Prediction of the occurrence of stroke based on machine learning models

dc.citation.epage27
dc.citation.issue1
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage17
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПатерега, Юрій
dc.contributor.authorМельник, Михайло
dc.contributor.authorPatereha, Yurii
dc.contributor.authorMelnyk, Mykhaylo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-11T09:52:35Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДослідження, проведені в галузі медицини, стосуються важливої теми, інтерес до якої з кожним роком зростає. Дослідження було зосереджено на прогнозуванні початку інсульту, стану, що становить серйозний ризик для здоров'я та життя людей. Використання надзвичайно незбалансованого набору даних стало проблемою для розробки моделей машинного навчання, здатних ефективно передбачати випадки інсульту. Серед розглянутих моделей модель Random Forest продемонструвала найбільш багатообіцяючу продуктивність, досягнувши 90% показників точності, запам’ятовування та оцінки F1. Ці висновки можуть бути корисними для медичних працівників, які займаються діагностикою та лікуванням інсульту.
dc.description.abstractThe research conducted in the medical domain addressed a topic of significant importance, steadily growing in relevance each year. The study focused on predicting the onset of strokes, a condition posing a grave risk to individuals' health and lives. Utilizing a highly imbalanced dataset posed a challenge in developing machine learning models capable of effectively predicting stroke occurrences. Among the models examined, the Random Forest model demonstrated the most promising performance, achieving precision, recall, and F1-score metrics of 90%. These findings hold potential utility for healthcare professionals involved in stroke diagnosis and treatment.
dc.format.extent17-27
dc.format.pages11
dc.identifier.citationPatereha Y. Prediction of the occurrence of stroke based on machine learning models / Yurii Patereha, Mykhaylo Melnyk // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 17–27.
dc.identifier.citationenPatereha Y. Prediction of the occurrence of stroke based on machine learning models / Yurii Patereha, Mykhaylo Melnyk // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 17–27.
dc.identifier.doidoi.org/10.23939/cds2024.01.017
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64112
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 1 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 1 (6), 2024
dc.relation.references[1] Abedi V., Avula V., Chaudhary D., Shahjouei S., Khan A., Griessenauer C. J., Li J., Zand R. Prediction of Long-Term Stroke Recurrence Using Machine Learning Models. Journal of Clinical Medicine. 2021. Vol. 10, № 6. С. 1286. https://doi.org/10.3390/jcm10061286
dc.relation.references[2] Melnykova N., Chereshchuk L. Application of machine learning methods for predicting the risk of stroke occurrence. Proceedings of the VI International Scientific and Practical Conference. Sofia, Bulgaria. 2023. pp. 210-216. International Science Group, 2023. ISBN 9798891451926.
dc.relation.references[3] Ashrafuzzaman Md., Saha S., Nur K. Prediction of Stroke Disease Using Deep CNN Based Approach. Journal of Advances in Information Technology. 2022. Vol. 13, № 6. https://doi.org/10.12720/jait.13.6.604-613
dc.relation.references[4] Sun X. Predictive model analysis of stroke disease based on machine learning. SPIE, 2023. https://doi.org/10.1117/12.2669554
dc.relation.references[5] Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 2023.
dc.relation.references[6] Biswas N., Uddin K. M. M., Rikta S. T., Dey S. K. A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach. Healthcare Analytics. 2022. Vol. 2. С. 100116. https://doi.org/10.1016/j.health.2022.100116
dc.relation.references[7] Mostafa S. A., Elzanfaly D. S., Yakoub A. E. A Machine Learning Ensemble Classifier for Prediction of Brain Strokes. International Journal of Advanced Computer Science and Applications (IJACSA). 2022. Vol. 13,№ 12. https://doi.org/10.14569/IJACSA.2022.0131232
dc.relation.references[8] Sailasya G., Kumari G. L. A. Analyzing the Performance of Stroke Prediction using ML Classification Algorithms. International Journal of Advanced Computer Science and Applications (IJACSA). 2021. Vol. 12, № 6. https://doi.org/10.14569/IJACSA.2021.0120662
dc.relation.references[9] Khan M. K. Computer Science and Engineering.
dc.relation.references[10] Uchida K., Kouno J., Yoshimura S., Kinjo N., Sakakibara F., Araki H., Morimoto T. Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage Score Using Machine Learning (JUST-ML). Translational Stroke Research. 2022. Vol. 13, № 3. С. 370–381. https://doi.org/10.1007/s12975-021-00937-x
dc.relation.references[11] Mezher M. A. Genetic Folding (GF) Algorithm with Minimal Kernel Operators to Predict Stroke Patients. Applied Artificial Intelligence. 2022. Vol. 36, № 1. С. 2151179. https://doi.org/10.1080/08839514.2022.2151179
dc.relation.references[12] Tegistu B. S. Brain stroke prediction model using deep neural network (dnn). 2021.
dc.relation.references[13] Pitchai R., Dappuri B., Pramila P. V., Vidhyalakshmi M., Shanthi S., Alonazi W. B., Almutairi K. M. A., Sundaram R. S., Beyene I. An Artificial Intelligence-Based Bio-Medical Stroke Prediction and Analytical System Using a Machine Learning Approach. Computational Intelligence and Neuroscience. 2022. P. e5489084. https://doi.org/10.1155/2022/5489084
dc.relation.references[14] Rohit A. P. V., Chowdary M. U., Ashish G. B. S., Anitha V., Sana S. Ml approach for brain stroke prediction using ist database. 2022. Vol. 7, № 10. https://doi.org/10.33564/IJEAST.2023.v07i10.008
dc.relation.references[15] Telu V., Padimi V., Ningombam D. D. Optimizing Predictions of Brain Stroke Using Machine Learning. Journal of Neutrosophic and Fuzzy Systems. 2022. Vol. 2. С. 31–43. https://doi.org/10.54216/JNFS.020203
dc.relation.references[16] DataHack : Biggest Data hackathon platform for Data Scientists.
dc.relation.referencesen[1] Abedi V., Avula V., Chaudhary D., Shahjouei S., Khan A., Griessenauer C. J., Li J., Zand R. Prediction of Long-Term Stroke Recurrence Using Machine Learning Models. Journal of Clinical Medicine. 2021. Vol. 10, No 6. P. 1286. https://doi.org/10.3390/jcm10061286
dc.relation.referencesen[2] Melnykova N., Chereshchuk L. Application of machine learning methods for predicting the risk of stroke occurrence. Proceedings of the VI International Scientific and Practical Conference. Sofia, Bulgaria. 2023. pp. 210-216. International Science Group, 2023. ISBN 9798891451926.
dc.relation.referencesen[3] Ashrafuzzaman Md., Saha S., Nur K. Prediction of Stroke Disease Using Deep CNN Based Approach. Journal of Advances in Information Technology. 2022. Vol. 13, No 6. https://doi.org/10.12720/jait.13.6.604-613
dc.relation.referencesen[4] Sun X. Predictive model analysis of stroke disease based on machine learning. SPIE, 2023. https://doi.org/10.1117/12.2669554
dc.relation.referencesen[5] Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 2023.
dc.relation.referencesen[6] Biswas N., Uddin K. M. M., Rikta S. T., Dey S. K. A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach. Healthcare Analytics. 2022. Vol. 2. P. 100116. https://doi.org/10.1016/j.health.2022.100116
dc.relation.referencesen[7] Mostafa S. A., Elzanfaly D. S., Yakoub A. E. A Machine Learning Ensemble Classifier for Prediction of Brain Strokes. International Journal of Advanced Computer Science and Applications (IJACSA). 2022. Vol. 13,No 12. https://doi.org/10.14569/IJACSA.2022.0131232
dc.relation.referencesen[8] Sailasya G., Kumari G. L. A. Analyzing the Performance of Stroke Prediction using ML Classification Algorithms. International Journal of Advanced Computer Science and Applications (IJACSA). 2021. Vol. 12, No 6. https://doi.org/10.14569/IJACSA.2021.0120662
dc.relation.referencesen[9] Khan M. K. Computer Science and Engineering.
dc.relation.referencesen[10] Uchida K., Kouno J., Yoshimura S., Kinjo N., Sakakibara F., Araki H., Morimoto T. Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage Score Using Machine Learning (JUST-ML). Translational Stroke Research. 2022. Vol. 13, No 3. P. 370–381. https://doi.org/10.1007/s12975-021-00937-x
dc.relation.referencesen[11] Mezher M. A. Genetic Folding (GF) Algorithm with Minimal Kernel Operators to Predict Stroke Patients. Applied Artificial Intelligence. 2022. Vol. 36, No 1. P. 2151179. https://doi.org/10.1080/08839514.2022.2151179
dc.relation.referencesen[12] Tegistu B. S. Brain stroke prediction model using deep neural network (dnn). 2021.
dc.relation.referencesen[13] Pitchai R., Dappuri B., Pramila P. V., Vidhyalakshmi M., Shanthi S., Alonazi W. B., Almutairi K. M. A., Sundaram R. S., Beyene I. An Artificial Intelligence-Based Bio-Medical Stroke Prediction and Analytical System Using a Machine Learning Approach. Computational Intelligence and Neuroscience. 2022. P. e5489084. https://doi.org/10.1155/2022/5489084
dc.relation.referencesen[14] Rohit A. P. V., Chowdary M. U., Ashish G. B. S., Anitha V., Sana S. Ml approach for brain stroke prediction using ist database. 2022. Vol. 7, No 10. https://doi.org/10.33564/IJEAST.2023.v07i10.008
dc.relation.referencesen[15] Telu V., Padimi V., Ningombam D. D. Optimizing Predictions of Brain Stroke Using Machine Learning. Journal of Neutrosophic and Fuzzy Systems. 2022. Vol. 2. P. 31–43. https://doi.org/10.54216/JNFS.020203
dc.relation.referencesen[16] DataHack : Biggest Data hackathon platform for Data Scientists.
dc.relation.urihttps://doi.org/10.3390/jcm10061286
dc.relation.urihttps://doi.org/10.12720/jait.13.6.604-613
dc.relation.urihttps://doi.org/10.1117/12.2669554
dc.relation.urihttps://doi.org/10.1016/j.health.2022.100116
dc.relation.urihttps://doi.org/10.14569/IJACSA.2022.0131232
dc.relation.urihttps://doi.org/10.14569/IJACSA.2021.0120662
dc.relation.urihttps://doi.org/10.1007/s12975-021-00937-x
dc.relation.urihttps://doi.org/10.1080/08839514.2022.2151179
dc.relation.urihttps://doi.org/10.1155/2022/5489084
dc.relation.urihttps://doi.org/10.33564/IJEAST.2023.v07i10.008
dc.relation.urihttps://doi.org/10.54216/JNFS.020203
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Patereha Yu., Melnyk M., 2024
dc.subjectпорушення мозкового кровообігу
dc.subjectдерево рішень
dc.subjectрандомізований ліс
dc.subjectнакопичення
dc.subjectтехніка надмірної вибірки синтетичних меншин
dc.subjectпошук у сітці
dc.subjectмашинне навчання
dc.subjectcerebrovascular accident
dc.subjectdecision tree
dc.subjectrandomized forest
dc.subjectstacking
dc.subjectsynthetic Minority Over-sampling Technique
dc.subjectGrid Search
dc.subjectmachine-learning
dc.titlePrediction of the occurrence of stroke based on machine learning models
dc.title.alternativeПрогнозування виникнення інсульту на основі моделей машинного навчання
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n1_Patereha_Y-Prediction_of_the_occurrence_17-27.pdf
Size:
584.11 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n1_Patereha_Y-Prediction_of_the_occurrence_17-27__COVER.png
Size:
440.92 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: