Effective interpolation of scattered data on a sphere through a Shepard-like method

dc.citation.epage1186
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1174
dc.contributor.affiliationУніверситет Ібн Зор Агадір
dc.contributor.affiliationУніверситет Абдельмалека Ессааді
dc.contributor.affiliationIbn Zohr University Agadir
dc.contributor.affiliationAbdelmalek Essaadi University
dc.contributor.authorЗерроді, Б.
dc.contributor.authorТайек, Х.
dc.contributor.authorЕль Харрак, А.
dc.contributor.authorZerroudi, B.
dc.contributor.authorTayeq, H.
dc.contributor.authorEl Harrak, A.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:21:55Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ статті представлено два оператори апроксимації великих розсіяних наборів даних для сферичної інтерполяції. Запропонований метод розв’язання є розширенням добре відомого методу сферичної інтерполяції Шепарда, який використовує інвертовані відстані розсіяних точок як вагові функції. У зв’язку з цим перший запропонований оператор є лінійною комбінацією базисних функцій, коефіцієнти яких є значеннями функції. Що стосується другого оператора, то розглянуто сферичну триангуляцію розсіяних точок і замінено значення функції на локальний інтерполянт, який локально інтерполює задані дані у вершинах кожного трикутника. Крім того, були проведені чисельні тести для демонстрації ефективності інтерполяції, де декілька чисельних результатів виявляють значну точність наближення запропонованих операторів.
dc.description.abstractThe current paper introduced two approximation operators of large scattered datasets for spherical interpolation. The suggested solution method is an extension of Shepard's well-known method of spherical interpolating, which uses the inverted distances of scattered points as weight functions. With regard to this, the first proposed operator is a linear combination of basis functions with coefficients that are the values of the function. As for the second operator, we consider a spherical triangulation of the scattered points and substitute function values with a local interpolant, which locally interpolates the given data at the vertices of each triangle. Moreover, numerical tests have been carried out to show the interpolation performance, where several numerical results reveal the signified approximation accuracy of the proposed operators.
dc.format.extent1174-1186
dc.format.pages13
dc.identifier.citationZerroudi B. Effective interpolation of scattered data on a sphere through a Shepard-like method / B. Zerroudi, H. Tayeq, A. El Harrak // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1174–1186.
dc.identifier.citationenZerroudi B. Effective interpolation of scattered data on a sphere through a Shepard-like method / B. Zerroudi, H. Tayeq, A. El Harrak // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1174–1186.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1174
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64069
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Longman R. J., Frazier A. G., Newman A. J., Giambelluca T. W., Schanzenbach D., Kagawa-Viviani A., Needham H., Arnold J. R., Clark M. P. High-resolution gridded daily rainfall and temperature for the Hawaiian Islands (1990–2014). Journal of Hydrometeorology. 20 (3), 489–508 (2019).
dc.relation.references[2] Maleika W. Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics. 12 (4), 397–407 (2020).
dc.relation.references[3] Shepard D. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference. 517–524 (1968).
dc.relation.references[4] Liszka T. An interpolation method for an irregular net of nodes. International Journal for Numerical Methods in Engineering. 20 (9), 1599–1612 (1984).
dc.relation.references[5] McLain D. H. Drawing contours from arbitrary data points. The Computer Journal. 17 (48), 318–324 (1974).
dc.relation.references[6] Farwig R. Rate of convergence of Shepard’s global interpolation formula. Mathematics of Computation. 46 (174), 577–590 (1986).
dc.relation.references[7] Franke R., Nielson G. Smooth Interpolation of Large Sets of Scatter Data. International Journal for Numerical Methods in Engineering. 15 (11), 1691–1704 (1980).
dc.relation.references[8] Renka R. J., Brown R. Algorithm 792: Accuracy Tests of ACM Algorithms for Interpolation of Scattered Data in the Plane. ACM Transactions on Mathematical Software. 25 (1), 78–94 (1999).
dc.relation.references[9] Thacker W. I., Zhang J., Watson L. T., Birch J. B., Iyer M. A., Berry M. W. Algorithm 905: SHEPPACK: Modified Shepard algorithm for interpolation of scattered multivariate data. ACM Transactions on Mathematical Software. 37 (3), 1–20 (2010).
dc.relation.references[10] Karandashev K., Van´ıˇcek J. A combined on-the-fly/interpolation procedure for evaluating energy values needed in molecular simulations. The Journal of Chemical Physics. 151 (17), 174116 (2019).
dc.relation.references[11] Farrahi G. H., Faghidian S. A., Smith D. J. An inverse approach to determination of residual stresses induced by shot peening in round bars. International Journal of Mechanical Sciences. 51 (9-10), 726–731 (2009).
dc.relation.references[12] Alfeld P., Neamtu M., Schumaker L. L. Fitting scattered data on sphere-like surfaces using spherical splines. Journal of Computational and Applied Mathematics. 73 (1–2), 5–43 (1996).
dc.relation.references[13] Baramidze V., Lai M., Shum C. K. Spherical splines for data interpolation and fitting. SIAM Journal on Scientific Computing. 28 (1), 241–259 (2006).
dc.relation.references[14] Cavoretto R., De Rossi A. A spherical interpolation algorithm using zonal basis functions. International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE09). 1, 258–269 (2009).
dc.relation.references[15] Fasshauer G. E. Adaptive least squares fitting with radial basis functions on the sphere. Mathematical methods for curves and surfaces. 141–150 (1995).
dc.relation.references[16] Fasshauer G. E., Schumaker L. L. Scattered data fitting on the sphere. Mathematical Methods for Curves and Surfaces II. 117–166 (1998).
dc.relation.references[17] Meyling R. G., Pfluger P. R. B-spline approximation of a closed surface. IMA Journal of Numerical Analysis. 7 (1), 73–96 (1987).
dc.relation.references[18] Pottmann H., Eck M. Modified multiquadric methods for scattered data interpolation over a sphere. Computer Aided Geometric Design. 7 (1–4), 313–321 (1990).
dc.relation.references[19] Sloan I. H., Womersley R. S. Constructive polynomial approximation on the sphere. Journal of Approximation Theory. 103 (1), 91–118 (2000).
dc.relation.references[20] Womersley R. S., Sloan I. H. How good can polynomial interpolation on the sphere be? Advances in Computational Mathematics. 14 (3), 195–226 (2001).
dc.relation.references[21] Dell’Accio F., Di Tommaso F., Hormann K. On the approximation order of triangular Shepard interpolation. IMA Journal of Numerical Analysis. 36, 359–379 (2016).
dc.relation.references[22] Horemuˇz M., Andersson J. V. Polynomial interpolation of GPS satellite coordinates. GPS Solutions. 10, 67–72 (2006).
dc.relation.references[23] Coxeter H. S. M., Greitzer S. L. Geometry revisited. Mathematical Association of America. 19 (1967).
dc.relation.references[24] Dell’Accio F., Di Tommaso F., Nouisser O., Zerroudi B. Fast and accurate scattered Hermite interpolation by triangular Shepard operators. Journal of Computational and Applied Mathematics. 382, 113092 (2021).
dc.relation.references[25] Langer T., Belyaev A., Seidel H. P. Spherical barycentric coordinates. Symposium on Geometry Processing (2006).
dc.relation.references[26] K¨onigsberger K. Analysis 2. Springer-Verlag (2013).
dc.relation.references[27] Renka R. J. Multivariate interpolation of large sets of scattered data. ACM Transactions on Mathematical Software (TOMS). 14 (2), 139–148 (1988).
dc.relation.references[28] Hubbert S., Morton T. M. Lp-error estimates for radial basis function interpolation on the sphere. Journal of Approximation Theory. 129, 58–77 (2004).
dc.relation.references[29] Nouisser O., Zerroudi B. Modified Shepard’s method by six-points local interpolant. Journal of Applied Mathematics and Computing. 65, 651–667 (2021).
dc.relation.references[30] Richard F. Scattered data interpolation: Tests of some methods. Mathematics of Computation. 38 (157), 181–200 (1982).
dc.relation.referencesen[1] Longman R. J., Frazier A. G., Newman A. J., Giambelluca T. W., Schanzenbach D., Kagawa-Viviani A., Needham H., Arnold J. R., Clark M. P. High-resolution gridded daily rainfall and temperature for the Hawaiian Islands (1990–2014). Journal of Hydrometeorology. 20 (3), 489–508 (2019).
dc.relation.referencesen[2] Maleika W. Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics. 12 (4), 397–407 (2020).
dc.relation.referencesen[3] Shepard D. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference. 517–524 (1968).
dc.relation.referencesen[4] Liszka T. An interpolation method for an irregular net of nodes. International Journal for Numerical Methods in Engineering. 20 (9), 1599–1612 (1984).
dc.relation.referencesen[5] McLain D. H. Drawing contours from arbitrary data points. The Computer Journal. 17 (48), 318–324 (1974).
dc.relation.referencesen[6] Farwig R. Rate of convergence of Shepard’s global interpolation formula. Mathematics of Computation. 46 (174), 577–590 (1986).
dc.relation.referencesen[7] Franke R., Nielson G. Smooth Interpolation of Large Sets of Scatter Data. International Journal for Numerical Methods in Engineering. 15 (11), 1691–1704 (1980).
dc.relation.referencesen[8] Renka R. J., Brown R. Algorithm 792: Accuracy Tests of ACM Algorithms for Interpolation of Scattered Data in the Plane. ACM Transactions on Mathematical Software. 25 (1), 78–94 (1999).
