Розроблення моделі мультифакторного портрету суб’єктів підтримки програмних комплексів з застосуванням штучних нейронних мереж
| dc.citation.epage | 207 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Комп'ютерні системи та мережі | |
| dc.citation.spage | 197 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Пукач, А. І. | |
| dc.contributor.author | Теслюк, В. М. | |
| dc.contributor.author | Pukach, A. | |
| dc.contributor.author | Teslyuk, V. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-11T11:15:19Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | Розглянуто фактори впливу, що формують індивідуалістичне сприйняття об’єктів підтримки відповідними суб’єктами, які взаємодіють з ними, напряму або опосеред- ковано. Досліджено та запропоновано форму представлення факторів впливу на підтри- мувані програмні комплекси, що включає набір вхідних характеристик досліджуваного об’єкта підтримки, набір факторів впливу у вигляді матричної функції перетворення та набір вихідних характеристик результуючого сприйняття все того ж досліджуваного об’єкта підтримки, проте в індивідуалістичному сприйнятті кожного окремого суб’єкта взаємодії з ним. Досліджено можливості інкапсуляції штучних нейронних мереж у форму представлення факторів впливу на підтримувані програмні комплекси та запропоновано використання саме багатошарового перцептрона для здійснення відповідних інкапсу- ляцій. Розроблено та представлено відповідну модель мультифакторного портрету суб’єктів підтримки програмних комплексів із застосуванням штучних нейронних мереж, зокрема багатошарового перцептрона. Розв’язано прикладну практичну задачу визначення дефіцитних факторів впливу членів команди підтримки програмного комплексу. | |
| dc.description.abstract | Impact factors, that are shaping the individualistic perception of the supported objects by the relevant subjects, who interact with them, directly or indirectly, are considered in this research. A form of impact factors’ (performing impact on the supported software complexes) representation has been studied and proposed. Aforementioned form includes: a set of input characteristics of the researched supported object; a set of impact factors in the form of a transformation matrix function; and a set of output characteristics of the resulting perception of the same researched supported object (however in the individualistic perception of each individual subject of interaction with it). The possibility of encapsulation of artificial neural networks inside the aforementioned proposed form (of the supported software complexes’ impact factors representation) was investigated. And the use of multilayer perceptron was proposed and substantiated for the implementation of the appropriate encapsulations. An appropriate multifactorial portrait model of software complexes’ supporting subjects, using artificial neural networks, particularly a multilayer perceptron, has been developed and presented. Also, the applied practical problem of determining the deficient impact factors for each of the software complex’ support team members has been solved. | |
| dc.format.extent | 197-207 | |
| dc.format.pages | 11 | |
| dc.identifier.citation | Пукач А. І. Розроблення моделі мультифакторного портрету суб’єктів підтримки програмних комплексів з застосуванням штучних нейронних мереж / А. І. Пукач, В. М. Теслюк // Комп'ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 2. — С. 197–207. | |
| dc.identifier.citation2015 | Пукач А. І., Теслюк В. М. Розроблення моделі мультифакторного портрету суб’єктів підтримки програмних комплексів з застосуванням штучних нейронних мереж // Комп'ютерні системи та мережі, Львів. 2024. Том 6. № 2. С. 197–207. | |
| dc.identifier.citationenAPA | Pukach, A., & Teslyuk, V. (2024). Rozroblennia modeli multyfaktornoho portretu subiektiv pidtrymky prohramnykh kompleksiv z zastosuvanniam shtuchnykh neironnykh merezh [Development a multifactorial portrait model of software complexes’ supporting subjects, using artificial neural networks]. Computer Systems and Networks, 6(2), 197-207. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Pukach A., Teslyuk V. (2024) Rozroblennia modeli multyfaktornoho portretu subiektiv pidtrymky prohramnykh kompleksiv z zastosuvanniam shtuchnykh neironnykh merezh [Development a multifactorial portrait model of software complexes’ supporting subjects, using artificial neural networks]. Computer Systems and Networks (Lviv), vol. 6, no 2, pp. 197-207 [in Ukrainian]. | |
