics with Clinical Applications; Vallet-Regí, M., Ed.; John Wiley & Sons, 2014; pp 23-71. https://doi.org/10.1002/9781118406748.ch3
dc.relation.referencesen[8] Vallet-Regí, M. Evolution of Bioceramics within the Field of Biomaterials. Comptes Rendus Chimie 2010, 13, 174-185. https://doi.org/10.1016/j.crci.2009.03.004
dc.relation.referencesen[9] Montufar, E.B.; Casas-Luna, M.; Horynová, M.; Tkachenko, S.; Fohlerová, Z.; Diaz-de-la-Torre, S.; Dvořák, K.; Čelko, L.; Kaiser, J. High Strength, Biodegradable and Cytocompatible Alpha Tricalcium Phosphate-Iron Composites for Temporal Reduction of Bone Fractures. Acta Biomater. 2018, 70, 293-303. https://doi.org/10.1016/j.actbio.2018.02.002
dc.relation.referencesen[10] Mehrali, M.; Moghaddam, E.; Shirazi, S.F.S.; Baradaran, S.; Mehrali, M.; Latibari, S.T.; Metselaar, H.S.C.; Kadri, N.A.; Zandi, K.; Osman, N.A.A. Synthesis, Mechanical Properties, and in Vitro Biocompatibility with Osteoblasts of Calcium Silicate–Reduced Graphene Oxide Composites. ACS Appl. Mater. Interfaces 2014, 6, 3947-3962. https://doi.org/10.1021/am500845x
dc.relation.referencesen[11] Habibe, A.F.; Souza, R.C., Maeda, L.D.; Bicalho, L.A.; Barboza, M.J.R.; Santos, C. Biocerâmicas à Base de ZrO2-Tetragonal Obtidas por Sinterização via Fase Líquida. Tecnologia Em Metalurgia e Materiais 2008, 4, 23-29. https://doi.org/10.4322/tmm.00403005
dc.relation.referencesen[12] Handbook of Bionanocomposites; Ahmed, S., Kanchi, S., Eds.; Pan Stanford Publishing Ltd, 2018.
dc.relation.referencesen[13] Álvarez-Bustamante, R.; Negrón-Silva, G.; Abreu-Quijano, M.; Herrera-Hernández, H.; Romero-Romo, M.; Cuán, A.; Palomar-Pardavé, M. Electrochemical Study of 2-Mercaptoimidazole as a Novel Corrosion Inhibitor for Steels. Electrochim. Acta 2009, 54, 5393-5399. https://doi.org/10.1016/j.electacta.2009.04.029
dc.relation.referencesen[14] Garfias-Garcia E., Colin-Paniagua F.A.; Herrera-Hernández H.; Juarez-Garcia, J.M.; Palomar-Pardavé, M.E.; Romero-Romo, M.R. Electrochemical and Microscopy Study of Localized Corrosion on a Sensitized Stainless Steel AISI 304. ECS Trans. 2010, 29, 93-102. https://doi.org/10.1149/1.3532307
dc.relation.referencesen[15] Herrera-Hernández, H.; Franco-Tronco, M.I.; Miranda-Hernández, J.G.; Hernández-Sánchez, E.; Espinoza-Vázquez, A.; Fajardo, G. Gel de Aloe-vera Como Potencial Inhibidor de la Corrosión del Acero de Refuerzo Estructural. Avances en Ciencias e Ingeniería 2015, 6, 9-23.
dc.relation.referencesen[16] Aperador-Chaparro, W.; Bautista-Ruiz, J.H.; Mejía, A.S. Determinación por Visión Artificial del Factor de Degradación en Aleaciones Biocompatibles. Informacion Tecnologica 2013, 24, 109-120. https://doi.org/10.4067/S0718-07642013000200012
dc.relation.referencesen[17] Nishida, A.; Kim, W.-C.; Yoshida, T.; Oka, Y.; Yamada, N.; Nakase, M.; Ikoma, K.; Fujiwara, H.; Ishikawa, N.; Ikegaya, H. et al. A New Method for the Estimation of Age at Death by Using Electrical Impedance: A Preliminary Study. Leg. Med. 2015, 17, 560-568. https://doi.org/10.1016/j.legalmed.2015.07.003
dc.relation.referencesen[18] Claussen, N.; Wu, S.; Holz, D. Reaction Bonding of Aluminum Oxide (RBAO) Composites: Processing, Reaction Mechanisms and Properties. J. Eur. Ceram. Soc. 1994, 14, 97-109. https://doi.org/10.1016/0955-2219(94)90097-3
dc.relation.referencesen[19] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371-372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.referencesen[20] Montes Rodríguez, M. Bachelor Thesis, ESIQIE-IPN, México, 2007.
dc.relation.referencesen[21] Ohya, Y.; Kawauchi, Y.; Ban, T. Cation Distribution of Pseudobrookite-Type Titanates and their Phase Stability. J. Ceram. Soc. Japan 2017, 125, 695-700. https://doi.org/10.2109/jcersj2.17086
dc.relation.urihttps://doi.org/10.15446/dyna.v84n200.59664
dc.relation.urihttps://doi.org/10.1002/maco.201307486
dc.relation.urihttp://www.scielo.org.co/scielo.php?pid=S0120-100X2012000300005&script=s..
dc.relation.urihttps://doi.org/10.2478/s13531-013-0137-2
dc.relation.urihttps://doi.org/10.1002/9781118406748.ch3
dc.relation.urihttps://doi.org/10.1016/j.crci.2009.03.004
dc.relation.urihttps://doi.org/10.1016/j.actbio.2018.02.002
dc.relation.urihttps://doi.org/10.1021/am500845x
dc.relation.urihttps://doi.org/10.4322/tmm.00403005
dc.relation.urihttps://doi.org/10.1016/j.electacta.2009.04.029
dc.relation.urihttps://doi.org/10.1149/1.3532307
dc.relation.urihttps://doi.org/10.4067/S0718-07642013000200012
dc.relation.urihttps://doi.org/10.1016/j.legalmed.2015.07.003
dc.relation.urihttps://doi.org/10.1016/0955-2219(94)90097-3
dc.relation.urihttps://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.urihttps://doi.org/10.2109/jcersj2.17086
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Refugio-Garcia E., Vázquez-Huerta G., Arce-Aguilera F., Herrera-Hernández H., Osorio-Ramos J., Miranda-Hernández J. G., Rodriguez-Garcia J. A., Rocha-Rangel E., 2022
dc.subjectкомпозит Al2O3/Al2TiO5
dc.subjectзамісник кістки
dc.subjectелектрохімічний імпеданс
dc.subjectстійкість до деградації
dc.subjectAl2O3/Al2TiO5 composites
dc.subjectbone substitute
dc.subjectelectrochemical impedance
dc.subjectresistance to degradation
dc.titleStudy of the Resistance to Degradation of Al2O3/Al2TiO5 Composites for Possible Use as Bone Tissue
dc.title.alternativeДослідження стійкості до деградації композитів Al2O3/Al2TiO5 для можливого використання як кісткової тканини
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v16n3_Refugio-Garcia_E-Study_of_the_Resistance_398-403.pdf
Size:
547.71 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v16n3_Refugio-Garcia_E-Study_of_the_Resistance_398-403__COVER.png
Size:
546.87 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: