Prediction of the occurrence of stroke based on machine learning models
dc.citation.epage | 27 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 17 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Патерега, Юрій | |
dc.contributor.author | Мельник, Михайло | |
dc.contributor.author | Patereha, Yurii | |
dc.contributor.author | Melnyk, Mykhaylo | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-11T09:52:35Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | Дослідження, проведені в галузі медицини, стосуються важливої теми, інтерес до якої з кожним роком зростає. Дослідження було зосереджено на прогнозуванні початку інсульту, стану, що становить серйозний ризик для здоров'я та життя людей. Використання надзвичайно незбалансованого набору даних стало проблемою для розробки моделей машинного навчання, здатних ефективно передбачати випадки інсульту. Серед розглянутих моделей модель Random Forest продемонструвала найбільш багатообіцяючу продуктивність, досягнувши 90% показників точності, запам’ятовування та оцінки F1. Ці висновки можуть бути корисними для медичних працівників, які займаються діагностикою та лікуванням інсульту. | |
dc.description.abstract | The research conducted in the medical domain addressed a topic of significant importance, steadily growing in relevance each year. The study focused on predicting the onset of strokes, a condition posing a grave risk to individuals' health and lives. Utilizing a highly imbalanced dataset posed a challenge in developing machine learning models capable of effectively predicting stroke occurrences. Among the models examined, the Random Forest model demonstrated the most promising performance, achieving precision, recall, and F1-score metrics of 90%. These findings hold potential utility for healthcare professionals involved in stroke diagnosis and treatment. | |
dc.format.extent | 17-27 | |
dc.format.pages | 11 | |
dc.identifier.citation | Patereha Y. Prediction of the occurrence of stroke based on machine learning models / Yurii Patereha, Mykhaylo Melnyk // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 17–27. | |
dc.identifier.citationen | Patereha Y. Prediction of the occurrence of stroke based on machine learning models / Yurii Patereha, Mykhaylo Melnyk // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 17–27. | |
dc.identifier.doi | doi.org/10.23939/cds2024.01.017 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64112 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 1 (6), 2024 | |
dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 1 (6), 2024 | |
dc.relation.references | [1] Abedi V., Avula V., Chaudhary D., Shahjouei S., Khan A., Griessenauer C. J., Li J., Zand R. Prediction of Long-Term Stroke Recurrence Using Machine Learning Models. Journal of Clinical Medicine. 2021. Vol. 10, № 6. С. 1286. https://doi.org/10.3390/jcm10061286 | |
dc.relation.references | [2] Melnykova N., Chereshchuk L. Application of machine learning methods for predicting the risk of stroke occurrence. Proceedings of the VI International Scientific and Practical Conference. Sofia, Bulgaria. 2023. pp. 210-216. International Science Group, 2023. ISBN 9798891451926. | |
dc.relation.references | [3] Ashrafuzzaman Md., Saha S., Nur K. Prediction of Stroke Disease Using Deep CNN Based Approach. Journal of Advances in Information Technology. 2022. Vol. 13, № 6. https://doi.org/10.12720/jait.13.6.604-613 | |
dc.relation.references | [4] Sun X. Predictive model analysis of stroke disease based on machine learning. SPIE, 2023. https://doi.org/10.1117/12.2669554 | |
dc.relation.references | [5] Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 2023. | |
dc.relation.references | [6] Biswas N., Uddin K. M. M., Rikta S. T., Dey S. K. A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach. Healthcare Analytics. 2022. Vol. 2. С. 100116. https://doi.org/10.1016/j.health.2022.100116 | |
dc.relation.references | [7] Mostafa S. A., Elzanfaly D. S., Yakoub A. E. A Machine Learning Ensemble Classifier for Prediction of Brain Strokes. International Journal of Advanced Computer Science and Applications (IJACSA). 2022. Vol. 13,№ 12. https://doi.org/10.14569/IJACSA.2022.0131232 | |
dc.relation.references | [8] Sailasya G., Kumari G. L. A. Analyzing the Performance of Stroke Prediction using ML Classification Algorithms. International Journal of Advanced Computer Science and Applications (IJACSA). 2021. Vol. 12, № 6. https://doi.org/10.14569/IJACSA.2021.0120662 | |
dc.relation.references | [9] Khan M. K. Computer Science and Engineering. | |
dc.relation.references | [10] Uchida K., Kouno J., Yoshimura S., Kinjo N., Sakakibara F., Araki H., Morimoto T. Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage Score Using Machine Learning (JUST-ML). Translational Stroke Research. 2022. Vol. 13, № 3. С. 370–381. https://doi.org/10.1007/s12975-021-00937-x | |
dc.relation.references | [11] Mezher M. A. Genetic Folding (GF) Algorithm with Minimal Kernel Operators to Predict Stroke Patients. Applied Artificial Intelligence. 2022. Vol. 36, № 1. С. 2151179. https://doi.org/10.1080/08839514.2022.2151179 | |
dc.relation.references | [12] Tegistu B. S. Brain stroke prediction model using deep neural network (dnn). 2021. | |
dc.relation.references | [13] Pitchai R., Dappuri B., Pramila P. V., Vidhyalakshmi M., Shanthi S., Alonazi W. B., Almutairi K. M. A., Sundaram R. S., Beyene I. An Artificial Intelligence-Based Bio-Medical Stroke Prediction and Analytical System Using a Machine Learning Approach. Computational Intelligence and Neuroscience. 2022. P. e5489084. https://doi.org/10.1155/2022/5489084 | |
dc.relation.references | [14] Rohit A. P. V., Chowdary M. U., Ashish G. B. S., Anitha V., Sana S. Ml approach for brain stroke prediction using ist database. 2022. Vol. 7, № 10. https://doi.org/10.33564/IJEAST.2023.v07i10.008 | |
dc.relation.references | [15] Telu V., Padimi V., Ningombam D. D. Optimizing Predictions of Brain Stroke Using Machine Learning. Journal of Neutrosophic and Fuzzy Systems. 2022. Vol. 2. С. 31–43. https://doi.org/10.54216/JNFS.020203 | |
dc.relation.references | [16] DataHack : Biggest Data hackathon platform for Data Scientists. | |
dc.relation.referencesen | [1] Abedi V., Avula V., Chaudhary D., Shahjouei S., Khan A., Griessenauer C. J., Li J., Zand R. Prediction of Long-Term Stroke Recurrence Using Machine Learning Models. Journal of Clinical Medicine. 2021. Vol. 10, No 6. P. 1286. https://doi.org/10.3390/jcm10061286 | |
dc.relation.referencesen | [2] Melnykova N., Chereshchuk L. Application of machine learning methods for predicting the risk of stroke occurrence. Proceedings of the VI International Scientific and Practical Conference. Sofia, Bulgaria. 2023. pp. 210-216. International Science Group, 2023. ISBN 9798891451926. | |
dc.relation.referencesen | [3] Ashrafuzzaman Md., Saha S., Nur K. Prediction of Stroke Disease Using Deep CNN Based Approach. Journal of Advances in Information Technology. 2022. Vol. 13, No 6. https://doi.org/10.12720/jait.13.6.604-613 | |
dc.relation.referencesen | [4] Sun X. Predictive model analysis of stroke disease based on machine learning. SPIE, 2023. https://doi.org/10.1117/12.2669554 | |
dc.relation.referencesen | [5] Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 2023. | |
dc.relation.referencesen | [6] Biswas N., Uddin K. M. M., Rikta S. T., Dey S. K. A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach. Healthcare Analytics. 2022. Vol. 2. P. 100116. https://doi.org/10.1016/j.health.2022.100116 | |
dc.relation.referencesen | [7] Mostafa S. A., Elzanfaly D. S., Yakoub A. E. A Machine Learning Ensemble Classifier for Prediction of Brain Strokes. International Journal of Advanced Computer Science and Applications (IJACSA). 2022. Vol. 13,No 12. https://doi.org/10.14569/IJACSA.2022.0131232 | |
dc.relation.referencesen | [8] Sailasya G., Kumari G. L. A. Analyzing the Performance of Stroke Prediction using ML Classification Algorithms. International Journal of Advanced Computer Science and Applications (IJACSA). 2021. Vol. 12, No 6. https://doi.org/10.14569/IJACSA.2021.0120662 | |
dc.relation.referencesen | [9] Khan M. K. Computer Science and Engineering. | |
dc.relation.referencesen | [10] Uchida K., Kouno J., Yoshimura S., Kinjo N., Sakakibara F., Araki H., Morimoto T. Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage Score Using Machine Learning (JUST-ML). Translational Stroke Research. 2022. Vol. 13, No 3. P. 370–381. https://doi.org/10.1007/s12975-021-00937-x | |
dc.relation.referencesen | [11] Mezher M. A. Genetic Folding (GF) Algorithm with Minimal Kernel Operators to Predict Stroke Patients. Applied Artificial Intelligence. 2022. Vol. 36, No 1. P. 2151179. https://doi.org/10.1080/08839514.2022.2151179 | |
dc.relation.referencesen | [12] Tegistu B. S. Brain stroke prediction model using deep neural network (dnn). 2021. | |
dc.relation.referencesen | [13] Pitchai R., Dappuri B., Pramila P. V., Vidhyalakshmi M., Shanthi S., Alonazi W. B., Almutairi K. M. A., Sundaram R. S., Beyene I. An Artificial Intelligence-Based Bio-Medical Stroke Prediction and Analytical System Using a Machine Learning Approach. Computational Intelligence and Neuroscience. 2022. P. e5489084. https://doi.org/10.1155/2022/5489084 | |
dc.relation.referencesen | [14] Rohit A. P. V., Chowdary M. U., Ashish G. B. S., Anitha V., Sana S. Ml approach for brain stroke prediction using ist database. 2022. Vol. 7, No 10. https://doi.org/10.33564/IJEAST.2023.v07i10.008 | |
dc.relation.referencesen | [15] Telu V., Padimi V., Ningombam D. D. Optimizing Predictions of Brain Stroke Using Machine Learning. Journal of Neutrosophic and Fuzzy Systems. 2022. Vol. 2. P. 31–43. https://doi.org/10.54216/JNFS.020203 | |
dc.relation.referencesen | [16] DataHack : Biggest Data hackathon platform for Data Scientists. | |
dc.relation.uri | https://doi.org/10.3390/jcm10061286 | |
dc.relation.uri | https://doi.org/10.12720/jait.13.6.604-613 | |
dc.relation.uri | https://doi.org/10.1117/12.2669554 | |
dc.relation.uri | https://doi.org/10.1016/j.health.2022.100116 | |
dc.relation.uri | https://doi.org/10.14569/IJACSA.2022.0131232 | |
dc.relation.uri | https://doi.org/10.14569/IJACSA.2021.0120662 | |
dc.relation.uri | https://doi.org/10.1007/s12975-021-00937-x | |
dc.relation.uri | https://doi.org/10.1080/08839514.2022.2151179 | |
dc.relation.uri | https://doi.org/10.1155/2022/5489084 | |
dc.relation.uri | https://doi.org/10.33564/IJEAST.2023.v07i10.008 | |
dc.relation.uri | https://doi.org/10.54216/JNFS.020203 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Patereha Yu., Melnyk M., 2024 | |
dc.subject | порушення мозкового кровообігу | |
dc.subject | дерево рішень | |
dc.subject | рандомізований ліс | |
dc.subject | накопичення | |
dc.subject | техніка надмірної вибірки синтетичних меншин | |
dc.subject | пошук у сітці | |
dc.subject | машинне навчання | |
dc.subject | cerebrovascular accident | |
dc.subject | decision tree | |
dc.subject | randomized forest | |
dc.subject | stacking | |
dc.subject | synthetic Minority Over-sampling Technique | |
dc.subject | Grid Search | |
dc.subject | machine-learning | |
dc.title | Prediction of the occurrence of stroke based on machine learning models | |
dc.title.alternative | Прогнозування виникнення інсульту на основі моделей машинного навчання | |
dc.type | Article |
Files
License bundle
1 - 1 of 1