| dc.identifier.doi | DOI: https://doi.org/10.23939/csn2024.02.197 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/123979 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп'ютерні системи та мережі, 2 (6), 2024 | |
| dc.relation.ispartof | Computer Systems and Networks, 2 (6), 2024 | |
| dc.relation.references | 1. Janssen A., Grützner L. & Breitner M. H. (2021). Why do Chatbots fail? A Critical Success Factors Analysis. In Proceedings of the 42nd International Conference on Information Systems, ICIS 2021, Austin, TX, USA, pp. 12–15. https://www.researchgate.net/profile/Antje-Janssen/publication/354811221_Why_do_Chatbots_fail_A_Critical_Success_ Factors_Analysis/links/614dbb5a154b3227a8a62ecc/Why-do-Chatbots-fail-A-Critical-Success-Factors-Analysis.pdf | |
| dc.relation.references | 2. He J., Piorkowski D., Muller M. J., Brimijoin K., Houde S. & Weisz J. D. (2023b). Understanding how task dimensions impact automation preferences with a conversational task assistant. AutomationXP23: Intervening, Teaming, Delegating - Creating Engaging Automation Experiences, April 23rd, Hamburg, Germany, 6 pages. https://matthiasbaldauf.com/automationxp23/papers/AutomationXP23_paper11.pdf | |
| dc.relation.references | 3. Corea C., Delfmann P. & Nagel S. (2020). Towards Intelligent Chatbots for Customer Care - Practice-Based Requirements for a Research Agenda. In: Proceedings of the 53rd Annual Hawaii International Conference on System Sciences HICSS 2020: Grand Wailea, Maui, Hawaii, January 7–10, p. 5819–5828. https://doi.org/10.24251/HICSS.2020.713 | |
| dc.relation.references | 4. Khankhoje R. (2023). An In-Depth Review of Test Automation Frameworks: Types and Trade-offs. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Vol. 3, Issue 1, p.55–64. https://doi.org/10.48175/IJARSCT-13108 | |
| dc.relation.references | 5. Chunhua Deming C., Khair M. A., Mallipeddi S. R. & Varghese A. (2021). Software Testing in the Era of AI: Leveraging Machine Learning and Automation for Efficient Quality Assurance. Asian Journal of Applied Science and Engineering, Vol. 10, Issue 1, p. 66–76. https://doi.org/10.18034/ajase.v10i1.88 | |
| dc.relation.references | 6. Garousi V. & Mantyla M. V. (2016). When and what to automate in software testing? A multi-vocal literature review. Information and Software Technology, vol. 76, p. 92–117. https://doi.org/10.1016/j.infsof.2016.04.015 | |
| dc.relation.references | 7. Rafi S., Akbar M. A., AlSanad A. A., AlSuwaidan L., Abdulaziz AL-ALShaikh H. & AlSagri H. S. (2022). Decision-Making Taxonomy of DevOps Success Factors Using Preference Ranking Organization Method of Enrichment Evaluation. Mathematical Problems in Engineering, 2022, 2600160, 15 p. https://doi.org/10.1155/2022/2600160 | |
| dc.relation.references | 8. Azad N. (2023). The impact of DevOps critical success factors and organizational practices. 14th International Conference on Software Business, November 27–29, 2023, Lahti, Finland, 11 pages. https://ceur-ws.org/Vol-3621/phdpaper5. pdf | |
| dc.relation.references | 9. Riungu-Kalliosaari L., Mäkinen S., Lwakatare L. E., Tiihonen J. & Männistö T..(2016). DevOps adoption benefits and challenges in practice: A case study. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10027 LNCS, p. 590–597. https://doi.org/10.1007/978-3-319-49094-6_44. | |
| dc.relation.references | 10. Van Belzen M., Trienekens J. & Kusters R. (2024). Validation and Clarification of Critical Success Factors of DevOps Processes. In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024).–Vol. 2, p. 222–231. https://doi.org/10.5220/0012685800003690 | |
| dc.relation.references | 11. Van Belzen M., Trienekens J. & Kusters R. (2023). What Do Critical Success Factors of Collaboration Really Mean in the Context of DevOps? The Eighteenth International Conference on Software Engineering Advances (IARIA2023), p. 7–13. https://personales.upv.es/thinkmind/dl/conferences/icsea/icsea_2023/icsea_2023_1_20_10017.pdf | |
| dc.relation.references | 12. Jim A., Shim H., Wang J., Wijaya L., Xu R., Khalajzadeh H., Grundy J. & Kanij T. (2021). Improving the Modelling of Human-centric Aspects of Software Systems: A Case Study of Modelling End User Age in Wirefame Designs. In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering. ENASE;ISBN 978-989-758-508-1; ISSN 2184-4895, SciTePress, p. 68–79. https://doi.org/10.5220/0010403000680079 | |
| dc.relation.references | 13. Wang J., Xu Z., Wang X. & Lu J. (2022). A Comparative Research on Usability and User Experience of User Interface Design Software. International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), p.21–29. https://dx.doi.org/10.14569/IJACSA.2022.0130804 | |
| dc.relation.references | 14. Chhaya B., Jafer S. & Rice S. (2020). Human Factors Assessment of Scenario-driven Training in Web-based Simulation. In Proceedings of the 10th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2020), p. 189–196. https://doi.org/10.5220/0009820301890196 | |
| dc.relation.references | 15. Grundy J. (2021). Impact of End User Human Aspects on Software Engineering. In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), p. 9–20. https://doi.org/10.5220/0010531800090020 | |
| dc.relation.references | 16. Chakraverty S. & Mall S. (2017). Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations (1st ed.). CRC Press. https://doi.org/10.1201/9781315155265 | |
| dc.relation.references | 17. Jain L. C. (2000). Recent Advances in Artificial Neural Networks (1st ed.). CRC Press. https://doi.org/10.1201/9781351076210 | |
| dc.relation.references | 18. Zhang B., Xu S., Lin M., Wang T. & Doermann D. (2023). Binary Neural Networks: Algorithms, Architectures, and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781003376132 | |
| dc.relation.references | 19. Zhang Y., Chen D. & Ye C. (2019). Toward Deep Neural Networks: WASD Neuronet Models, Algorithms, and Applications (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429426445 | |
| dc.relation.references | 20. Karacan C. Ö. (2021). Multilayer Perceptrons. In: Daya Sagar B., Cheng Q., McKinley J., Agterberg F. (eds) Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-26050-7_455-1 | |
| dc.relation.references | 21. Reifman J. & Feldman E. E. (2002). Multilayer perceptron for nonlinear programming. Computers & Operations Research, Vol. 29, Issue 9, р. 1237–1250. https://doi.org/10.1016/S0305-0548(01)00027-2 | |
| dc.relation.references | 22. Shirvany Y., Hayati M. & Moradian R. (2009). Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Applied Soft Computing, Vol. 9, Issue 1, р. 20–29. https://doi.org/10.1016/j.asoc.2008.02.003 | |
| dc.relation.references | 23. Pukach A. I. & Teslyuk V. M. (2024). Model of decomposed insulating dominance for the analysis of influencing factors of software complexes support automation. Scientific Bulletin of UNFU, 34(5), 170–179.https://doi.org/10.36930/40340521 | |
| dc.relation.referencesen | 1. Janssen A., Grützner L. & Breitner M. H. (2021). Why do Chatbots fail? A Critical Success Factors Analysis. In Proceedings of the 42nd International Conference on Information Systems, ICIS 2021, Austin, TX, USA, pp. 12–15. https://www.researchgate.net/profile/Antje-Janssen/publication/354811221_Why_do_Chatbots_fail_A_Critical_Success_ Factors_Analysis/links/614dbb5a154b3227a8a62ecc/Why-do-Chatbots-fail-A-Critical-Success-Factors-Analysis.pdf | |
| dc.relation.referencesen | 2. He J., Piorkowski D., Muller M. J., Brimijoin K., Houde S. & Weisz J. D. (2023b). Understanding how task dimensions impact automation preferences with a conversational task assistant. AutomationXP23: Intervening, Teaming, Delegating - Creating Engaging Automation Experiences, April 23rd, Hamburg, Germany, 6 pages. https://matthiasbaldauf.com/automationxp23/papers/AutomationXP23_paper11.pdf | |
| dc.relation.referencesen | 3. Corea C., Delfmann P. & Nagel S. (2020). Towards Intelligent Chatbots for Customer Care - Practice-Based Requirements for a Research Agenda. In: Proceedings of the 53rd Annual Hawaii International Conference on System Sciences HICSS 2020: Grand Wailea, Maui, Hawaii, January 7–10, p. 5819–5828. https://doi.org/10.24251/HICSS.2020.713 | |
| dc.relation.referencesen | 4. Khankhoje R. (2023). An In-Depth Review of Test Automation Frameworks: Types and Trade-offs. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Vol. 3, Issue 1, p.55–64. https://doi.org/10.48175/IJARSCT-13108 | |
| dc.relation.referencesen | 5. Chunhua Deming C., Khair M. A., Mallipeddi S. R. & Varghese A. (2021). Software Testing in the Era of AI: Leveraging Machine Learning and Automation for Efficient Quality Assurance. Asian Journal of Applied Science and Engineering, Vol. 10, Issue 1, p. 66–76. https://doi.org/10.18034/ajase.v10i1.88 | |
| dc.relation.referencesen | 6. Garousi V. & Mantyla M. V. (2016). When and what to automate in software testing? A multi-vocal literature review. Information and Software Technology, vol. 76, p. 92–117. https://doi.org/10.1016/j.infsof.2016.04.015 | |
| dc.relation.referencesen | 7. Rafi S., Akbar M. A., AlSanad A. A., AlSuwaidan L., Abdulaziz AL-ALShaikh H. & AlSagri H. S. (2022). Decision-Making Taxonomy of DevOps Success Factors Using Preference Ranking Organization Method of Enrichment Evaluation. Mathematical Problems in Engineering, 2022, 2600160, 15 p. https://doi.org/10.1155/2022/2600160 | |
| dc.relation.referencesen | 8. Azad N. (2023). The impact of DevOps critical success factors and organizational practices. 14th International Conference on Software Business, November 27–29, 2023, Lahti, Finland, 11 pages. https://ceur-ws.org/Vol-3621/phdpaper5. pdf | |
| dc.relation.referencesen | 9. Riungu-Kalliosaari L., Mäkinen S., Lwakatare L. E., Tiihonen J. & Männistö T..(2016). DevOps adoption benefits and challenges in practice: A case study. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10027 LNCS, p. 590–597. https://doi.org/10.1007/978-3-319-49094-6_44. | |
| dc.relation.referencesen | 10. Van Belzen M., Trienekens J. & Kusters R. (2024). Validation and Clarification of Critical Success Factors of DevOps Processes. In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024).–Vol. 2, p. 222–231. https://doi.org/10.5220/0012685800003690 | |
| dc.relation.referencesen | 11. Van Belzen M., Trienekens J. & Kusters R. (2023). What Do Critical Success Factors of Collaboration Really Mean in the Context of DevOps? The Eighteenth International Conference on Software Engineering Advances (IARIA2023), p. 7–13. https://personales.upv.es/thinkmind/dl/conferences/icsea/icsea_2023/icsea_2023_1_20_10017.pdf | |
| dc.relation.referencesen | 12. Jim A., Shim H., Wang J., Wijaya L., Xu R., Khalajzadeh H., Grundy J. & Kanij T. (2021). Improving the Modelling of Human-centric Aspects of Software Systems: A Case Study of Modelling End User Age in Wirefame Designs. In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering. ENASE;ISBN 978-989-758-508-1; ISSN 2184-4895, SciTePress, p. 68–79. https://doi.org/10.5220/0010403000680079 | |
| dc.relation.referencesen | 13. Wang J., Xu Z., Wang X. & Lu J. (2022). A Comparative Research on Usability and User Experience of User Interface Design Software. International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), p.21–29. https://dx.doi.org/10.14569/IJACSA.2022.0130804 | |
| dc.relation.referencesen | 14. Chhaya B., Jafer S. & Rice S. (2020). Human Factors Assessment of Scenario-driven Training in Web-based Simulation. In Proceedings of the 10th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2020), p. 189–196. https://doi.org/10.5220/0009820301890196 | |
| dc.relation.referencesen | 15. Grundy J. (2021). Impact of End User Human Aspects on Software Engineering. In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), p. 9–20. https://doi.org/10.5220/0010531800090020 | |
| dc.relation.referencesen | 16. Chakraverty S. & Mall S. (2017). Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations (1st ed.). CRC Press. https://doi.org/10.1201/9781315155265 | |
| dc.relation.referencesen | 17. Jain L. C. (2000). Recent Advances in Artificial Neural Networks (1st ed.). CRC Press. https://doi.org/10.1201/9781351076210 | |
| dc.relation.referencesen | 18. Zhang B., Xu S., Lin M., Wang T. & Doermann D. (2023). Binary Neural Networks: Algorithms, Architectures, and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781003376132 | |
| dc.relation.referencesen | 19. Zhang Y., Chen D. & Ye C. (2019). Toward Deep Neural Networks: WASD Neuronet Models, Algorithms, and Applications (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429426445 | |
| dc.relation.referencesen | 20. Karacan C. Ö. (2021). Multilayer Perceptrons. In: Daya Sagar B., Cheng Q., McKinley J., Agterberg F. (eds) Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-26050-7_455-1 | |
| dc.relation.referencesen | 21. Reifman J. & Feldman E. E. (2002). Multilayer perceptron for nonlinear programming. Computers & Operations Research, Vol. 29, Issue 9, r. 1237–1250. https://doi.org/10.1016/S0305-0548(01)00027-2 | |
| dc.relation.referencesen | 22. Shirvany Y., Hayati M. & Moradian R. (2009). Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Applied Soft Computing, Vol. 9, Issue 1, r. 20–29. https://doi.org/10.1016/j.asoc.2008.02.003 | |
| dc.relation.referencesen | 23. Pukach A. I. & Teslyuk V. M. (2024). Model of decomposed insulating dominance for the analysis of influencing factors of software complexes support automation. Scientific Bulletin of UNFU, 34(5), 170–179.https://doi.org/10.36930/40340521 | |
| dc.relation.uri | https://www.researchgate.net/profile/Antje-Janssen/publication/354811221_Why_do_Chatbots_fail_A_Critical_Success_ | |
| dc.relation.uri | https://matthiasbaldauf.com/automationxp23/papers/AutomationXP23_paper11.pdf | |
| dc.relation.uri | https://doi.org/10.24251/HICSS.2020.713 | |
| dc.relation.uri | https://doi.org/10.48175/IJARSCT-13108 | |
| dc.relation.uri | https://doi.org/10.18034/ajase.v10i1.88 | |
| dc.relation.uri | https://doi.org/10.1016/j.infsof.2016.04.015 | |
| dc.relation.uri | https://doi.org/10.1155/2022/2600160 | |
| dc.relation.uri | https://ceur-ws.org/Vol-3621/phdpaper5 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-319-49094-6_44 | |
| dc.relation.uri | https://doi.org/10.5220/0012685800003690 | |
| dc.relation.uri | https://personales.upv.es/thinkmind/dl/conferences/icsea/icsea_2023/icsea_2023_1_20_10017.pdf | |
| dc.relation.uri | https://doi.org/10.5220/0010403000680079 | |
| dc.relation.uri | https://dx.doi.org/10.14569/IJACSA.2022.0130804 | |
| dc.relation.uri | https://doi.org/10.5220/0009820301890196 | |
| dc.relation.uri | https://doi.org/10.5220/0010531800090020 | |
| dc.relation.uri | https://doi.org/10.1201/9781315155265 | |
| dc.relation.uri | https://doi.org/10.1201/9781351076210 | |
| dc.relation.uri | https://doi.org/10.1201/9781003376132 | |
| dc.relation.uri | https://doi.org/10.1201/9780429426445 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-030-26050-7_455-1 | |
| dc.relation.uri | https://doi.org/10.1016/S0305-0548(01)00027-2 | |
| dc.relation.uri | https://doi.org/10.1016/j.asoc.2008.02.003 | |
| dc.relation.uri | https://doi.org/10.36930/40340521 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Пукач А. І., Теслюк В. М., 2024 | |
| dc.subject | модель | |
| dc.subject | штучні нейронні мережі | |
| dc.subject | багатошаровий перцептрон | |
| dc.subject | фак- тори впливу | |
| dc.subject | мультифакторний портрет | |
| dc.subject | програмні комплекси | |
| dc.subject | підтримка | |
| dc.subject | автома- тизація | |
| dc.subject | model | |
| dc.subject | artificial neural networks | |
| dc.subject | multilayer perceptron | |
| dc.subject | impact factors | |
| dc.subject | multifactor portrait | |
| dc.subject | software complexes | |
| dc.subject | support | |
| dc.subject | automation | |
| dc.subject.udc | 004.8 | |
| dc.title | Розроблення моделі мультифакторного портрету суб’єктів підтримки програмних комплексів з застосуванням штучних нейронних мереж | |
| dc.title.alternative | Development a multifactorial portrait model of software complexes’ supporting subjects, using artificial neural networks | |
| dc.type | Article |