dc.relation.referencesen[9] Thacker W. I., Zhang J., Watson L. T., Birch J. B., Iyer M. A., Berry M. W. Algorithm 905: SHEPPACK: Modified Shepard algorithm for interpolation of scattered multivariate data. ACM Transactions on Mathematical Software. 37 (3), 1–20 (2010).
dc.relation.referencesen[10] Karandashev K., Van´ıˇcek J. A combined on-the-fly/interpolation procedure for evaluating energy values needed in molecular simulations. The Journal of Chemical Physics. 151 (17), 174116 (2019).
dc.relation.referencesen[11] Farrahi G. H., Faghidian S. A., Smith D. J. An inverse approach to determination of residual stresses induced by shot peening in round bars. International Journal of Mechanical Sciences. 51 (9-10), 726–731 (2009).
dc.relation.referencesen[12] Alfeld P., Neamtu M., Schumaker L. L. Fitting scattered data on sphere-like surfaces using spherical splines. Journal of Computational and Applied Mathematics. 73 (1–2), 5–43 (1996).
dc.relation.referencesen[13] Baramidze V., Lai M., Shum C. K. Spherical splines for data interpolation and fitting. SIAM Journal on Scientific Computing. 28 (1), 241–259 (2006).
dc.relation.referencesen[14] Cavoretto R., De Rossi A. A spherical interpolation algorithm using zonal basis functions. International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE09). 1, 258–269 (2009).
dc.relation.referencesen[15] Fasshauer G. E. Adaptive least squares fitting with radial basis functions on the sphere. Mathematical methods for curves and surfaces. 141–150 (1995).
dc.relation.referencesen[16] Fasshauer G. E., Schumaker L. L. Scattered data fitting on the sphere. Mathematical Methods for Curves and Surfaces II. 117–166 (1998).
dc.relation.referencesen[17] Meyling R. G., Pfluger P. R. B-spline approximation of a closed surface. IMA Journal of Numerical Analysis. 7 (1), 73–96 (1987).
dc.relation.referencesen[18] Pottmann H., Eck M. Modified multiquadric methods for scattered data interpolation over a sphere. Computer Aided Geometric Design. 7 (1–4), 313–321 (1990).
dc.relation.referencesen[19] Sloan I. H., Womersley R. S. Constructive polynomial approximation on the sphere. Journal of Approximation Theory. 103 (1), 91–118 (2000).
dc.relation.referencesen[20] Womersley R. S., Sloan I. H. How good can polynomial interpolation on the sphere be? Advances in Computational Mathematics. 14 (3), 195–226 (2001).
dc.relation.referencesen[21] Dell’Accio F., Di Tommaso F., Hormann K. On the approximation order of triangular Shepard interpolation. IMA Journal of Numerical Analysis. 36, 359–379 (2016).
dc.relation.referencesen[22] Horemuˇz M., Andersson J. V. Polynomial interpolation of GPS satellite coordinates. GPS Solutions. 10, 67–72 (2006).
dc.relation.referencesen[23] Coxeter H. S. M., Greitzer S. L. Geometry revisited. Mathematical Association of America. 19 (1967).
dc.relation.referencesen[24] Dell’Accio F., Di Tommaso F., Nouisser O., Zerroudi B. Fast and accurate scattered Hermite interpolation by triangular Shepard operators. Journal of Computational and Applied Mathematics. 382, 113092 (2021).
dc.relation.referencesen[25] Langer T., Belyaev A., Seidel H. P. Spherical barycentric coordinates. Symposium on Geometry Processing (2006).
dc.relation.referencesen[26] K¨onigsberger K. Analysis 2. Springer-Verlag (2013).
dc.relation.referencesen[27] Renka R. J. Multivariate interpolation of large sets of scattered data. ACM Transactions on Mathematical Software (TOMS). 14 (2), 139–148 (1988).
dc.relation.referencesen[28] Hubbert S., Morton T. M. Lp-error estimates for radial basis function interpolation on the sphere. Journal of Approximation Theory. 129, 58–77 (2004).
dc.relation.referencesen[29] Nouisser O., Zerroudi B. Modified Shepard’s method by six-points local interpolant. Journal of Applied Mathematics and Computing. 65, 651–667 (2021).
dc.relation.referencesen[30] Richard F. Scattered data interpolation: Tests of some methods. Mathematics of Computation. 38 (157), 181–200 (1982).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectсферичне наближення
dc.subjectсферичні RBFs
dc.subjectмодифікований метод Шепарда
dc.subjectбарицентричні координати
dc.subjectspherical approximation
dc.subjectspherical RBFs
dc.subjectmodified Shepard method
dc.subjectbarycentric coordinates
dc.titleEffective interpolation of scattered data on a sphere through a Shepard-like method
dc.title.alternativeЕфективна інтерполяція розсіяних даних на сфері методом Шепарда
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Zerroudi_B-Effective_interpolation_1174-1186.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Zerroudi_B-Effective_interpolation_1174-1186__COVER.png
Size:
454.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: