A Review of Road Bitumen Modification Methods. Part 1 – Physical Modification

dc.citation.epage304
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage295
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationNational Transport University
dc.contributor.authorGunka, Volodymyr
dc.contributor.authorAstakhova, Olena
dc.contributor.authorHrynchuk, Yurii
dc.contributor.authorSidun, Iurii
dc.contributor.authorReutskyy, Volodymyr
dc.contributor.authorMirchuk, Iryna
dc.contributor.authorPoliak, Olha
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:50Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractІнформація в цьому дослідженні була зібрана на основі ретельного огляду останніх статей, пов’язаних із одержанням в’яжучих матеріалів для дорожнього будівництва і покращенням їхніх експлуатаційних властивостей. Зосереджено увагу на фізичному модифікуванні дорожніх бітумів полімерними модифікаторами. Показано вплив трьох основних типів полімерів (термопластів, еластопластів і термоеластопластів) на основні фізико-механічні властивості бітум-полімерних композицій. Встановлено основні технологічні параметри й особливості фізичного модифікування бітумів різними типами полімерних модифікаторів.
dc.description.abstractThe information in this study is based on a thorough review of recent articles related to the production of binders for road construction and the improvement of their performance properties. The main attention is paid to the physical modification of road bitumen with polymer modifiers. The influence of the three main types of polymers (thermoplastics, elastomers, and thermoplastic elastomers) on the main physical and mechanical properties of bitumen-polymer compositions is shown. The main technological parameters and features of the physical modification of bitumen by different types of polymer modifiers have been determined.
dc.format.extent295-304
dc.format.pages10
dc.identifier.citationA Review of Road Bitumen Modification Methods. Part 1 – Physical Modification / Volodymyr Gunka, Olena Astakhova, Yurii Hrynchuk, Iurii Sidun, Volodymyr Reutskyy, Iryna Mirchuk, Olha Poliak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 295–304.
dc.identifier.citationenA Review of Road Bitumen Modification Methods. Part 1 – Physical Modification / Volodymyr Gunka, Olena Astakhova, Yurii Hrynchuk, Iurii Sidun, Volodymyr Reutskyy, Iryna Mirchuk, Olha Poliak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 295–304.
dc.identifier.doidoi.org/10.23939/chcht18.02.295
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111791
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274–283. https://doi.org/10.23939/chcht15.02.274
dc.relation.references[2] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443–449. https://doi.org/10.23939/chcht15.03.443
dc.relation.references[3] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
dc.relation.references[4] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
dc.relation.references[5] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295–302. https://doi.org/10.23939/chcht16.02.295
dc.relation.references[6] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475–483. https://doi.org/10.23939/chcht16.03.475
dc.relation.references[7] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
dc.relation.references[8] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
dc.relation.references[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–622. https://doi.org/10.23939/chcht17.04.916
dc.relation.references[10] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
dc.relation.references[11] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
dc.relation.references[12] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
dc.relation.references[13] Asphalt Institute; European Bitumen Association. The bitumen industry – a global perspective: production, chemistry, use, specification, and occupational exposure. Third edition; Asphalt Institute; Eurobitume: Lexigton, KY, Brussels, Belgium, 2015.
dc.relation.references[14] Revuelta, M. B. Construction Materials: Geology, Production and Applications; Springer Nature: Switzerland, 2021. https://doi.org/10.1007/978-3-030-65207-4
dc.relation.references[15] Nivitha, M. R.; Roy, N.; Murali Krishnan, J. Influence of Refinery Processing Methods on Ageing of Bitumen. Sādhanā 2019, 44, 128. https://doi.org/10.1007/s12046-019-1107-z
dc.relation.references[16] Park, J. H.; Son, S. H. Extraction of Bitumen with Sub- and Supercritical Water. Korean J Chem Eng. 2011, 28, 455–460. https://doi.org/10.1007/s11814-010-0358-5
dc.relation.references[17] Zachariah, A.; de Klerk, A. Partial Upgrading of Bitumen: Impact of Solvent Deasphalting and Visbreaking Sequence. Energy Fuels 2017, 31, 9374–9380. https://doi.org/10.1021/acs.energyfuels.7b02004
dc.relation.references[18] Błażejowski, K.; Wójcik-Wiśniewska, M. Bitumen Handbook; ORLEN Asfalt: Plock, Poland, 2017.
dc.relation.references[19] Eurobitume. Physical differentiation between air-rectified and oxidised bitumens. 2011. http://www.materialedge.co.uk/docs/Differentiating-air-rectified-and-oxidised-bitumens_0[1].pdf
dc.relation.references[20] Mousavi, M.; Pahlavan, F.; Oldham, D.; Hosseinnezhad, S.; Fini, E. H. Multiscale Investigation of Oxidative Aging in Biomodified Asphalt Binder. J. Phys. Chem. C 2016, 120, 17224–17233. https://doi.org/10.1021/acs.jpcc.6b05004
dc.relation.references[21] Oldham, D.; Qu, X.; Wang, H.; Fini, E. H. Investigating Change of Polydispersity and Rheology of Crude Oil and Bitumen Due to Asphaltene Oxidation. Energy Fuels 2020, 34, 10299–10305. https://doi.org/10.1021/acs.energyfuels.0c01344
dc.relation.references[22] Biturox. https://www.biturox.com
dc.relation.references[23] Nivitha, M. R.; Devika, R.; Murali Krishnan, J.; Roy, N. Influence of Bitumen Type and Polymer Dosage on the Relaxation Spectrum of Styrene-Butadiene-Styrene (SBS)/Styrene-Butadiene (SB) Modified Bitumen. Mech Time Depend Mater 2023, 27, 27–98. https://doi.org/10.1007/s11043-021-09531-y
dc.relation.references[24] Adiko, S. B.; Gureev, A. A.; Khasanova, N. M.; Sakharov, B. V. Processing of High-Paraffinic vacuum residues by thermocatalytic methods to obtain bitumen. Constr Build Mater. 2021, 285, 122880. https://doi.org/10.1016/j.conbuildmat.2021.122880
dc.relation.references[25] Kamelia, L.; Rietjens, I. M.; Boogaard, P. J. Developmental Toxicity Testing of the Fume Condensate Extracts of Bitumen and Oxidized Asphalt in a Series of in vitro Alternative Assays. Toxicol in Vitro 2021, 75, 105195. https://doi.org/10.1016/j.tiv.2021.105195
dc.relation.references[26] Zhang, Z.; Fang, Y.; Yang, J.; Li, X. A Comprehensive Review of Bio-Oil, Bio-Binder and Bio-Asphalt Materials: Their Source, Composition, Preparation and Performance. J. Traffic Transp. Eng. 2022. 9, 151–166. https://doi.org/10.1016/j.jtte.2022.01.003
dc.relation.references[27] Zhang, Y.; Liu, X.; Apostolidis, P.; Gard, W.; van de Ven, M.; Erkens, S.; Jing, R. Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen. Materials 2018, 12, 4176. https://doi.org/10.3390/ma12244176
dc.relation.references[28] Al-Otoom, A.; Al-Harahsheh, M.; Allawzi, M.; Kingman, S.; Robinson, J.; Al-Harahsheh, A.; Saeid, A. Physical and Thermal Properties of Jordanian Tar Sand. Fuel Process. Technol. 2013, 106, 174–180. https://doi.org/10.1016/j.fuproc.2012.07.021
dc.relation.references[29] Anupam, K.; Akinmade, D.; Kasbergen, C.; Erkens, S.; Adebiyi, F. A state-of-the-Art Review of Natural Bitumen in Pavement: Underlining Challenges and the Way Forward. J. Clean. Prod. 2022, 382, 134957. https://doi.org/10.1016/j.jclepro.2022.134957
dc.relation.references[30] Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
dc.relation.references[31] Pyshyev, S., Gunka, V., Grytsenko, Y., Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631–636. https://doi.org/10.23939/chcht10.04si.631
dc.relation.references[32] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111–118. https://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.references[33] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.references[34] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
dc.relation.references[35] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199–1206.
dc.relation.references[36] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.references[37] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.references[38] Donchenko, M.; Grynyshyn, O.; Demchuk, Yu.; Topilnytskyy, P.; Turba, Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681
dc.relation.references[39] Gunka, V., Hidei, V., Sidun, I., Demchuk, Y., Stadnik, V., Shapoval, P., Sobol, Kh.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
dc.relation.references[40] Leal Filho, W.; Saari, U.; Fedoruk, M.; Iital, A.; Moora, H.; Klöga, M.; Voronova, V. An Overview of the Problems Posed by Plastic Products and the Role of Extended Producer Responsibility in Europe. J. Clean. Prod. 2019, 214, 550–558. https://doi.org/10.1016/j.jclepro.2018.12.256
dc.relation.references[41] Wu, S.; Montalvo, L. Repurposing Waste Plastics into Cleaner Asphalt Pavement Materials: A Critical Literature Review. J. Clean. Prod. 2021, 280, 124355. https://doi.org/10.1016/j.jclepro.2020.124355
dc.relation.references[42] He, P.; Chen, L.; Shao, L.; Zhang, H.; Lü, F. Municipal Solid Waste (MSW) Landfill: A Source of Microplastics?-Evidence of Microplastics in Landfill Leachate. Water Res. 2019, 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060
dc.relation.references[43] Ge, D.; Yan, K.; You, Z.; Xu, H. Modification Mechanism of Asphalt Binder with Waste Tire Rubber and Recycled Polyethylene. Constr Build Mater. 2016, 126, 66–76. https://doi.org/10.1016/j.conbuildmat.2016.09.014
dc.relation.references[44] Joohari, I. B.; Maniam, S.; Giustozzi, F. Influence of Compatibilizers on the Storage Stability of Hybrid Polymer-Modified Bitumen with Recycled Polyethylene. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F.; Nizamuddin, S., Eds.; Woodhead Publishing, 2022; pp 215–232. https://doi.org/10.1016/B978-0-323-85789-5.00011-3
dc.relation.references[45] Kishchynskyi, S.; Nagaychuk, V.; Bezuglyi, A. Improving Quality and Durability of Bitumen and Asphalt Concrete by Modification Using Recycled Polyethylene Based Polymer Composition. Procedia engineering 2016, 143, 119–127. https://doi.org/10.1016/j.proeng.2016.06.016
dc.relation.references[46] Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled Plastic as Bitumen Modifier: The Role of Recycled Linear Low-Density Polyethylene in the Modification of Physical, Chemical and Rheological Properties of Bitumen. J. Clean. Prod. 2020, 266, 121988. https://doi.org/10.1016/j.jclepro.2020.121988
dc.relation.references[47] Xu, F.; Zhao, Y.; Li, K. Using Waste Plastics as Asphalt Modifier: A Review. Materials 2022, 15, 110. https://doi.org/10.3390/ma15010110
dc.relation.references[48] Appiah, J. K.; Berko-Boateng, V. N.; Tagbor, T. A. Use of Waste Plastic Materials for Road Construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. https://doi.org/10.1016/j.cscm.2016.11.001
dc.relation.references[49] Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M. D. C. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 2019, 11, 646. https://doi.org/10.3390/su11030646
dc.relation.references[50] Hariadi, D.; Saleh, S. M.; Yamin, R. A.; Aprilia, S. Utilization of LDPE Plastic Waste on the Quality of Pyrolysis Oil as an Asphalt Solvent Alternative. Therm. Sci. Eng. Prog. 2021, 23, 100872. https://doi.org/10.1016/j.tsep.2021.100872
dc.relation.references[51] Ahmedzade, P.; Demirelli, K.; Günay, T.; Biryan, F.; Alqudah, O. Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder. Procedia Manuf. 2015, 2, 165–170. https://doi.org/10.1016/j.promfg.2015.07.029
dc.relation.references[52] Razali, M. N.; Aziz, M. A. A.; Jamin, N. F. M.; Salehan, N. A. M. Modification of Bitumen Using Polyacrylic Wig Waste. AIP Conf. Proc. 2018, 1930, 020051. https://doi.org/10.1063/1.5022945
dc.relation.references[53] Behl, A.; Sharma, G.; Kumar, G. A Sustainable Approach: Utilization of Waste PVC in Asphalting of Roads. Constr Build Mater. 2014, 54, 113–117. https://doi.org/10.1016/j.conbuildmat.2013.12.050
dc.relation.references[54] Lugeiyamu, L.; Kunlin, M.; Mensahn, E. S.; Faraz, A. Utilization of Waste Polyethylene Terephthalate (PET) as Partial Replacement of Bitumen in Stone Mastic Asphalt. Constr Build Mater. 2021, 309, 125176. https://doi.org/10.1016/j.conbuildmat.2021.125176
dc.relation.references[55] Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M. Á.; Indacoechea-Vega, I. Analysis of the Influence of Using Recycled Polystyrene as a Substitute for Bitumen in the Behaviour of Asphalt Concrete Mixtures. J. Clean. Prod. 2018, 170, 1279–1287. https://doi.org/10.1016/j.jclepro.2017.09.232
dc.relation.references[56] Costa, L. M.; Silva, H. M.; Peralta, J.; Oliveira, J. R. Using Waste Polymers as a Reliable Alternative for Asphalt Binder Modification – Performance and Morphological Assessment. Constr Build Mater. 2019, 198, 237–244. https://doi.org/10.1016/j.conbuildmat.2018.11.279
dc.relation.references[57] Shahane, H. A.; Bhosale, S. S. E-Waste Plastic Powder Modified Bitumen: Rheological Properties and Performance Study of Bituminous Concrete. Road Mater. Pavement Des. 2021, 22, 682-702. https://doi.org/10.1080/14680629.2019.1642944
dc.relation.references[58] Bazmara, B.; Tahersima, M.; Behravan, A. Influence of Thermoplastic Polyurethane and Synthesized Polyurethane Additive in Performance of Asphalt Pavements. Constr Build Mater. 2018, 166, 1–11. https://doi.org/10.1016/j.conbuildmat.2018.01.093
dc.relation.references[59] Roman, C.; Cuadri, A. A.; Liashenko, I.; García-Morales, M.; Partal, P. Linear and Non-Linear Viscoelastic Behavior of SBS and LDPE Modified Bituminous Mastics. Constr Build Mater. 2016, 123, 464–472. https://doi.org/10.1016/j.conbuildmat.2016.07.027
dc.relation.references[60] Li, M.; Zhang, M.; Rong, H.; Zhang, X.; He, L.; Han, P.; Tong, M. Transport and Deposition of Plastic Particles in Porous Media during Seawater Intrusion and Groundwater-Seawater Displacement Processes. Sci. Total Environ. 2021, 781, 146752. https://doi.org/10.1016/j.scitotenv.2021.146752
dc.relation.references[61] Movilla-Quesada, D.; Raposeiras, A. C.; Silva-Klein, L. T.; Lastra-González, P.; Castro-Fresno, D. Use of Plastic Scrap in Asphalt Mixtures Added by Dry Method as a Partial Substitute for Bitumen. Waste Manage. 2019, 87, 751–760. https://doi.org/10.1016/j.wasman.2019.03.018
dc.relation.references[62] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
dc.relation.references[63] Mashaan, N. S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the Engineering Properties of Asphalt Binder Modified with Waste Plastic Polymer. Ain Shams Eng. J. 2021, 12, 1569–1574. https://doi.org/10.1016/j.asej.2020.08.035
dc.relation.references[64] Costa, L. M.; Silva, H. M. R. D.; Oliveira, J. R.; Fernandes, S. R. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. Int. J. Pavement Res. Technol. 2013, 6, 457–464. https://doi.org/10.6135/ijprt.org.tw/2013.6(4).457
dc.relation.references[65] Grynyshyn, O.; Astakhova, O.; Chervinskyy, T. Production of Bitumen Modified by Petroleum Resins on the Basis of Tars of Ukrainian Oils. Chem. Chem. Technol. 2010, 4, 241–246. https://doi.org/10.23939/chcht04.03.241
dc.relation.references[66] Grynyshyn, O.; Bratychak, M.; Krynytskiy, V.; Donchak, V. Petroleum Resins for Bitumens Modification. Chem. Chem. Technol. 2008, 2, 47–53. https://doi.org/10.23939/chcht02.01.047
dc.relation.references[67] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Shved, M.; Kochubei, V. Oil and Gas Processing Products to Obtain Polymers Modified Bitumen. Int. J. Pavement Res. Technol. 2017, 10, 289–296. https://doi.org/10.1016/j.ijprt.2017.05.001
dc.relation.references[68] Pyshyev, S.; Prysiazhnyi, Y.; Gunka, V.; Reutskyy, V.; Bannikov, L. Modification of Petroleum Bitumen by Resins Obtained from Liquid Products of Coal Coking: Composition, Properties, and Application. Notice 1: Research of Raw Material Composition and Resin Synthesis. Pet. Coal 2022, 64, 106–119.
dc.relation.references[69] Vargas, C.; El Hanandeh, A. Systematic Literature Review, Meta-Analysis and Artificial Neural Network Modelling of Plastic Waste Addition to Bitumen. J. Clean. Prod. 2021, 280, 124369. https://doi.org/10.1016/j.jclepro.2020.124369
dc.relation.references[70] Binti Joohari, I.; Giustozzi, F. Hybrid Polymerisation: An Exploratory Study of the Chemo-Mechanical and Rheological Properties of Hybrid-Modified Bitumen. Polymers 2020, 12, 945. https://doi.org/10.3390/polym12040945
dc.relation.references[71] Yan, K.; Chen, J.; You, L.; Tian, S. Characteristics of Compound Asphalt Modified by Waste Tire Rubber (WTR) and Ethylene Vinyl Acetate (EVA): Conventional, Rheological, and Microstructural Properties. J. Clean. Prod. 2020, 258, 120732. https://doi.org/10.1016/j.jclepro.2020.120732
dc.relation.references[72] Zhang, F., Hu, C. The Research for Crumb Rubber/Waste Plastic Compound Modified Asphalt. J. Therm. Anal. Calorim. 2016, 124, 729–741. https://doi.org/10.1007/s10973-015-5198-4
dc.relation.references[73] Brovelli, C.; Crispino, M.; Pais, J.; Pereira, P. Using Polymers to Improve the Rutting Resistance of Asphalt Concrete. Constr Build Mater. 2015, 77, 117–123. https://doi.org/10.1016/j.conbuildmat.2014.12.060
dc.relation.references[74] Formela, K.; Sulkowski, M.; Saeb, M. R.; Colom, X.; Haponiuk, J. T. Assessment of Microstructure, Physical and Thermal Properties of Bitumen Modified with LDPE/GTR/Elastomer Ternary Blends. Constr Build Mater. 2016, 106, 160–167. https://doi.org/10.1016/j.conbuildmat.2015.12.108
dc.relation.references[75] Nasr, D.; Pakshir, A. H. Rheology and Storage Stability of Modified Binders with Waste Polymers Composites. Road Mater. Pavement Des. 2019, 20, 773–792. https://doi.org/10.1080/14680629.2017.1417152
dc.relation.references[76] Al-Abdul Wahhab, H. I.; Dalhat, M. A.; Habib, M. A. Storage Stability and High-Temperature Performance of Asphalt Binder Modified with Recycled Plastic. Road Mater. Pavement Des. 2017, 18, 1117–1134. https://doi.org/10.1080/14680629.2016.1207554
dc.relation.references[77] Ansari, A. H.; Jakarni, F. M.; Muniandy, R.; Hassim, S.; Elahi, Z. Natural Rubber as a Renewable and Sustainable Bio-Modifier for Pavement Applications: A Review. J. Clean. Prod. 2021, 289, 125727. https://doi.org/10.1016/j.jclepro.2020.125727
dc.relation.references[78] Ibrahim, S.; Daik, R.; Abdullah, I. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber. Polymers 2014, 6, 2928–2941. https://doi.org/10.3390/polym6122928
dc.relation.references[79] Poovaneshvaran, S.; Hasan, M. R. M.; Jaya, R. P. Impacts of Recycled Crumb Rubber Powder and Natural Rubber Latex on the Modified Asphalt Rheological Behaviour, Bonding, and Resistance to Shear. Constr Build Mater. 2020, 234, 117357. https://doi.org/10.1016/j.conbuildmat.2019.117357
dc.relation.references[80] Saowapark, W.; Jubsilp, C.; Rimdusit, S. Natural Rubber Latex-Modified Asphalts for Pavement Application: Effects of Phosphoric Acid and Sulphur Addition. Road Mater. Pavement Des. 2019, 20, 211–224. https://doi.org/10.1080/14680629.2017.1378117
dc.relation.references[81] Al-Sabaeei, A. M.; Agus Mustofa, B.; Sutanto, M. H.; Sunarjono, S.; Bala, N. Aging and Rheological Properties of Latex and Crumb Rubber Modified Bitumen Using Dynamic Shear Rheometer. J. Eng. Technol. Sci. 2020, 52, 385–398. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.6
dc.relation.references[82] Azahar, N. M.; Hassan, N. A.; Jaya, R. P.; Hainin, M. R.; Yusoff, N. I. M.; Kamaruddin, N. H. M.; Yaacob, H. Properties of Cup Lump Rubber Modified Asphalt Binder. Road Mater. Pavement Des. 2021, 22, 1329–1349. https://doi.org/10.1080/14680629.2019.1687007
dc.relation.references[83] Shaffie, E.; Arshad, A. K.; Alisibramulisi, A.; Ahmad, J.; Hashim, W.; Abd Rahman, Z.; Jaya, R. P. Effect of Mixing Variables on Physical Properties of Modified Bitumen Using Natural Rubber Latex. Int. J. Civ. Eng. Technol. 2018, 9, 1812–1821.
dc.relation.references[84] Bindu, C. S.; Joseph, M. S.; Sibinesh, P. S.; George, S.; Sivan, S. Performance Evaluation of Warm Mix Asphalt Using Natural Rubber Modified Bitumen and Cashew Nut Shell Liquid. Int. J. Pavement Res. Technol. 2020, 13, 442–453.
dc.relation.references[85] Wen, Y., Wang, Y., Zhao, K., Sumalee, A. The Use of Natural Rubber Latex as a Renewable and Sustainable Modifier of Asphalt Binder. Int. J. Pavement Eng. 2017, 18, 547–559. https://doi.org/10.1080/10298436.2015.1095913
dc.relation.references[86] Shafii, M.; Ahmad, J.; Shaffie, E. Physical Properties of Asphalt Emulsion Modified with Natural Rubber Latex. World J. Eng. 2013, 10, 159–164. https://doi.org/10.1260/1708-5284.10.2.159
dc.relation.references[87] Yu, X.; Wang, Y.; Luo, Y. Impacts of Water Content on Rheological Properties and Performance-Related Behaviors of Foamed Warm-Mix Asphalt. Constr Build Mater. 2013, 48, 203–209. https://doi.org/10.1016/j.conbuildmat.2013.06.018
dc.relation.references[88] Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. https://doi.org/10.1016/j.cscm.2022.e01214
dc.relation.references[89] Kök, B. V.; Çolak, H. Laboratory Comparison of the Crumb-Rubber and SBS Modified Bitumen and Hot Mix Asphalt. Constr Build Mater. 2011, 25, 3204–3212. https://doi.org/10.1016/j.conbuildmat.2011.03.005
dc.relation.references[90] Presti, D. L. Recycled Tyre Rubber Modified Bitumens for Road Asphalt Mixtures: A Literature Review. Constr Build Mater. 2013, 49, 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
dc.relation.references[91] Carpani, C.; Bocci, E.; Prosperi, E.; Bocci, M. Evaluation of the Rheological and Performance Behaviour of Bitumen Modified with Compounds Including Crumb Rubber from Waste Tires. Constr Build Mater. 2022, 361, 129679. https://doi.org/10.1016/j.conbuildmat.2022.129679
dc.relation.references[92] Qian, C.; Fan, W. Evaluation and Characterization of Properties of Crumb Rubber/SBS Modified Asphalt. Mater. Chem. Phys. 2020, 253, 123319. https://doi.org/10.1016/j.matchemphys.2020.123319
dc.relation.references[93] Han, L.; Zheng, M.; Wang, C. Current Status and Development of Terminal Blend Tyre Rubber Modified Asphalt Constr Build Mater. 2016, 128, 399–409. https://doi.org/10.1016/j.conbuildmat.2016.10.080
dc.relation.references[94] Bressi, S.; Fiorentini, N.; Huang, J.; Losa, M. Crumb Rubber Modifier in Road Asphalt Pavements: State of the Art and Statistics. Coatings 2019, 9, 384. https://doi.org/10.3390/coatings9060384
dc.relation.references[95] Singh, S. K.; Pandey, A.; Ravindranath, S. S. Effect of Additives on the Thermal Stability of SBS Modified Binders during Storage at Elevated Temperatures. Constr Build Mater. 2022, 314, 125609. https://doi.org/10.1016/j.conbuildmat.2021.125609
dc.relation.references[96] Kok, B. V.; Yalcin, B. F.; Yilmaz, M.; Yalcin, E. Performance Evaluation of Bitumen Modified with Styrene–Isoprene-Styrene and Crumb Rubber Compound. Constr Build Mater. 2022, 344, 128304. https://doi.org/10.1016/j.conbuildmat.2022.128304
dc.relation.references[97] Masson, J. F.; Collins, P.; Robertson, G., Woods, J. R.; Margeson, J. Thermodynamics, Phase Diagrams, and Stability of Bitumen-Polymer Blends. Energy Fuels 2003, 17, 714–724. https://doi.org/10.1021/ef0202687
dc.relation.references[98] Chen, M.; Geng, J.; Xia, C.; He, L.; Liu, Z. A Review of Phase Structure of SBS Modified Asphalt: Affecting Factors, Analytical Methods, Phase Models and Improvements. Constr Build Mater. 2021, 294, 123610. https://doi.org/10.1016/j.conbuildmat.2021.123610
dc.relation.references[99] Erkuş, Y.; Kök, B. V. Comparison of Physical and Rheological Properties of Calcium Carbonate-Polypropylene Composite and SBS Modified Bitumen. Constr Build Mater. 2023, 366, 130196. https://doi.org/10.1016/j.conbuildmat.2022.130196
dc.relation.references[100] De Carcer, Í. A.; Masegosa, R. M.; Viñas, M. T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M. G.; Páez, A. Storage Stability of SBS/Sulfur Modified Bitumens at High Temperature: Influence of Bitumen Composition and Structure. Constr Build Mater. 2014, 52, 245–252. https://doi.org/10.1016/j.conbuildmat.2013.10.069
dc.relation.references[101] Lu, X.; Isacsson, U. Compatibility and Storage Stability of Styrene-Butadiene-Styrene Copolymer Modified Bitumens. Mater Struct. 1997, 30, 618–626. https://doi.org/10.1007/BF02486904
dc.relation.referencesen[1] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274–283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesen[2] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443–449. https://doi.org/10.23939/chcht15.03.443
dc.relation.referencesen[3] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
dc.relation.referencesen[4] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
dc.relation.referencesen[5] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295–302. https://doi.org/10.23939/chcht16.02.295
dc.relation.referencesen[6] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475–483. https://doi.org/10.23939/chcht16.03.475
dc.relation.referencesen[7] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
dc.relation.referencesen[8] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
dc.relation.referencesen[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–622. https://doi.org/10.23939/chcht17.04.916
dc.relation.referencesen[10] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
dc.relation.referencesen[11] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
dc.relation.referencesen[12] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
dc.relation.referencesen[13] Asphalt Institute; European Bitumen Association. The bitumen industry – a global perspective: production, chemistry, use, specification, and occupational exposure. Third edition; Asphalt Institute; Eurobitume: Lexigton, KY, Brussels, Belgium, 2015.
dc.relation.referencesen[14] Revuelta, M. B. Construction Materials: Geology, Production and Applications; Springer Nature: Switzerland, 2021. https://doi.org/10.1007/978-3-030-65207-4
dc.relation.referencesen[15] Nivitha, M. R.; Roy, N.; Murali Krishnan, J. Influence of Refinery Processing Methods on Ageing of Bitumen. Sādhanā 2019, 44, 128. https://doi.org/10.1007/s12046-019-1107-z
dc.relation.referencesen[16] Park, J. H.; Son, S. H. Extraction of Bitumen with Sub- and Supercritical Water. Korean J Chem Eng. 2011, 28, 455–460. https://doi.org/10.1007/s11814-010-0358-5
dc.relation.referencesen[17] Zachariah, A.; de Klerk, A. Partial Upgrading of Bitumen: Impact of Solvent Deasphalting and Visbreaking Sequence. Energy Fuels 2017, 31, 9374–9380. https://doi.org/10.1021/acs.energyfuels.7b02004
dc.relation.referencesen[18] Błażejowski, K.; Wójcik-Wiśniewska, M. Bitumen Handbook; ORLEN Asfalt: Plock, Poland, 2017.
dc.relation.referencesen[19] Eurobitume. Physical differentiation between air-rectified and oxidised bitumens. 2011. http://www.materialedge.co.uk/docs/Differentiating-air-rectified-and-oxidised-bitumens_0[1].pdf
dc.relation.referencesen[20] Mousavi, M.; Pahlavan, F.; Oldham, D.; Hosseinnezhad, S.; Fini, E. H. Multiscale Investigation of Oxidative Aging in Biomodified Asphalt Binder. J. Phys. Chem. P. 2016, 120, 17224–17233. https://doi.org/10.1021/acs.jpcc.6b05004
dc.relation.referencesen[21] Oldham, D.; Qu, X.; Wang, H.; Fini, E. H. Investigating Change of Polydispersity and Rheology of Crude Oil and Bitumen Due to Asphaltene Oxidation. Energy Fuels 2020, 34, 10299–10305. https://doi.org/10.1021/acs.energyfuels.0c01344
dc.relation.referencesen[22] Biturox. https://www.biturox.com
dc.relation.referencesen[23] Nivitha, M. R.; Devika, R.; Murali Krishnan, J.; Roy, N. Influence of Bitumen Type and Polymer Dosage on the Relaxation Spectrum of Styrene-Butadiene-Styrene (SBS)/Styrene-Butadiene (SB) Modified Bitumen. Mech Time Depend Mater 2023, 27, 27–98. https://doi.org/10.1007/s11043-021-09531-y
dc.relation.referencesen[24] Adiko, S. B.; Gureev, A. A.; Khasanova, N. M.; Sakharov, B. V. Processing of High-Paraffinic vacuum residues by thermocatalytic methods to obtain bitumen. Constr Build Mater. 2021, 285, 122880. https://doi.org/10.1016/j.conbuildmat.2021.122880
dc.relation.referencesen[25] Kamelia, L.; Rietjens, I. M.; Boogaard, P. J. Developmental Toxicity Testing of the Fume Condensate Extracts of Bitumen and Oxidized Asphalt in a Series of in vitro Alternative Assays. Toxicol in Vitro 2021, 75, 105195. https://doi.org/10.1016/j.tiv.2021.105195
dc.relation.referencesen[26] Zhang, Z.; Fang, Y.; Yang, J.; Li, X. A Comprehensive Review of Bio-Oil, Bio-Binder and Bio-Asphalt Materials: Their Source, Composition, Preparation and Performance. J. Traffic Transp. Eng. 2022. 9, 151–166. https://doi.org/10.1016/j.jtte.2022.01.003
dc.relation.referencesen[27] Zhang, Y.; Liu, X.; Apostolidis, P.; Gard, W.; van de Ven, M.; Erkens, S.; Jing, R. Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen. Materials 2018, 12, 4176. https://doi.org/10.3390/ma12244176
dc.relation.referencesen[28] Al-Otoom, A.; Al-Harahsheh, M.; Allawzi, M.; Kingman, S.; Robinson, J.; Al-Harahsheh, A.; Saeid, A. Physical and Thermal Properties of Jordanian Tar Sand. Fuel Process. Technol. 2013, 106, 174–180. https://doi.org/10.1016/j.fuproc.2012.07.021
dc.relation.referencesen[29] Anupam, K.; Akinmade, D.; Kasbergen, C.; Erkens, S.; Adebiyi, F. A state-of-the-Art Review of Natural Bitumen in Pavement: Underlining Challenges and the Way Forward. J. Clean. Prod. 2022, 382, 134957. https://doi.org/10.1016/j.jclepro.2022.134957
dc.relation.referencesen[30] Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
dc.relation.referencesen[31] Pyshyev, S., Gunka, V., Grytsenko, Y., Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631–636. https://doi.org/10.23939/chcht10.04si.631
dc.relation.referencesen[32] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111–118. https://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.referencesen[33] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.referencesen[34] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
dc.relation.referencesen[35] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199–1206.
dc.relation.referencesen[36] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.referencesen[37] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.referencesen[38] Donchenko, M.; Grynyshyn, O.; Demchuk, Yu.; Topilnytskyy, P.; Turba, Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681
dc.relation.referencesen[39] Gunka, V., Hidei, V., Sidun, I., Demchuk, Y., Stadnik, V., Shapoval, P., Sobol, Kh.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
dc.relation.referencesen[40] Leal Filho, W.; Saari, U.; Fedoruk, M.; Iital, A.; Moora, H.; Klöga, M.; Voronova, V. An Overview of the Problems Posed by Plastic Products and the Role of Extended Producer Responsibility in Europe. J. Clean. Prod. 2019, 214, 550–558. https://doi.org/10.1016/j.jclepro.2018.12.256
dc.relation.referencesen[41] Wu, S.; Montalvo, L. Repurposing Waste Plastics into Cleaner Asphalt Pavement Materials: A Critical Literature Review. J. Clean. Prod. 2021, 280, 124355. https://doi.org/10.1016/j.jclepro.2020.124355
dc.relation.referencesen[42] He, P.; Chen, L.; Shao, L.; Zhang, H.; Lü, F. Municipal Solid Waste (MSW) Landfill: A Source of Microplastics?-Evidence of Microplastics in Landfill Leachate. Water Res. 2019, 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060
dc.relation.referencesen[43] Ge, D.; Yan, K.; You, Z.; Xu, H. Modification Mechanism of Asphalt Binder with Waste Tire Rubber and Recycled Polyethylene. Constr Build Mater. 2016, 126, 66–76. https://doi.org/10.1016/j.conbuildmat.2016.09.014
dc.relation.referencesen[44] Joohari, I. B.; Maniam, S.; Giustozzi, F. Influence of Compatibilizers on the Storage Stability of Hybrid Polymer-Modified Bitumen with Recycled Polyethylene. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F.; Nizamuddin, S., Eds.; Woodhead Publishing, 2022; pp 215–232. https://doi.org/10.1016/B978-0-323-85789-5.00011-3
dc.relation.referencesen[45] Kishchynskyi, S.; Nagaychuk, V.; Bezuglyi, A. Improving Quality and Durability of Bitumen and Asphalt Concrete by Modification Using Recycled Polyethylene Based Polymer Composition. Procedia engineering 2016, 143, 119–127. https://doi.org/10.1016/j.proeng.2016.06.016
dc.relation.referencesen[46] Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled Plastic as Bitumen Modifier: The Role of Recycled Linear Low-Density Polyethylene in the Modification of Physical, Chemical and Rheological Properties of Bitumen. J. Clean. Prod. 2020, 266, 121988. https://doi.org/10.1016/j.jclepro.2020.121988
dc.relation.referencesen[47] Xu, F.; Zhao, Y.; Li, K. Using Waste Plastics as Asphalt Modifier: A Review. Materials 2022, 15, 110. https://doi.org/10.3390/ma15010110
dc.relation.referencesen[48] Appiah, J. K.; Berko-Boateng, V. N.; Tagbor, T. A. Use of Waste Plastic Materials for Road Construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. https://doi.org/10.1016/j.cscm.2016.11.001
dc.relation.referencesen[49] Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M. D. C. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 2019, 11, 646. https://doi.org/10.3390/su11030646
dc.relation.referencesen[50] Hariadi, D.; Saleh, S. M.; Yamin, R. A.; Aprilia, S. Utilization of LDPE Plastic Waste on the Quality of Pyrolysis Oil as an Asphalt Solvent Alternative. Therm. Sci. Eng. Prog. 2021, 23, 100872. https://doi.org/10.1016/j.tsep.2021.100872
dc.relation.referencesen[51] Ahmedzade, P.; Demirelli, K.; Günay, T.; Biryan, F.; Alqudah, O. Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder. Procedia Manuf. 2015, 2, 165–170. https://doi.org/10.1016/j.promfg.2015.07.029
dc.relation.referencesen[52] Razali, M. N.; Aziz, M. A. A.; Jamin, N. F. M.; Salehan, N. A. M. Modification of Bitumen Using Polyacrylic Wig Waste. AIP Conf. Proc. 2018, 1930, 020051. https://doi.org/10.1063/1.5022945
dc.relation.referencesen[53] Behl, A.; Sharma, G.; Kumar, G. A Sustainable Approach: Utilization of Waste PVC in Asphalting of Roads. Constr Build Mater. 2014, 54, 113–117. https://doi.org/10.1016/j.conbuildmat.2013.12.050
dc.relation.referencesen[54] Lugeiyamu, L.; Kunlin, M.; Mensahn, E. S.; Faraz, A. Utilization of Waste Polyethylene Terephthalate (PET) as Partial Replacement of Bitumen in Stone Mastic Asphalt. Constr Build Mater. 2021, 309, 125176. https://doi.org/10.1016/j.conbuildmat.2021.125176
dc.relation.referencesen[55] Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M. Á.; Indacoechea-Vega, I. Analysis of the Influence of Using Recycled Polystyrene as a Substitute for Bitumen in the Behaviour of Asphalt Concrete Mixtures. J. Clean. Prod. 2018, 170, 1279–1287. https://doi.org/10.1016/j.jclepro.2017.09.232
dc.relation.referencesen[56] Costa, L. M.; Silva, H. M.; Peralta, J.; Oliveira, J. R. Using Waste Polymers as a Reliable Alternative for Asphalt Binder Modification – Performance and Morphological Assessment. Constr Build Mater. 2019, 198, 237–244. https://doi.org/10.1016/j.conbuildmat.2018.11.279
dc.relation.referencesen[57] Shahane, H. A.; Bhosale, S. S. E-Waste Plastic Powder Modified Bitumen: Rheological Properties and Performance Study of Bituminous Concrete. Road Mater. Pavement Des. 2021, 22, 682-702. https://doi.org/10.1080/14680629.2019.1642944
dc.relation.referencesen[58] Bazmara, B.; Tahersima, M.; Behravan, A. Influence of Thermoplastic Polyurethane and Synthesized Polyurethane Additive in Performance of Asphalt Pavements. Constr Build Mater. 2018, 166, 1–11. https://doi.org/10.1016/j.conbuildmat.2018.01.093
dc.relation.referencesen[59] Roman, C.; Cuadri, A. A.; Liashenko, I.; García-Morales, M.; Partal, P. Linear and Non-Linear Viscoelastic Behavior of SBS and LDPE Modified Bituminous Mastics. Constr Build Mater. 2016, 123, 464–472. https://doi.org/10.1016/j.conbuildmat.2016.07.027
dc.relation.referencesen[60] Li, M.; Zhang, M.; Rong, H.; Zhang, X.; He, L.; Han, P.; Tong, M. Transport and Deposition of Plastic Particles in Porous Media during Seawater Intrusion and Groundwater-Seawater Displacement Processes. Sci. Total Environ. 2021, 781, 146752. https://doi.org/10.1016/j.scitotenv.2021.146752
dc.relation.referencesen[61] Movilla-Quesada, D.; Raposeiras, A. C.; Silva-Klein, L. T.; Lastra-González, P.; Castro-Fresno, D. Use of Plastic Scrap in Asphalt Mixtures Added by Dry Method as a Partial Substitute for Bitumen. Waste Manage. 2019, 87, 751–760. https://doi.org/10.1016/j.wasman.2019.03.018
dc.relation.referencesen[62] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
dc.relation.referencesen[63] Mashaan, N. S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the Engineering Properties of Asphalt Binder Modified with Waste Plastic Polymer. Ain Shams Eng. J. 2021, 12, 1569–1574. https://doi.org/10.1016/j.asej.2020.08.035
dc.relation.referencesen[64] Costa, L. M.; Silva, H. M. R. D.; Oliveira, J. R.; Fernandes, S. R. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. Int. J. Pavement Res. Technol. 2013, 6, 457–464. https://doi.org/10.6135/ijprt.org.tw/2013.6(4).457
dc.relation.referencesen[65] Grynyshyn, O.; Astakhova, O.; Chervinskyy, T. Production of Bitumen Modified by Petroleum Resins on the Basis of Tars of Ukrainian Oils. Chem. Chem. Technol. 2010, 4, 241–246. https://doi.org/10.23939/chcht04.03.241
dc.relation.referencesen[66] Grynyshyn, O.; Bratychak, M.; Krynytskiy, V.; Donchak, V. Petroleum Resins for Bitumens Modification. Chem. Chem. Technol. 2008, 2, 47–53. https://doi.org/10.23939/chcht02.01.047
dc.relation.referencesen[67] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Shved, M.; Kochubei, V. Oil and Gas Processing Products to Obtain Polymers Modified Bitumen. Int. J. Pavement Res. Technol. 2017, 10, 289–296. https://doi.org/10.1016/j.ijprt.2017.05.001
dc.relation.referencesen[68] Pyshyev, S.; Prysiazhnyi, Y.; Gunka, V.; Reutskyy, V.; Bannikov, L. Modification of Petroleum Bitumen by Resins Obtained from Liquid Products of Coal Coking: Composition, Properties, and Application. Notice 1: Research of Raw Material Composition and Resin Synthesis. Pet. Coal 2022, 64, 106–119.
dc.relation.referencesen[69] Vargas, C.; El Hanandeh, A. Systematic Literature Review, Meta-Analysis and Artificial Neural Network Modelling of Plastic Waste Addition to Bitumen. J. Clean. Prod. 2021, 280, 124369. https://doi.org/10.1016/j.jclepro.2020.124369
dc.relation.referencesen[70] Binti Joohari, I.; Giustozzi, F. Hybrid Polymerisation: An Exploratory Study of the Chemo-Mechanical and Rheological Properties of Hybrid-Modified Bitumen. Polymers 2020, 12, 945. https://doi.org/10.3390/polym12040945
dc.relation.referencesen[71] Yan, K.; Chen, J.; You, L.; Tian, S. Characteristics of Compound Asphalt Modified by Waste Tire Rubber (WTR) and Ethylene Vinyl Acetate (EVA): Conventional, Rheological, and Microstructural Properties. J. Clean. Prod. 2020, 258, 120732. https://doi.org/10.1016/j.jclepro.2020.120732
dc.relation.referencesen[72] Zhang, F., Hu, C. The Research for Crumb Rubber/Waste Plastic Compound Modified Asphalt. J. Therm. Anal. Calorim. 2016, 124, 729–741. https://doi.org/10.1007/s10973-015-5198-4
dc.relation.referencesen[73] Brovelli, C.; Crispino, M.; Pais, J.; Pereira, P. Using Polymers to Improve the Rutting Resistance of Asphalt Concrete. Constr Build Mater. 2015, 77, 117–123. https://doi.org/10.1016/j.conbuildmat.2014.12.060
dc.relation.referencesen[74] Formela, K.; Sulkowski, M.; Saeb, M. R.; Colom, X.; Haponiuk, J. T. Assessment of Microstructure, Physical and Thermal Properties of Bitumen Modified with LDPE/GTR/Elastomer Ternary Blends. Constr Build Mater. 2016, 106, 160–167. https://doi.org/10.1016/j.conbuildmat.2015.12.108
dc.relation.referencesen[75] Nasr, D.; Pakshir, A. H. Rheology and Storage Stability of Modified Binders with Waste Polymers Composites. Road Mater. Pavement Des. 2019, 20, 773–792. https://doi.org/10.1080/14680629.2017.1417152
dc.relation.referencesen[76] Al-Abdul Wahhab, H. I.; Dalhat, M. A.; Habib, M. A. Storage Stability and High-Temperature Performance of Asphalt Binder Modified with Recycled Plastic. Road Mater. Pavement Des. 2017, 18, 1117–1134. https://doi.org/10.1080/14680629.2016.1207554
dc.relation.referencesen[77] Ansari, A. H.; Jakarni, F. M.; Muniandy, R.; Hassim, S.; Elahi, Z. Natural Rubber as a Renewable and Sustainable Bio-Modifier for Pavement Applications: A Review. J. Clean. Prod. 2021, 289, 125727. https://doi.org/10.1016/j.jclepro.2020.125727
dc.relation.referencesen[78] Ibrahim, S.; Daik, R.; Abdullah, I. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber. Polymers 2014, 6, 2928–2941. https://doi.org/10.3390/polym6122928
dc.relation.referencesen[79] Poovaneshvaran, S.; Hasan, M. R. M.; Jaya, R. P. Impacts of Recycled Crumb Rubber Powder and Natural Rubber Latex on the Modified Asphalt Rheological Behaviour, Bonding, and Resistance to Shear. Constr Build Mater. 2020, 234, 117357. https://doi.org/10.1016/j.conbuildmat.2019.117357
dc.relation.referencesen[80] Saowapark, W.; Jubsilp, C.; Rimdusit, S. Natural Rubber Latex-Modified Asphalts for Pavement Application: Effects of Phosphoric Acid and Sulphur Addition. Road Mater. Pavement Des. 2019, 20, 211–224. https://doi.org/10.1080/14680629.2017.1378117
dc.relation.referencesen[81] Al-Sabaeei, A. M.; Agus Mustofa, B.; Sutanto, M. H.; Sunarjono, S.; Bala, N. Aging and Rheological Properties of Latex and Crumb Rubber Modified Bitumen Using Dynamic Shear Rheometer. J. Eng. Technol. Sci. 2020, 52, 385–398. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.6
dc.relation.referencesen[82] Azahar, N. M.; Hassan, N. A.; Jaya, R. P.; Hainin, M. R.; Yusoff, N. I. M.; Kamaruddin, N. H. M.; Yaacob, H. Properties of Cup Lump Rubber Modified Asphalt Binder. Road Mater. Pavement Des. 2021, 22, 1329–1349. https://doi.org/10.1080/14680629.2019.1687007
dc.relation.referencesen[83] Shaffie, E.; Arshad, A. K.; Alisibramulisi, A.; Ahmad, J.; Hashim, W.; Abd Rahman, Z.; Jaya, R. P. Effect of Mixing Variables on Physical Properties of Modified Bitumen Using Natural Rubber Latex. Int. J. Civ. Eng. Technol. 2018, 9, 1812–1821.
dc.relation.referencesen[84] Bindu, C. S.; Joseph, M. S.; Sibinesh, P. S.; George, S.; Sivan, S. Performance Evaluation of Warm Mix Asphalt Using Natural Rubber Modified Bitumen and Cashew Nut Shell Liquid. Int. J. Pavement Res. Technol. 2020, 13, 442–453.
dc.relation.referencesen[85] Wen, Y., Wang, Y., Zhao, K., Sumalee, A. The Use of Natural Rubber Latex as a Renewable and Sustainable Modifier of Asphalt Binder. Int. J. Pavement Eng. 2017, 18, 547–559. https://doi.org/10.1080/10298436.2015.1095913
dc.relation.referencesen[86] Shafii, M.; Ahmad, J.; Shaffie, E. Physical Properties of Asphalt Emulsion Modified with Natural Rubber Latex. World J. Eng. 2013, 10, 159–164. https://doi.org/10.1260/1708-5284.10.2.159
dc.relation.referencesen[87] Yu, X.; Wang, Y.; Luo, Y. Impacts of Water Content on Rheological Properties and Performance-Related Behaviors of Foamed Warm-Mix Asphalt. Constr Build Mater. 2013, 48, 203–209. https://doi.org/10.1016/j.conbuildmat.2013.06.018
dc.relation.referencesen[88] Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. https://doi.org/10.1016/j.cscm.2022.e01214
dc.relation.referencesen[89] Kök, B. V.; Çolak, H. Laboratory Comparison of the Crumb-Rubber and SBS Modified Bitumen and Hot Mix Asphalt. Constr Build Mater. 2011, 25, 3204–3212. https://doi.org/10.1016/j.conbuildmat.2011.03.005
dc.relation.referencesen[90] Presti, D. L. Recycled Tyre Rubber Modified Bitumens for Road Asphalt Mixtures: A Literature Review. Constr Build Mater. 2013, 49, 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
dc.relation.referencesen[91] Carpani, C.; Bocci, E.; Prosperi, E.; Bocci, M. Evaluation of the Rheological and Performance Behaviour of Bitumen Modified with Compounds Including Crumb Rubber from Waste Tires. Constr Build Mater. 2022, 361, 129679. https://doi.org/10.1016/j.conbuildmat.2022.129679
dc.relation.referencesen[92] Qian, C.; Fan, W. Evaluation and Characterization of Properties of Crumb Rubber/SBS Modified Asphalt. Mater. Chem. Phys. 2020, 253, 123319. https://doi.org/10.1016/j.matchemphys.2020.123319
dc.relation.referencesen[93] Han, L.; Zheng, M.; Wang, C. Current Status and Development of Terminal Blend Tyre Rubber Modified Asphalt Constr Build Mater. 2016, 128, 399–409. https://doi.org/10.1016/j.conbuildmat.2016.10.080
dc.relation.referencesen[94] Bressi, S.; Fiorentini, N.; Huang, J.; Losa, M. Crumb Rubber Modifier in Road Asphalt Pavements: State of the Art and Statistics. Coatings 2019, 9, 384. https://doi.org/10.3390/coatings9060384
dc.relation.referencesen[95] Singh, S. K.; Pandey, A.; Ravindranath, S. S. Effect of Additives on the Thermal Stability of SBS Modified Binders during Storage at Elevated Temperatures. Constr Build Mater. 2022, 314, 125609. https://doi.org/10.1016/j.conbuildmat.2021.125609
dc.relation.referencesen[96] Kok, B. V.; Yalcin, B. F.; Yilmaz, M.; Yalcin, E. Performance Evaluation of Bitumen Modified with Styrene–Isoprene-Styrene and Crumb Rubber Compound. Constr Build Mater. 2022, 344, 128304. https://doi.org/10.1016/j.conbuildmat.2022.128304
dc.relation.referencesen[97] Masson, J. F.; Collins, P.; Robertson, G., Woods, J. R.; Margeson, J. Thermodynamics, Phase Diagrams, and Stability of Bitumen-Polymer Blends. Energy Fuels 2003, 17, 714–724. https://doi.org/10.1021/ef0202687
dc.relation.referencesen[98] Chen, M.; Geng, J.; Xia, C.; He, L.; Liu, Z. A Review of Phase Structure of SBS Modified Asphalt: Affecting Factors, Analytical Methods, Phase Models and Improvements. Constr Build Mater. 2021, 294, 123610. https://doi.org/10.1016/j.conbuildmat.2021.123610
dc.relation.referencesen[99] Erkuş, Y.; Kök, B. V. Comparison of Physical and Rheological Properties of Calcium Carbonate-Polypropylene Composite and SBS Modified Bitumen. Constr Build Mater. 2023, 366, 130196. https://doi.org/10.1016/j.conbuildmat.2022.130196
dc.relation.referencesen[100] De Carcer, Í. A.; Masegosa, R. M.; Viñas, M. T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M. G.; Páez, A. Storage Stability of SBS/Sulfur Modified Bitumens at High Temperature: Influence of Bitumen Composition and Structure. Constr Build Mater. 2014, 52, 245–252. https://doi.org/10.1016/j.conbuildmat.2013.10.069
dc.relation.referencesen[101] Lu, X.; Isacsson, U. Compatibility and Storage Stability of Styrene-Butadiene-Styrene Copolymer Modified Bitumens. Mater Struct. 1997, 30, 618–626. https://doi.org/10.1007/BF02486904
dc.relation.urihttps://doi.org/10.23939/chcht15.02.274
dc.relation.urihttps://doi.org/10.23939/chcht15.03.443
dc.relation.urihttps://doi.org/10.23939/chcht15.04.608
dc.relation.urihttps://doi.org/10.23939/chcht16.01.142
dc.relation.urihttps://doi.org/10.23939/chcht16.02.295
dc.relation.urihttps://doi.org/10.23939/chcht16.03.475
dc.relation.urihttps://doi.org/10.23939/chcht17.01.211
dc.relation.urihttps://doi.org/10.23939/chcht17.03.701
dc.relation.urihttps://doi.org/10.23939/chcht17.04.916
dc.relation.urihttps://doi.org/10.23939/chcht17.03.688
dc.relation.urihttps://doi.org/10.23939/chcht15.03.438
dc.relation.urihttps://doi.org/10.32434/0321-4095-2023-148-3-54-62
dc.relation.urihttps://doi.org/10.1007/978-3-030-65207-4
dc.relation.urihttps://doi.org/10.1007/s12046-019-1107-z
dc.relation.urihttps://doi.org/10.1007/s11814-010-0358-5
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.7b02004
dc.relation.urihttp://www.materialedge.co.uk/docs/Differentiating-air-rectified-and-oxidised-bitumens_0
dc.relation.urihttps://doi.org/10.1021/acs.jpcc.6b05004
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.0c01344
dc.relation.urihttps://www.biturox.com
dc.relation.urihttps://doi.org/10.1007/s11043-021-09531-y
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.122880
dc.relation.urihttps://doi.org/10.1016/j.tiv.2021.105195
dc.relation.urihttps://doi.org/10.1016/j.jtte.2022.01.003
dc.relation.urihttps://doi.org/10.3390/ma12244176
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2012.07.021
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2022.134957
dc.relation.urihttps://doi.org/10.3390/app9040742
dc.relation.urihttps://doi.org/10.23939/chcht10.04si.631
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.urihttps://doi.org/10.3390/ma15165693
dc.relation.urihttps://doi.org/10.3390/coatings12121934
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.urihttps://doi.org/10.3390/ma15051774
dc.relation.urihttps://doi.org/10.23939/chcht17.03.681
dc.relation.urihttps://doi.org/10.3390/coatings13071183
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2018.12.256
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.124355
dc.relation.urihttps://doi.org/10.1016/j.watres.2019.04.060
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.09.014
dc.relation.urihttps://doi.org/10.1016/B978-0-323-85789-5.00011-3
dc.relation.urihttps://doi.org/10.1016/j.proeng.2016.06.016
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.121988
dc.relation.urihttps://doi.org/10.3390/ma15010110
dc.relation.urihttps://doi.org/10.1016/j.cscm.2016.11.001
dc.relation.urihttps://doi.org/10.3390/su11030646
dc.relation.urihttps://doi.org/10.1016/j.tsep.2021.100872
dc.relation.urihttps://doi.org/10.1016/j.promfg.2015.07.029
dc.relation.urihttps://doi.org/10.1063/1.5022945
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2013.12.050
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.125176
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2017.09.232
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.11.279
dc.relation.urihttps://doi.org/10.1080/14680629.2019.1642944
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.01.093
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.07.027
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2021.146752
dc.relation.urihttps://doi.org/10.1016/j.wasman.2019.03.018
dc.relation.urihttps://doi.org/10.3390/polym13193242
dc.relation.urihttps://doi.org/10.1016/j.asej.2020.08.035
dc.relation.urihttps://doi.org/10.6135/ijprt.org.tw/2013.6(4).457
dc.relation.urihttps://doi.org/10.23939/chcht04.03.241
dc.relation.urihttps://doi.org/10.23939/chcht02.01.047
dc.relation.urihttps://doi.org/10.1016/j.ijprt.2017.05.001
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.124369
dc.relation.urihttps://doi.org/10.3390/polym12040945
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.120732
dc.relation.urihttps://doi.org/10.1007/s10973-015-5198-4
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2014.12.060
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2015.12.108
dc.relation.urihttps://doi.org/10.1080/14680629.2017.1417152
dc.relation.urihttps://doi.org/10.1080/14680629.2016.1207554
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.125727
dc.relation.urihttps://doi.org/10.3390/polym6122928
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.117357
dc.relation.urihttps://doi.org/10.1080/14680629.2017.1378117
dc.relation.urihttps://doi.org/10.5614/j.eng.technol.sci.2020.52.3.6
dc.relation.urihttps://doi.org/10.1080/14680629.2019.1687007
dc.relation.urihttps://doi.org/10.1080/10298436.2015.1095913
dc.relation.urihttps://doi.org/10.1260/1708-5284.10.2.159
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2013.06.018
dc.relation.urihttps://doi.org/10.1016/j.cscm.2022.e01214
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2011.03.005
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2013.09.007
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.129679
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2020.123319
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.10.080
dc.relation.urihttps://doi.org/10.3390/coatings9060384
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.125609
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.128304
dc.relation.urihttps://doi.org/10.1021/ef0202687
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.123610
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.130196
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2013.10.069
dc.relation.urihttps://doi.org/10.1007/BF02486904
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Gunka V., Astakhova O., Hrynchuk Y., Sidun I., Reutskyy V., Mirchuk I., Poliak O., 2024
dc.subjectбітум
dc.subjectфізичне модифікування
dc.subjectтермопласти
dc.subjectеластопласти
dc.subjectтермоеластопласти
dc.subjectbitumen
dc.subjectphysical modification
dc.subjectthermoplastics
dc.subjectelastomers
dc.subjectthermoplastic elastomers
dc.titleA Review of Road Bitumen Modification Methods. Part 1 – Physical Modification
dc.title.alternativeОгляд методів модифікування дорожніх бітумів. Частина 1 – фізичне модифікування
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Gunka_V-A_Review_of_Road_Bitumen_295-304.pdf
Size:
584.31 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Gunka_V-A_Review_of_Road_Bitumen_295-304__COVER.png
Size:
546.86 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: