Carboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste. A Mini Review

dc.citation.epage210
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage200
dc.citation.volume18
dc.contributor.affiliationUniversitas Pembangunan Nasional “Veteran” Yogyakarta
dc.contributor.affiliationUniversity of Benin
dc.contributor.affiliationAirlangga University
dc.contributor.authorKusuma, Heri Septya
dc.contributor.authorYugiani, Puput
dc.contributor.authorAmenaghawon, Andrew Nosakhare
dc.contributor.authorDarmokoesoemo, Handoko
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:58Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractВегетативна частина рослини рису, Oryza sativa L., яка залишається після очищення рисових полів під час збору врожаю або після нього, відома як рисова стерня. Карбоксиметилцелюлоза з рисової стерні (CMCr) є перспективним джерелом біополімерів, що можуть бути виготовлені з відходів рисової стерні. Карбоксиметилцелюлоза була синтезована з рисової стерні методом лиття в розчиннику. Різні типи пластифікаторів (гліцерин та оливкова олія) і компоненти, які вони містять, забезпечують гнучкість використання як матеріалу для пакування харчових продуктів. Вміст оливкової олії підвищив вологонепроникність плівок, а вміст гліцерину – їхню розтяжність. Індонезія відома як країна, де більшість населення займається сільським господарством. Разом зі збільшенням посівних площ рису з кожним роком збільшується і кількість сільськогосподарських відходів у вигляді рисової стерні. У майбутньому застосування CMCr у пакуванні харчових продуктів може привести до революційних змін у практиці сталого розвитку сільськогосподарського сектору Індонезії. Використовуючи унікальні властивості CMCr, такі як посилений вологозахисний бар'єр і підвищену розтяжність, є можливість розробити екологічно чисті пакувальні рішення. Ця інновація не тільки вирішує проблему збільшення відходів рисової стерні, але й сприяє зменшенню забруднення навколишнього середовища, пропонуючи більш екологічний і сталий підхід до пакування в цій країні.
dc.description.abstractThe vegetative part of the rice plant, Oryza sativa L., that remains after paddy fields have been cleared during harvest or afterward is known as rice stubble. Carboxymethyl Cellulose from Rice Stubble (CMCr) is a promising biopolymer source that can be made from rice stubble waste. Carboxymethyl cellulose was synthesized from rice stubble by a solvent-casting method. Various types of plasticizers (glycerol and olive oil) and the components they contain provide flexibility for use as a material for food packaging. The films' moisture barrier was enhanced by the olive oil content while their extensibility was enhanced by the glycerol content. Indonesia is known as a country with the majority of the population working as farmers. Along with the increase in rice harvested area each year, agricultural waste in the form of rice stubble is also increasing. In the future, the application of CMCr in food packaging has the potential to revolutionize sustainable practices in Indonesia's agricultural sector. By leveraging CMCr's unique properties, such as enhanced moisture barrier and increased extensibility, there is an opportunity to develop eco-friendly packaging solutions. This innovation not only addresses the challenge of rising rice stubble waste but also contributes to the reduction of environmental pollution, offering a greener and more sustainable approach to packaging in the country.
dc.format.extent200-210
dc.format.pages11
dc.identifier.citationCarboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste. A Mini Review / Heri Septya Kusuma, Puput Yugiani, Andrew Nosakhare Amenaghawon, Handoko Darmokoesoemo // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 200–210.
dc.identifier.citationenCarboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste. A Mini Review / Heri Septya Kusuma, Puput Yugiani, Andrew Nosakhare Amenaghawon, Handoko Darmokoesoemo // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 200–210.
dc.identifier.doidoi.org/10.23939/chcht18.02.200
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111798
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Khasanah, I. N.; Astuti, K. Luas Panen Dan Produksi Padi Di Indonesia 2022.
dc.relation.references[2] Wafiroh, S.; Abdulloh, A.; Widati, A. A. Cellulose Acetate Hollow Fiber Membranes from Banana Stem Fibers Coated by Tio2 for Degradation of Waste Textile Dye. Chem. Chem. Technol. 2021, 15, 291–298. https://doi.org/10.23939/chcht15.02.291
dc.relation.references[3] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
dc.relation.references[4] David, G.; Gontard, N.; Angellier-Coussy, H. Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers (Basel) 2019, 11, 200–218. https://doi.org/10.3390/polym11020200
dc.relation.references[5] Bifani, V.; Ramírez, C.; Ihl, M.; Rubilar, M.; García, A.; Zaritzky, N. Effects of Murta (Ugni Molinae Turcz) Extract on Gas and Water Vapor Permeability of Carboxymethylcellulose-Based Edible Films. LWT 2007, 40, 1473–1481. https://doi.org/10.1016/j.lwt.2006.03.011
dc.relation.references[6] Mali, S.; Grossmann, M. V. E.; García, M. A.; Martino, M. N.; Zaritzky, N. E. Effects of Controlled Storage on Thermal, Mechanical and Barrier Properties of Plasticized Films from Different Starch Sources. J Food Eng 2006, 75, 453–460. https://doi.org/10.1016/j.jfoodeng.2005.04.031
dc.relation.references[7] Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends in Food Science and Technology; Elsevier Ltd June 1, 2021; pp 532–546. https://doi.org/10.1016/j.tifs.2021.04.016
dc.relation.references[8] Arik Kibar, E. A.; Us, F. Thermal, Mechanical and Water Adsorption Properties of Corn Starch-Carboxymethylcellulose/Methylcellulose Biodegradable Films. J Food Eng 2013, 114, 123–131. https://doi.org/10.1016/j.jfoodeng.2012.07.034
dc.relation.references[9] Ghanbarzadeh, B.; Almasi, H.; Entezami, A. A. Physical Properties of Edible Modified Starch/Carboxymethyl Cellulose Films. Innovative Food Science and Emerging Technologies 2010, 11, 697–702. https://doi.org/10.1016/j.ifset.2010.06.001
dc.relation.references[10] Petersson, M.; Stading, M. Water Vapour Permeability and Mechanical Properties of Mixed Starch-Monoglyceride Films and Effect of Film Forming Conditions. Food Hydrocoll 2005, 19, 123–132. https://doi.org/10.1016/j.foodhyd.2004.04.021
dc.relation.references[11] Cao, N.; Yang, X.; Fu, Y. Effects of Various Plasticizers on Mechanical and Water Vapor Barrier Properties of Gelatin Films. Food Hydrocoll 2009, 23, 729–735. https://doi.org/10.1016/j.foodhyd.2008.07.017
dc.relation.references[12] Ma, W.; Tang, C. H.; Yin, S. W.; Yang, X. Q.; Qi, J. R.; Xia, N. Effect of Homogenization Conditions on Properties of Gelatin-Olive Oil Composite Films. J Food Eng 2012, 113, 136–142. https://doi.org/10.1016/j.jfoodeng.2012.05.007
dc.relation.references[13] López-Miranda, J.; Pérez-Martinez, P.; Pérez-Jiménez, F. Health Benefits of Monounsaturated Fatty Acids. In Improving the Fat Content of Foods; Elsevier Ltd, 2006; pp 71–106. https://doi.org/10.1533/9781845691073.1.71
dc.relation.references[14] Ohkawa, K. Nanofibers of Cellulose and Its Derivatives Fabricated Using Direct Electrospinning. Molecules MDPI AG 2015, 9139–9154. https://doi.org/10.3390/molecules20059139
dc.relation.references[15] Suganya, V.; Anuradha, V. Microencapsulation and Nanoencapsulation: A Review. International Journal of Pharmaceutical and Clinical Research 2017, 9, 233–239. https://doi.org/10.25258/ijpcr.v9i3.8324
dc.relation.references[16] Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Ghorbani, M.; Samadi Kafil, H. Fabrication of Cumin Seed Oil Loaded Gliadin-Ethyl Cellulose Nanofibers Reinforced with Adipic Acid for Food Packaging Application. Food Packag Shelf Life 2021, 30, 100754–100763. https://doi.org/10.1016/j.fpsl.2021.100754
dc.relation.references[17] Rajeswari, A.; Christy, E. J. S.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. Environmental Chemistry and Ecotoxicology 2020, 2, 107–114. https://doi.org/10.1016/J.ENCECO.2020.07.003
dc.relation.references[18] Guzman-Puyol, S.; Hierrezuelo, J.; Benítez, J. J.; Tedeschi, G.; Porras-Vázquez, J. M.; Heredia, A.; Athanassiou, A.; Romero, D.; Heredia-Guerrero, J. A. Transparent, UV-Blocking, and High Barrier Cellulose-Based Bioplastics with Naringin as Active Food Packaging Materials. Int J Biol Macromol 2022, 209, 1985–1994. https://doi.org/10.1016/J.IJBIOMAC.2022.04.177
dc.relation.references[19] Guzman-Puyol, S.; Tedeschi, G.; Goldoni, L.; Benítez, J. J.; Ceseracciu, L.; Koschella, A.; Heinze, T.; Athanassiou, A.; Heredia-Guerrero, J. A. Greaseproof, Hydrophobic, and Biodegradable Food Packaging Bioplastics from C6-Fluorinated Cellulose Esters. Food Hydrocoll 2022, 128, 107562–107573. https://doi.org/10.1016/j.foodhyd.2022.107562
dc.relation.references[20] Rao, J.; Shen, C.; Yang, Z.; Fawole, O. A.; Li, J.; Wu, D.; Chen, K. Facile Microfluidic Fabrication and Characterization of Ethyl Cellulose/PVP Films with Neatly Arranged Fibers. Carbohydr Polym 2022, 292, 119702. https://doi.org/10.1016/J.CARBPOL.2022.119702
dc.relation.references[21] Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile Fabrication of Multifunctional Citrus Pectin Aerogel Fortified with Cellulose Nanofiber as Controlled Packaging of Edible Fungi. Food Chem 2022, 374, 131763. https://doi.org/10.1016/J.FOODCHEM.2021.131763
dc.relation.references[22] Arun, R.; Shruthy, R.; Preetha, R.; Sreejit, V. Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging. Chemosphere 2022, 291, 132786. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132786
dc.relation.references[23] Jancy, S.; Shruthy, R.; Preetha, R. Fabrication of Packaging Film Reinforced with Cellulose Nanoparticles Synthesised from Jack Fruit Non-Edible Part Using Response Surface Methodology. Int J Biol Macromol 2020, 142, 63–72. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.09.066
dc.relation.references[24] Ding, Z.; Chang, X.; Fu, X.; Kong, H.; Yu, Y.; Xu, H.; Shan, Y.; Ding, S. Fabrication and Characterization of Pullulan-Based Composite Films Incorporated with Bacterial Cellulose and Ferulic Acid. Int J Biol Macromol 2022, 219, 121–137. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.07.236
dc.relation.references[25] Rojas-Lema, S.; Nilsson, K.; Trifol, J.; Langton, M.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D.; Moriana, R. “Faba Bean Protein Films Reinforced with Cellulose Nanocrystals as Edible Food Packaging Material.” Food Hydrocoll 2021, 121, 107019. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107019
dc.relation.references[26] Sharma, A.; Mandal, T.; Goswami, S. Fabrication of Cellulose Acetate Nanocomposite Films with Lignocelluosic Nanofiber Filler for Superior Effect on Thermal, Mechanical and Optical Properties. Nano-Structures & Nano-Objects 2021, 25, 100642. https://doi.org/https://doi.org/10.1016/j.nanoso.2020.100642
dc.relation.references[27] Liu, Y.; Ma, Y.; Liu, Y.; Zhang, J.; Hossen, M. A.; Sameen, D. E.; Dai, J.; Li, S.; Qin, W. Fabrication and Characterization of pH-Responsive Intelligent Films Based on Carboxymethyl Cellulose and Gelatin/Curcumin/Chitosan Hybrid Microcapsules for Pork Quality Monitoring. Food Hydrocoll 2022, 124, 107224. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107224
dc.relation.references[28] Yang, Y.; Zheng, S.; Liu, Q.; Kong, B.; Wang, H. Fabrication and Characterization of Cinnamaldehyde Loaded Polysaccharide Composite Nanofiber Film as Potential Antimicrobial Packaging Material. Food Packag Shelf Life 2020, 26, 100600. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100600
dc.relation.references[29] Roy, S.; Rhim, J.-W. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root. Food Hydrocoll 2021, 114, 106566. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.106566
dc.relation.references[30] el Fawal, G.; Hong, H.; Song, X.; Wu, J.; Sun, M.; He, C.; Mo, X.; Jiang, Y.; Wang, H. Fabrication of Antimicrobial Films Based on Hydroxyethylcellulose and ZnO for Food Packaging Application. Food Packag Shelf Life 2020, 23, 100462. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100462
dc.relation.references[31] Roy, S.; Kim, H.-J.; Rhim, J.-W. Effect of Blended Colorants of Anthocyanin and Shikonin on Carboxymethyl Cellulose/Agar-Based Smart Packaging Film. Int J Biol Macromol 2021, 183, 305–315. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.04.162
dc.relation.references[32] Zhang, A.; Zou, Y.; Xi, Y.; Wang, P.; Zhang, Y.; Wu, L.; Zhang, H. Fabrication and Characterization of Bamboo Shoot Cellulose/Sodium Alginate Composite Aerogels for Sustained Release of Curcumin. Int J Biol Macromol 2021, 192, 904–912. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.027
dc.relation.references[33] Yeasmin, S.; Yeum, J. H.; Yang, S. B. Fabrication and Characterization of Pullulan-Based Nanocomposites Reinforced with Montmorillonite and Tempo Cellulose Nanofibril. Carbohydr Polym 2020, 240, 116307. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116307
dc.relation.references[34] Sharmila, G.; Muthukumaran, C.; Kirthika, S.; Keerthana, S.; Kumar, N. M.; Jeyanthi, J. Fabrication and Characterization of Spinacia Oleracea Extract Incorporated Alginate/Carboxymethyl Cellulose Microporous Scaffold for Bone Tissue Engineering. Int J Biol Macromol 2020, 156, 430–437. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.04.059
dc.relation.references[35] Qu, B.; Luo, Y. Preparation and Characterization of Carboxymethyl Cellulose Capped Zinc Oxide Nanoparticles: A Proof-of-Concept Study. Food Chem 2022, 389, 133001. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.133001
dc.relation.references[36] Rao, J.; Lv, Z.; Chen, G.; Hao, X.; Guan, Y.; Peng, F. Fabrication of Flexible Composite Film Based on Xylan from Pulping Process for Packaging Application. Int J Biol Macromol 2021, 173, 285–292. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.01.128
dc.relation.references[37] Priyadarshi, R.; Kim, S.-M.; Rhim, J.-W. Carboxymethyl Cellulose-Based Multifunctional Film Combined with Zinc Oxide Nanoparticles and Grape Seed Extract for the Preservation of High-Fat Meat Products. Sustainable Materials and Technologies 2021, 29, e00325. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00325
dc.relation.references[38] Rojas-Graü, M. A.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín‐Belloso, O. The Use of Packaging Techniques to Maintain Freshness in Fresh-Cut Fruits and Vegetables: A Review. Int J Food Sci Technol 2009, 44, 875–889.
dc.relation.references[39] Jin, K.; Tang, Y.; Liu, J.; Wang, J.; Ye, C. Nanofibrillated Cellulose as Coating Agent for Food Packaging Paper. Int J Biol Macromol 2021, 168, 331–338. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.12.066
dc.relation.references[40] Hazarika, K. K.; Konwar, A.; Borah, A.; Saikia, A.; Barman, P.; Hazarika, S. Cellulose Nanofiber Mediated Natural Dye Based Biodegradable Bag with Freshness Indicator for Packaging of Meat and Fish. Carbohydr Polym 2022, 120241. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.120241
dc.relation.references[41] Komali, N. D.; Gaikwad, P. S.; Yadav, B. K. Fabrication of Cellulose Acetate Membrane for Monitoring Freshness of Minimally Processed Pomegranate (Punica Granatum) Arils. Food Biosci 2022, 49, 101945. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101945
dc.relation.references[42] Shi, C.; Ji, Z.; Zhang, J.; Jia, Z.; Yang, X. Preparation and Characterization of Intelligent Packaging Film for Visual Inspection of Tilapia Fillets Freshness Using Cyanidin and Bacterial Cellulose. Int J Biol Macromol 2022, 205, 357–365. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.02.072
dc.relation.references[43] Ezati, P.; Tajik, H.; Moradi, M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef. Sens Actuators B Chem 2019, 285, 519–528. https://doi.org/https://doi.org/10.1016/j.snb.2019.01.089
dc.relation.references[44] Indumathi, M. P.; Saral Sarojini, K.; Rajarajeswari, G. R. Antimicrobial and Biodegradable Chitosan/Cellulose Acetate Phthalate/ZnO Nano Composite Films with Optimal Oxygen Permeability and Hydrophobicity for Extending the Shelf Life of Black Grape Fruits. Int J Biol Macromol 2019, 132, 1112–1120. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.03.171
dc.relation.references[45] Mohammadalinejhad, S.; Almasi, H.; Moradi, M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric pH Indicator for Freshness/Spoilage Monitoring of Shrimp. Food Control 2020, 113, 107169. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107169
dc.relation.references[46] Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr Polym 2019, 222, 115030. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.115030
dc.relation.references[47] Chen, J.; Zheng, M.; Tan, K. B.; Lin, J.; Chen, M.; Zhu, Y. Development of Xanthan Gum/Hydroxypropyl Methyl Cellulose Composite Films Incorporating Tea Polyphenol and Its Application on Fresh-Cut Green Bell Peppers Preservation. Int J Biol Macromol 2022, 211, 198–206. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.05.043
dc.relation.references[48] Kang, S.; Xiao, Y.; Guo, X.; Huang, A.; Xu, H. Development of Gum Arabic-Based Nanocomposite Films Reinforced with Cellulose Nanocrystals for Strawberry Preservation. Food Chem 2021, 350, 129199. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129199
dc.relation.references[49] Rodsamran, P.; Sothornvit, R. Carboxymethyl Cellulose from Rice Stubble Waste. Songklanakarin J. Sci. Technol. 2020, 42, 454–460.
dc.relation.references[50] Yuangsawad, R.; Pramanusai, T.; Boontiangtrong, M. Synthesis and Properties of Carboxymethyl Cellulose Blend Films Derived from Rice Straw. Journal of Advanced Development in Engineering and Science 2023, 13, 95–108. Retrieved from https://ph03.tci-thaijo.org/index.php/pitjournal/article/view/598
dc.relation.references[51] Yildirim-Yalcin, M.; Tornuk, F.; Toker, O. S. Recent Advances in the Improvement of Carboxymethyl Cellulose-Based Edible Films. Trends in Food Science and Technology 2022, 129, 179–193. https://doi.org/10.1016/j.tifs.2022.09.022
dc.relation.references[52] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C 2022, 8, 71. https://doi.org/10.3390/c8040071
dc.relation.references[53] Jouki, M.; Khazaei, N.; Ghasemlou, M.; Hadinezhad, M. Effect of Glycerol Concentration on Edible Film Production from Cress Seed Carbohydrate Gum. Carbohydr Polym 2013, 96, 39–46. https://doi.org/10.1016/j.carbpol.2013.03.077
dc.relation.references[54] Ghanbarzadeh, B.; Almasi, H. Physical Properties of Edible Emulsified Films Based on Carboxymethyl Cellulose and Oleic Acid. Int J Biol Macromol 2011, 48, 44–49. https://doi.org/10.1016/j.ijbiomac.2010.09.014
dc.relation.references[55] García, M. A.; Martino, M. N.; Zaritzky, N. E. Lipid Addition to Improve Barrier Properties of Edible Starch-Based Films and Coatings. J Food Sci 2000, 65, 941–947. https://doi.org/10.1111/j.1365-2621.2000.tb09397.x
dc.relation.references[56] Pereda, M.; Amica, G.; Marcovich, N. E. Development and Characterization of Edible Chitosan/Olive Oil Emulsion Films. Carbohydr Polym 2012, 87, 1318–1325. https://doi.org/10.1016/j.carbpol.2011.09.019
dc.relation.references[57] Rodsamran, P.; Sothornvit, R. Rice Stubble as a New Biopolymer Source to Produce Carboxymethyl Cellulose-Blended Films. Carbohydr Polym 2017, 171, 94–101. https://doi.org/10.1016/j.carbpol.2017.05.003
dc.relation.references[58] Mchugh, T. H.; Aujard, J.-F.; Krochta, J. M. Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties. J Food Sci 1994, 59, 416–419. https://doi.org/10.1111/j.1365-2621.1994.tb06980.x
dc.relation.references[59] Liu, L.; Kerry, J. F.; Kerry, J. P. Effect of Food Ingredients and Selected Lipids on the Physical Properties of Extruded Edible Films/Casings. Int J Food Sci Technol 2006, 41, 295–302. https://doi.org/10.1111/j.1365-2621.2005.01063.x
dc.relation.references[60] Javanmard, M.; Golestan, L. Effect of Olive Oil and Glycerol on Physical Properties of Whey Protein Concentrate Films. J Food Process Eng 2008, 31, 628–639. https://doi.org/10.1111/j.1745-4530.2007.00179.x
dc.relation.referencesen[1] Khasanah, I. N.; Astuti, K. Luas Panen Dan Produksi Padi Di Indonesia 2022.
dc.relation.referencesen[2] Wafiroh, S.; Abdulloh, A.; Widati, A. A. Cellulose Acetate Hollow Fiber Membranes from Banana Stem Fibers Coated by Tio2 for Degradation of Waste Textile Dye. Chem. Chem. Technol. 2021, 15, 291–298. https://doi.org/10.23939/chcht15.02.291
dc.relation.referencesen[3] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
dc.relation.referencesen[4] David, G.; Gontard, N.; Angellier-Coussy, H. Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers (Basel) 2019, 11, 200–218. https://doi.org/10.3390/polym11020200
dc.relation.referencesen[5] Bifani, V.; Ramírez, C.; Ihl, M.; Rubilar, M.; García, A.; Zaritzky, N. Effects of Murta (Ugni Molinae Turcz) Extract on Gas and Water Vapor Permeability of Carboxymethylcellulose-Based Edible Films. LWT 2007, 40, 1473–1481. https://doi.org/10.1016/j.lwt.2006.03.011
dc.relation.referencesen[6] Mali, S.; Grossmann, M. V. E.; García, M. A.; Martino, M. N.; Zaritzky, N. E. Effects of Controlled Storage on Thermal, Mechanical and Barrier Properties of Plasticized Films from Different Starch Sources. J Food Eng 2006, 75, 453–460. https://doi.org/10.1016/j.jfoodeng.2005.04.031
dc.relation.referencesen[7] Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends in Food Science and Technology; Elsevier Ltd June 1, 2021; pp 532–546. https://doi.org/10.1016/j.tifs.2021.04.016
dc.relation.referencesen[8] Arik Kibar, E. A.; Us, F. Thermal, Mechanical and Water Adsorption Properties of Corn Starch-Carboxymethylcellulose/Methylcellulose Biodegradable Films. J Food Eng 2013, 114, 123–131. https://doi.org/10.1016/j.jfoodeng.2012.07.034
dc.relation.referencesen[9] Ghanbarzadeh, B.; Almasi, H.; Entezami, A. A. Physical Properties of Edible Modified Starch/Carboxymethyl Cellulose Films. Innovative Food Science and Emerging Technologies 2010, 11, 697–702. https://doi.org/10.1016/j.ifset.2010.06.001
dc.relation.referencesen[10] Petersson, M.; Stading, M. Water Vapour Permeability and Mechanical Properties of Mixed Starch-Monoglyceride Films and Effect of Film Forming Conditions. Food Hydrocoll 2005, 19, 123–132. https://doi.org/10.1016/j.foodhyd.2004.04.021
dc.relation.referencesen[11] Cao, N.; Yang, X.; Fu, Y. Effects of Various Plasticizers on Mechanical and Water Vapor Barrier Properties of Gelatin Films. Food Hydrocoll 2009, 23, 729–735. https://doi.org/10.1016/j.foodhyd.2008.07.017
dc.relation.referencesen[12] Ma, W.; Tang, C. H.; Yin, S. W.; Yang, X. Q.; Qi, J. R.; Xia, N. Effect of Homogenization Conditions on Properties of Gelatin-Olive Oil Composite Films. J Food Eng 2012, 113, 136–142. https://doi.org/10.1016/j.jfoodeng.2012.05.007
dc.relation.referencesen[13] López-Miranda, J.; Pérez-Martinez, P.; Pérez-Jiménez, F. Health Benefits of Monounsaturated Fatty Acids. In Improving the Fat Content of Foods; Elsevier Ltd, 2006; pp 71–106. https://doi.org/10.1533/9781845691073.1.71
dc.relation.referencesen[14] Ohkawa, K. Nanofibers of Cellulose and Its Derivatives Fabricated Using Direct Electrospinning. Molecules MDPI AG 2015, 9139–9154. https://doi.org/10.3390/molecules20059139
dc.relation.referencesen[15] Suganya, V.; Anuradha, V. Microencapsulation and Nanoencapsulation: A Review. International Journal of Pharmaceutical and Clinical Research 2017, 9, 233–239. https://doi.org/10.25258/ijpcr.v9i3.8324
dc.relation.referencesen[16] Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Ghorbani, M.; Samadi Kafil, H. Fabrication of Cumin Seed Oil Loaded Gliadin-Ethyl Cellulose Nanofibers Reinforced with Adipic Acid for Food Packaging Application. Food Packag Shelf Life 2021, 30, 100754–100763. https://doi.org/10.1016/j.fpsl.2021.100754
dc.relation.referencesen[17] Rajeswari, A.; Christy, E. J. S.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. Environmental Chemistry and Ecotoxicology 2020, 2, 107–114. https://doi.org/10.1016/J.ENCECO.2020.07.003
dc.relation.referencesen[18] Guzman-Puyol, S.; Hierrezuelo, J.; Benítez, J. J.; Tedeschi, G.; Porras-Vázquez, J. M.; Heredia, A.; Athanassiou, A.; Romero, D.; Heredia-Guerrero, J. A. Transparent, UV-Blocking, and High Barrier Cellulose-Based Bioplastics with Naringin as Active Food Packaging Materials. Int J Biol Macromol 2022, 209, 1985–1994. https://doi.org/10.1016/J.IJBIOMAC.2022.04.177
dc.relation.referencesen[19] Guzman-Puyol, S.; Tedeschi, G.; Goldoni, L.; Benítez, J. J.; Ceseracciu, L.; Koschella, A.; Heinze, T.; Athanassiou, A.; Heredia-Guerrero, J. A. Greaseproof, Hydrophobic, and Biodegradable Food Packaging Bioplastics from P.6-Fluorinated Cellulose Esters. Food Hydrocoll 2022, 128, 107562–107573. https://doi.org/10.1016/j.foodhyd.2022.107562
dc.relation.referencesen[20] Rao, J.; Shen, C.; Yang, Z.; Fawole, O. A.; Li, J.; Wu, D.; Chen, K. Facile Microfluidic Fabrication and Characterization of Ethyl Cellulose/PVP Films with Neatly Arranged Fibers. Carbohydr Polym 2022, 292, 119702. https://doi.org/10.1016/J.CARBPOL.2022.119702
dc.relation.referencesen[21] Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile Fabrication of Multifunctional Citrus Pectin Aerogel Fortified with Cellulose Nanofiber as Controlled Packaging of Edible Fungi. Food Chem 2022, 374, 131763. https://doi.org/10.1016/J.FOODCHEM.2021.131763
dc.relation.referencesen[22] Arun, R.; Shruthy, R.; Preetha, R.; Sreejit, V. Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging. Chemosphere 2022, 291, 132786. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132786
dc.relation.referencesen[23] Jancy, S.; Shruthy, R.; Preetha, R. Fabrication of Packaging Film Reinforced with Cellulose Nanoparticles Synthesised from Jack Fruit Non-Edible Part Using Response Surface Methodology. Int J Biol Macromol 2020, 142, 63–72. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.09.066
dc.relation.referencesen[24] Ding, Z.; Chang, X.; Fu, X.; Kong, H.; Yu, Y.; Xu, H.; Shan, Y.; Ding, S. Fabrication and Characterization of Pullulan-Based Composite Films Incorporated with Bacterial Cellulose and Ferulic Acid. Int J Biol Macromol 2022, 219, 121–137. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.07.236
dc.relation.referencesen[25] Rojas-Lema, S.; Nilsson, K.; Trifol, J.; Langton, M.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D.; Moriana, R. "Faba Bean Protein Films Reinforced with Cellulose Nanocrystals as Edible Food Packaging Material." Food Hydrocoll 2021, 121, 107019. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107019
dc.relation.referencesen[26] Sharma, A.; Mandal, T.; Goswami, S. Fabrication of Cellulose Acetate Nanocomposite Films with Lignocelluosic Nanofiber Filler for Superior Effect on Thermal, Mechanical and Optical Properties. Nano-Structures & Nano-Objects 2021, 25, 100642. https://doi.org/https://doi.org/10.1016/j.nanoso.2020.100642
dc.relation.referencesen[27] Liu, Y.; Ma, Y.; Liu, Y.; Zhang, J.; Hossen, M. A.; Sameen, D. E.; Dai, J.; Li, S.; Qin, W. Fabrication and Characterization of pH-Responsive Intelligent Films Based on Carboxymethyl Cellulose and Gelatin/Curcumin/Chitosan Hybrid Microcapsules for Pork Quality Monitoring. Food Hydrocoll 2022, 124, 107224. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107224
dc.relation.referencesen[28] Yang, Y.; Zheng, S.; Liu, Q.; Kong, B.; Wang, H. Fabrication and Characterization of Cinnamaldehyde Loaded Polysaccharide Composite Nanofiber Film as Potential Antimicrobial Packaging Material. Food Packag Shelf Life 2020, 26, 100600. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100600
dc.relation.referencesen[29] Roy, S.; Rhim, J.-W. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root. Food Hydrocoll 2021, 114, 106566. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.106566
dc.relation.referencesen[30] el Fawal, G.; Hong, H.; Song, X.; Wu, J.; Sun, M.; He, C.; Mo, X.; Jiang, Y.; Wang, H. Fabrication of Antimicrobial Films Based on Hydroxyethylcellulose and ZnO for Food Packaging Application. Food Packag Shelf Life 2020, 23, 100462. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100462
dc.relation.referencesen[31] Roy, S.; Kim, H.-J.; Rhim, J.-W. Effect of Blended Colorants of Anthocyanin and Shikonin on Carboxymethyl Cellulose/Agar-Based Smart Packaging Film. Int J Biol Macromol 2021, 183, 305–315. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.04.162
dc.relation.referencesen[32] Zhang, A.; Zou, Y.; Xi, Y.; Wang, P.; Zhang, Y.; Wu, L.; Zhang, H. Fabrication and Characterization of Bamboo Shoot Cellulose/Sodium Alginate Composite Aerogels for Sustained Release of Curcumin. Int J Biol Macromol 2021, 192, 904–912. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.027
dc.relation.referencesen[33] Yeasmin, S.; Yeum, J. H.; Yang, S. B. Fabrication and Characterization of Pullulan-Based Nanocomposites Reinforced with Montmorillonite and Tempo Cellulose Nanofibril. Carbohydr Polym 2020, 240, 116307. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116307
dc.relation.referencesen[34] Sharmila, G.; Muthukumaran, C.; Kirthika, S.; Keerthana, S.; Kumar, N. M.; Jeyanthi, J. Fabrication and Characterization of Spinacia Oleracea Extract Incorporated Alginate/Carboxymethyl Cellulose Microporous Scaffold for Bone Tissue Engineering. Int J Biol Macromol 2020, 156, 430–437. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.04.059
dc.relation.referencesen[35] Qu, B.; Luo, Y. Preparation and Characterization of Carboxymethyl Cellulose Capped Zinc Oxide Nanoparticles: A Proof-of-Concept Study. Food Chem 2022, 389, 133001. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.133001
dc.relation.referencesen[36] Rao, J.; Lv, Z.; Chen, G.; Hao, X.; Guan, Y.; Peng, F. Fabrication of Flexible Composite Film Based on Xylan from Pulping Process for Packaging Application. Int J Biol Macromol 2021, 173, 285–292. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.01.128
dc.relation.referencesen[37] Priyadarshi, R.; Kim, S.-M.; Rhim, J.-W. Carboxymethyl Cellulose-Based Multifunctional Film Combined with Zinc Oxide Nanoparticles and Grape Seed Extract for the Preservation of High-Fat Meat Products. Sustainable Materials and Technologies 2021, 29, e00325. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00325
dc.relation.referencesen[38] Rojas-Graü, M. A.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín‐Belloso, O. The Use of Packaging Techniques to Maintain Freshness in Fresh-Cut Fruits and Vegetables: A Review. Int J Food Sci Technol 2009, 44, 875–889.
dc.relation.referencesen[39] Jin, K.; Tang, Y.; Liu, J.; Wang, J.; Ye, C. Nanofibrillated Cellulose as Coating Agent for Food Packaging Paper. Int J Biol Macromol 2021, 168, 331–338. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.12.066
dc.relation.referencesen[40] Hazarika, K. K.; Konwar, A.; Borah, A.; Saikia, A.; Barman, P.; Hazarika, S. Cellulose Nanofiber Mediated Natural Dye Based Biodegradable Bag with Freshness Indicator for Packaging of Meat and Fish. Carbohydr Polym 2022, 120241. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.120241
dc.relation.referencesen[41] Komali, N. D.; Gaikwad, P. S.; Yadav, B. K. Fabrication of Cellulose Acetate Membrane for Monitoring Freshness of Minimally Processed Pomegranate (Punica Granatum) Arils. Food Biosci 2022, 49, 101945. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101945
dc.relation.referencesen[42] Shi, C.; Ji, Z.; Zhang, J.; Jia, Z.; Yang, X. Preparation and Characterization of Intelligent Packaging Film for Visual Inspection of Tilapia Fillets Freshness Using Cyanidin and Bacterial Cellulose. Int J Biol Macromol 2022, 205, 357–365. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.02.072
dc.relation.referencesen[43] Ezati, P.; Tajik, H.; Moradi, M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef. Sens Actuators B Chem 2019, 285, 519–528. https://doi.org/https://doi.org/10.1016/j.snb.2019.01.089
dc.relation.referencesen[44] Indumathi, M. P.; Saral Sarojini, K.; Rajarajeswari, G. R. Antimicrobial and Biodegradable Chitosan/Cellulose Acetate Phthalate/ZnO Nano Composite Films with Optimal Oxygen Permeability and Hydrophobicity for Extending the Shelf Life of Black Grape Fruits. Int J Biol Macromol 2019, 132, 1112–1120. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.03.171
dc.relation.referencesen[45] Mohammadalinejhad, S.; Almasi, H.; Moradi, M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric pH Indicator for Freshness/Spoilage Monitoring of Shrimp. Food Control 2020, 113, 107169. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107169
dc.relation.referencesen[46] Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr Polym 2019, 222, 115030. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.115030
dc.relation.referencesen[47] Chen, J.; Zheng, M.; Tan, K. B.; Lin, J.; Chen, M.; Zhu, Y. Development of Xanthan Gum/Hydroxypropyl Methyl Cellulose Composite Films Incorporating Tea Polyphenol and Its Application on Fresh-Cut Green Bell Peppers Preservation. Int J Biol Macromol 2022, 211, 198–206. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.05.043
dc.relation.referencesen[48] Kang, S.; Xiao, Y.; Guo, X.; Huang, A.; Xu, H. Development of Gum Arabic-Based Nanocomposite Films Reinforced with Cellulose Nanocrystals for Strawberry Preservation. Food Chem 2021, 350, 129199. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129199
dc.relation.referencesen[49] Rodsamran, P.; Sothornvit, R. Carboxymethyl Cellulose from Rice Stubble Waste. Songklanakarin J. Sci. Technol. 2020, 42, 454–460.
dc.relation.referencesen[50] Yuangsawad, R.; Pramanusai, T.; Boontiangtrong, M. Synthesis and Properties of Carboxymethyl Cellulose Blend Films Derived from Rice Straw. Journal of Advanced Development in Engineering and Science 2023, 13, 95–108. Retrieved from https://ph03.tci-thaijo.org/index.php/pitjournal/article/view/598
dc.relation.referencesen[51] Yildirim-Yalcin, M.; Tornuk, F.; Toker, O. S. Recent Advances in the Improvement of Carboxymethyl Cellulose-Based Edible Films. Trends in Food Science and Technology 2022, 129, 179–193. https://doi.org/10.1016/j.tifs.2022.09.022
dc.relation.referencesen[52] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. P. 2022, 8, 71. https://doi.org/10.3390/P.8040071
dc.relation.referencesen[53] Jouki, M.; Khazaei, N.; Ghasemlou, M.; Hadinezhad, M. Effect of Glycerol Concentration on Edible Film Production from Cress Seed Carbohydrate Gum. Carbohydr Polym 2013, 96, 39–46. https://doi.org/10.1016/j.carbpol.2013.03.077
dc.relation.referencesen[54] Ghanbarzadeh, B.; Almasi, H. Physical Properties of Edible Emulsified Films Based on Carboxymethyl Cellulose and Oleic Acid. Int J Biol Macromol 2011, 48, 44–49. https://doi.org/10.1016/j.ijbiomac.2010.09.014
dc.relation.referencesen[55] García, M. A.; Martino, M. N.; Zaritzky, N. E. Lipid Addition to Improve Barrier Properties of Edible Starch-Based Films and Coatings. J Food Sci 2000, 65, 941–947. https://doi.org/10.1111/j.1365-2621.2000.tb09397.x
dc.relation.referencesen[56] Pereda, M.; Amica, G.; Marcovich, N. E. Development and Characterization of Edible Chitosan/Olive Oil Emulsion Films. Carbohydr Polym 2012, 87, 1318–1325. https://doi.org/10.1016/j.carbpol.2011.09.019
dc.relation.referencesen[57] Rodsamran, P.; Sothornvit, R. Rice Stubble as a New Biopolymer Source to Produce Carboxymethyl Cellulose-Blended Films. Carbohydr Polym 2017, 171, 94–101. https://doi.org/10.1016/j.carbpol.2017.05.003
dc.relation.referencesen[58] Mchugh, T. H.; Aujard, J.-F.; Krochta, J. M. Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties. J Food Sci 1994, 59, 416–419. https://doi.org/10.1111/j.1365-2621.1994.tb06980.x
dc.relation.referencesen[59] Liu, L.; Kerry, J. F.; Kerry, J. P. Effect of Food Ingredients and Selected Lipids on the Physical Properties of Extruded Edible Films/Casings. Int J Food Sci Technol 2006, 41, 295–302. https://doi.org/10.1111/j.1365-2621.2005.01063.x
dc.relation.referencesen[60] Javanmard, M.; Golestan, L. Effect of Olive Oil and Glycerol on Physical Properties of Whey Protein Concentrate Films. J Food Process Eng 2008, 31, 628–639. https://doi.org/10.1111/j.1745-4530.2007.00179.x
dc.relation.urihttps://doi.org/10.23939/chcht15.02.291
dc.relation.urihttps://doi.org/10.23939/chcht17.02.357
dc.relation.urihttps://doi.org/10.3390/polym11020200
dc.relation.urihttps://doi.org/10.1016/j.lwt.2006.03.011
dc.relation.urihttps://doi.org/10.1016/j.jfoodeng.2005.04.031
dc.relation.urihttps://doi.org/10.1016/j.tifs.2021.04.016
dc.relation.urihttps://doi.org/10.1016/j.jfoodeng.2012.07.034
dc.relation.urihttps://doi.org/10.1016/j.ifset.2010.06.001
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2004.04.021
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2008.07.017
dc.relation.urihttps://doi.org/10.1016/j.jfoodeng.2012.05.007
dc.relation.urihttps://doi.org/10.1533/9781845691073.1.71
dc.relation.urihttps://doi.org/10.3390/molecules20059139
dc.relation.urihttps://doi.org/10.25258/ijpcr.v9i3.8324
dc.relation.urihttps://doi.org/10.1016/j.fpsl.2021.100754
dc.relation.urihttps://doi.org/10.1016/J.ENCECO.2020.07.003
dc.relation.urihttps://doi.org/10.1016/J.IJBIOMAC.2022.04.177
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2022.107562
dc.relation.urihttps://doi.org/10.1016/J.CARBPOL.2022.119702
dc.relation.urihttps://doi.org/10.1016/J.FOODCHEM.2021.131763
dc.relation.urihttps://doi.org/10.1016/J.CHEMOSPHERE.2021.132786
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.09.066
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.07.236
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107019
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.nanoso.2020.100642
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107224
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.fpsl.2020.100600
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.foodhyd.2020.106566
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.fpsl.2020.100462
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.04.162
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.027
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.carbpol.2020.116307
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.04.059
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.foodchem.2022.133001
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.01.128
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.susmat.2021.e00325
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.12.066
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.carbpol.2022.120241
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.fbio.2022.101945
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.02.072
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.snb.2019.01.089
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.03.171
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.foodcont.2020.107169
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.carbpol.2019.115030
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.05.043
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.foodchem.2021.129199
dc.relation.urihttps://ph03.tci-thaijo.org/index.php/pitjournal/article/view/598
dc.relation.urihttps://doi.org/10.1016/j.tifs.2022.09.022
dc.relation.urihttps://doi.org/10.3390/c8040071
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2013.03.077
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2010.09.014
dc.relation.urihttps://doi.org/10.1111/j.1365-2621.2000.tb09397.x
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2011.09.019
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2017.05.003
dc.relation.urihttps://doi.org/10.1111/j.1365-2621.1994.tb06980.x
dc.relation.urihttps://doi.org/10.1111/j.1365-2621.2005.01063.x
dc.relation.urihttps://doi.org/10.1111/j.1745-4530.2007.00179.x
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Kusuma H. S., Yugiani P., Amenaghawon A. N., Darmokoesoemo H., 2024
dc.subjectкарбоксиметилцелюлоза
dc.subjectрисова стерня
dc.subjectбіополімерна плівка
dc.subjectгліцерин
dc.subjectоливкова олія
dc.subjectcarboxymethyl cellulose
dc.subjectrice stubble
dc.subjectbiopolymer film
dc.subjectglycerol
dc.subjectolive oil
dc.titleCarboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste. A Mini Review
dc.title.alternativeПлівки на основі карбоксиметилцелюлози з рисової стерні як нове потенційне джерело біополімерів для зменшення відходів сільського господарства. Мініогляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Kusuma_H_S-Carboxymethyl_Cellulose_200-210.pdf
Size:
558.01 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Kusuma_H_S-Carboxymethyl_Cellulose_200-210__COVER.png
Size:
538.62 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: