Prediction of the occurrence of stroke based on machine learning models
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Lviv Politechnic Publishing House
Abstract
Дослідження, проведені в галузі медицини, стосуються важливої теми, інтерес до якої з кожним роком зростає. Дослідження було зосереджено на прогнозуванні початку інсульту, стану, що становить серйозний ризик для здоров'я та життя людей. Використання надзвичайно незбалансованого набору даних стало проблемою для розробки моделей машинного навчання, здатних ефективно передбачати випадки інсульту. Серед розглянутих моделей модель Random Forest продемонструвала найбільш багатообіцяючу продуктивність, досягнувши 90% показників точності, запам’ятовування та оцінки F1. Ці висновки можуть бути корисними для медичних працівників, які займаються діагностикою та лікуванням інсульту.
The research conducted in the medical domain addressed a topic of significant importance, steadily growing in relevance each year. The study focused on predicting the onset of strokes, a condition posing a grave risk to individuals' health and lives. Utilizing a highly imbalanced dataset posed a challenge in developing machine learning models capable of effectively predicting stroke occurrences. Among the models examined, the Random Forest model demonstrated the most promising performance, achieving precision, recall, and F1-score metrics of 90%. These findings hold potential utility for healthcare professionals involved in stroke diagnosis and treatment.
The research conducted in the medical domain addressed a topic of significant importance, steadily growing in relevance each year. The study focused on predicting the onset of strokes, a condition posing a grave risk to individuals' health and lives. Utilizing a highly imbalanced dataset posed a challenge in developing machine learning models capable of effectively predicting stroke occurrences. Among the models examined, the Random Forest model demonstrated the most promising performance, achieving precision, recall, and F1-score metrics of 90%. These findings hold potential utility for healthcare professionals involved in stroke diagnosis and treatment.
Description
Keywords
порушення мозкового кровообігу, дерево рішень, рандомізований ліс, накопичення, техніка надмірної вибірки синтетичних меншин, пошук у сітці, машинне навчання, cerebrovascular accident, decision tree, randomized forest, stacking, synthetic Minority Over-sampling Technique, Grid Search, machine-learning
Citation
Patereha Y. Prediction of the occurrence of stroke based on machine learning models / Yurii Patereha, Mykhaylo Melnyk // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 17–27.