Magneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview
dc.citation.epage | 96 | |
dc.citation.issue | 2 (29) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 89 | |
dc.contributor.affiliation | Інститут геофізики ім. С. І. Субботіна Національної академії наук України | |
dc.contributor.affiliation | Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine | |
dc.contributor.author | Орлюк, М. І. | |
dc.contributor.author | Друкаренко, В. В. | |
dc.contributor.author | Шестопалова, О. Є. | |
dc.contributor.author | Orlyuk, M. I. | |
dc.contributor.author | Drukarenko, V. V. | |
dc.contributor.author | Shestopalova, O. Ye. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-06-20T08:16:19Z | |
dc.date.available | 2023-06-20T08:16:19Z | |
dc.date.created | 2020-02-25 | |
dc.date.issued | 2020-02-25 | |
dc.description.abstract | Мета дослідження. Обґрунтувати, що джерела виявлених нині магнітних аномалій з довжинами хвиль у перші тисячі кілометрів можуть мати магнітно-мінералогічну природу за рахунок існування на мантійних глибинах магнітних мінералів, зокрема магнетиту, гематиту, самородного заліза, а також сплаву заліза та кобальту. Показати також, що зміна магнітних властивостей цих мінералів за рахунок термодинамічного та флюїдного режимів може бути причиною сучасних часових змін довгохвильових магнітних аномалій. Згідно з численними роботами різних авторів трансформації магнітних мінералів відбуваються в особливих тектонічних зонах верхньої мантії Землі, зокрема областях різних типів зчленування літосферних плит, рифтів, плюмів, тектонотермальної активізації тощо. Магнітними можуть бути ділянки верхньої мантії із температурами, нижчими від температури Кюрі магнетиту, наприклад, у зонах субдукції, кратонах та місцях з древньою океанічною літосферою. Окрім магнетиту та самородного заліза, потенційним джерелом магнітних аномалій верхньої мантії можуть бути оксиди заліза, зокрема гематит (α-Fe2O3), який є домінантним оксидом у зонах субдукції на глибинах від 300 до 600 км. Експериментально зарубіжні дослідники довели, що в холодних субдукційних плитах гематит може зберігати свої магнітні властивості до перехідної зони мантії (приблизно 410–600 км). Висновки. Виконаний огляд попередніх досліджень вітчизняних та зарубіжних авторів дав змогу обґрунтувати на магнітно-мінералогічному рівні можливість існування на мантійних глибинах намагнічених порід, зокрема самородного заліза, та можливі їх зміни за рахунок термодинамічних факторів та флюїдного режиму. Експериментально зарубіжні дослідники довели, що у місцях занурення літосферних плит на мантійних глибинах тривалий час може зберігатися їхня намагніченість, а також прогнозовано може спостерігатися підвищення магнітної сприйнятливості за рахунок ефекту Гопкінсона поблизу температури Кюрі магнітних мінералів. Практична значущість. Отримана інформація про те, що мантія до глибин перехідної зони може містити магнітні мінерали та мати залишкову намагніченість, допоможе в інтерпретації як сучасних магнітних аномалій, так і палеомагнітних даних | |
dc.description.abstract | The purpose of the study. It needs to substantiate that sources of magnetic anomalies with wavelengths of the first thousand kilometers detected at the present time might have a magneto-mineralogical origin due to the existence of magnetic minerals at the mantle depths, in particular magnetite, hematite, native iron, as well as iron alloys. It should be also shown that present temporal changes of long-wave magnetic anomalies should be induced by changes of the magnetic properties of these minerals due to thermodynamic and fluid modes. According to numerous authors, the transformations of magnetic minerals occur in special tectonic zones of the upper mantle of the Earth, in particular at junction zones of lithospheric plates of different types, rifts, plumes, tectonic-thermal activation, etc. Areas of the upper mantle with temperatures below the Curie temperature of magnetite can be magnetic, such as subduction zones, cratons, and regions with the old oceanic lithosphere. Iron oxides might be a potential source of magnetic anomalies of the upper mantle besides magnetite and native iron, in particular hematite (α-Fe2O3), which is the dominant oxide in subduction zones at depths of 300 to 600 km. It was proved experimentally by foreign researchers that in cold subduction slabs, hematite remains its magnetic properties up to the mantle transition zone (approximately 410–600 km). Conclusions. A review of previous studies of native and foreign authors has made it possible to substantiate the possibility of the existence of magnetized rocks at the mantle depths, including native iron at the magneto-mineralogical level, and their possible changes due to thermodynamic factors and fluid regime. It has been experimentally proven by foreign researchers that in subduction zones of the lithospheric slabs their magnetization might be preserved for a long time at the mantle depths, as well as increase of magnetic susceptibility may observed due to the Hopkinson effect near the Curie temperature of magnetic minerals. Practical value. Information about the ability of the mantle to contain magnetic minerals and to have a residual magnetization up to the depths of the transition zone was obtained. It should be used in the interpretation of both modern magnetic anomalies and paleomagnetic data. | |
dc.format.extent | 89-96 | |
dc.format.pages | 8 | |
dc.identifier.citation | Orlyuk M. I. Magneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview / M. I. Orlyuk, V. V. Drukarenko, O. Ye. Shestopalova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 89–96. | |
dc.identifier.citationen | Orlyuk M. I. Magneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview / M. I. Orlyuk, V. V. Drukarenko, O. Ye. Shestopalova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 89–96. | |
dc.identifier.doi | doi.org/10.23939/jgd2020.02.089 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59304 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 2 (29), 2020 | |
dc.relation.ispartof | Geodynamics, 2 (29), 2020 | |
dc.relation.references | Blakely, B., Brocher, T. & Wells, R. (2005). Subduction – zone magnetic anomalies and implications for | |
dc.relation.references | hydrated forearc mantle. Geology, 33 (6), 445–448. DOI: 10.1130/G21447.1 | |
dc.relation.references | Drukarenko, V., Orlyuk, M. & Shestopalova, O. | |
dc.relation.references | (2019). Magnetomineralogical substantiation of | |
dc.relation.references | magnetization of the rocks of the lower crust and | |
dc.relation.references | upper mantle. Monitoring of Geological Processes | |
dc.relation.references | and Ecological Condition of the Environment: | |
dc.relation.references | Materials of XIIIth International Scientific Conference, | |
dc.relation.references | Kyiv, 12–15 November 2019, Kyiv, Ukraine. | |
dc.relation.references | Conference CD-ROM Proceedings. DOI: 10.3997/2214-4609.201903209 | |
dc.relation.references | Dunlop, D., Ozdemir, O. & Costanzo–Alvarez, V. | |
dc.relation.references | (2010). Magnetic properties of rocks of the | |
dc.relation.references | Kapuskasing uplift (Ontario, Canada) and origin of | |
dc.relation.references | long-wavelength magnetic anomalies. Geophysical | |
dc.relation.references | Journal International, 183, 645–658. | |
dc.relation.references | Dunlop, D. (2014). High-temperature susceptibility of | |
dc.relation.references | magnetite: a new pseudo-single-domain effect. | |
dc.relation.references | Geophysical Journal International, 199, 707–716. DOI: 10.1093/gji/ggu247 | |
dc.relation.references | Dyment, J., Lesur, V., Hamoudi, M., Choi, Y., | |
dc.relation.references | Thebault, E., & Catalan, M. (2016). World Digital | |
dc.relation.references | Magnetic Anomaly Map version 2.0. AGU Fall | |
dc.relation.references | Meeting: Abstract GP13B-1310, San Francisco, | |
dc.relation.references | Calif., 2015. Retrieved from http://www.wdmam.org | |
dc.relation.references | Fedorova, N. V. & Shapiro, V. A. (1998). Reference | |
dc.relation.references | field for the airborne magnetic data. Earth | |
dc.relation.references | Planets Space, 50, 397–404. | |
dc.relation.references | Ferre, E. C., Friedman, S. A., Martin-Hernandez, F., | |
dc.relation.references | Feinberg, J. M., Conder, J. A., & Lonov, D. A. | |
dc.relation.references | (2013). The magnetism of mantle xenoliths and | |
dc.relation.references | potential implications for sub – Moho magnetic | |
dc.relation.references | sources. Geophysical Researh Letters, | |
dc.relation.references | American Geophysics Union, 40 (1), 105–110. | |
dc.relation.references | https://doi.org/10.1029/2012GL054100. | |
dc.relation.references | Ferré, E. C., Friedman, S. A, Martín-Hernández, F., | |
dc.relation.references | Feinberg, J. M., Till, J. L., Ionov, D. A. & | |
dc.relation.references | Conder, J. A. (2014). Eight good reasons why the | |
dc.relation.references | uppermost mantle could be magnetic. Tectonophysics, 624–625, 3–14. | |
dc.relation.references | Fluid regime of the Earth’s crust and upper mantle | |
dc.relation.references | (1977). Мoscow: Nauka, 210 p. (in Russian). | |
dc.relation.references | Frost, D. J. & McCammon, C. A. (2008). The redox | |
dc.relation.references | state of Earth’s mantle. Ann. Rev. Earth Planet. | |
dc.relation.references | Sci., 36, 389–420. | |
dc.relation.references | Gadirov, V. G., Eppelbaum, L. V., Kuderavets, R., | |
dc.relation.references | Menshov, O., Gadirov, K. (2018). Indicative | |
dc.relation.references | features of local magnetic anomalies from | |
dc.relation.references | hydrocarbon deposits: Examples from Azerbaijan | |
dc.relation.references | and Ukraine. Acta Geophysica, 66(6), 1463–1483. DOI: 10.1007/s11600-018-0224-0. | |
dc.relation.references | Gantimurov, А. F. (1982). Fluid regime of iron-silicon | |
dc.relation.references | systems. Nauka, Novosibirsk, 69. (in Russian) | |
dc.relation.references | Genshaft, Yu. S., Tselmovich, V. А. & Gapeev, А. К. | |
dc.relation.references | (2000). Crystallization of high-titanium ferrospinel in | |
dc.relation.references | silicate melts under PT conditions of the upper | |
dc.relation.references | mantle. Paleomagnetism and rock magnetism. | |
dc.relation.references | Мoscow, 18–20. (in Russian). | |
dc.relation.references | Goncharov, A. G., Ionov, D. A., Doucet, L. S. & | |
dc.relation.references | Pokhilenko, L. N. (2012). Thermal state, oxygen | |
dc.relation.references | fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data peridotite xenoliths from the | |
dc.relation.references | Udachnaya kimberlite, Siberia. Earth Planet. Sci. | |
dc.relation.references | Lett., 357–358. doi:10.1016/j.epsl.2012.09.016. | |
dc.relation.references | Ishii, T., Huang, R., Myhill, R., Fei, H., Koemets, I., | |
dc.relation.references | Liu, Z., Katsura, T. (2019). Sharp 660-km | |
dc.relation.references | discontinuity controlled by extremely narrow | |
dc.relation.references | binary post-spinel transition. Nature Geoscience, 12 (10), 1–4. DOI: 10.1038/s41561-019-0452-1. | |
dc.relation.references | Кadik, А. А., Lukanin, О. А. & Portnyagin, А. L. | |
dc.relation.references | (1990). Magma formation during the upward | |
dc.relation.references | movement of mantle matter: temperature regime | |
dc.relation.references | and composition of the melts formed during | |
dc.relation.references | adiabatic decompression of mantle ultrabasites. | |
dc.relation.references | Geohimiya, 9, 1263–1276. (in Russian). | |
dc.relation.references | Kiseeva, E., Vasiukov, D., Wood, B., McCammon, | |
dc.relation.references | C., Stachel, T., Bykov, Dubrovinsky, L. (2018). | |
dc.relation.references | Oxidized iron in garnets from the mantle transition | |
dc.relation.references | zone. Nature Geoscience, 11(2), 144–147. DOI: 10.1038/s41561-017-0055-7 | |
dc.relation.references | Kiss, J., Prácser, E., Szarka, L., & Ádám, A. (2010). | |
dc.relation.references | Magnetic phase transition and the magnetotellurics. | |
dc.relation.references | Magyar geofizika, 51 (2), 1–15. | |
dc.relation.references | Kletetschka, G., Wasilewski, P. & Taylor, P. (2002). The | |
dc.relation.references | role of hematite-ilmenite solid solution in the | |
dc.relation.references | production of magnetic anomalies in ground- and | |
dc.relation.references | satellite-based data. Tectonophysics, 347,167–177. | |
dc.relation.references | Komabayashi, T. & Fei, Y. (2010). Internally | |
dc.relation.references | consistent thermodynamic database for iron to | |
dc.relation.references | the Earth’s core conditions. Journal of | |
dc.relation.references | Geophysical research. Solid Earth, 115, B3. | |
dc.relation.references | https://doi.org/10.1029/2009JB006442 | |
dc.relation.references | Korolev, E. A., Bakhtin A. I., Shilovskii, O. P., Nikolaeva, V. M., Vorobjov, V. V., Osin, Yu. N., Barieva, E. | |
dc.relation.references | R. (2013). The finds of native iron in pyrite nodules | |
dc.relation.references | from the Middle Jurassic deposits of Tatarstan. | |
dc.relation.references | Uchenye zapiski Kazanskogo Universiteta. | |
dc.relation.references | Estestvennye nauki, 155, 2, 182–189. (in Russian). | |
dc.relation.references | Knafelc, J., Filiberto, J., Ferre, E., Conder, J., | |
dc.relation.references | Costello, L., Crandall, J., Schwenzer, S (2019). | |
dc.relation.references | The effect of oxidation on the mineralogy | |
dc.relation.references | and magnetic properties of olivine. American | |
dc.relation.references | Mineralogist, Vol. 104, 694–702. DOI: 10.2138/am2019-6829. | |
dc.relation.references | Kupenko, I., Aprilis, G., Vasiukov, D. M., McCammon, | |
dc.relation.references | C., Chariton, S., Cerantola, V., ... & Sanchez-Valle, | |
dc.relation.references | C. (2019). Magnetism in cold subducting slabs at | |
dc.relation.references | mantle transition zone depths. Nature, 570(7759), 102–106. DOI: 10.1038/s41586-019-1254-8. | |
dc.relation.references | Kvasnitsa, I. V. & Kosovskiy, Ya. I. (2006). Native iron | |
dc.relation.references | from the basalts of Volhyn (Ukraine). Theory, history, | |
dc.relation.references | philosophy and practice of mineralogy: Materials of | |
dc.relation.references | IV International mineralogical seminar, Syktyvkar, | |
dc.relation.references | Geoprint, 2006, 122–123. (in Russian). | |
dc.relation.references | Lykasov, А. А., Ryss, G. М. & Vlasova, I. S. (2013). | |
dc.relation.references | Phase transformations during the reduction of | |
dc.relation.references | sulphide copper smelting slag by gasification | |
dc.relation.references | products of carbonaceous reducing agents at a | |
dc.relation.references | temperature of 1320 K. Vestnik YuUUrGU. Seriya | |
dc.relation.references | “Мetallurgiya”, 13 (1), 24–28. (in Russian). | |
dc.relation.references | Malvoisin, B., Carlut, J. & Brunet, F. (2012). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production | |
dc.relation.references | in hydrothermal experiments. Journal of | |
dc.relation.references | Geophysical research, Vol. 117, B01104. | |
dc.relation.references | DOI: 10.1029/2011JB008612. | |
dc.relation.references | Мarakushev, А. А. & Genkin, А. D. (1972). Thermodynamic conditions of the formation of metal | |
dc.relation.references | carbides in connection with their presence in mafic, | |
dc.relation.references | hyperbasite and in copper-nickel sulfide ores. Vestnik | |
dc.relation.references | MGU. Geology, 5, 7–27. (in Russian). | |
dc.relation.references | McEnroe, S. A., Robinson P., Church, N. & Purucker, | |
dc.relation.references | M. (2018). Magnetism at Depth: A View from an | |
dc.relation.references | Ancient Continental Subduction and Collision | |
dc.relation.references | Zone. Geochemistry Geophysics Geosystems, 4 | |
dc.relation.references | (19). https://doi.org/10.1002/2017GC007344. | |
dc.relation.references | Мelnik, Yu. P. & Stebnovskaya, Yu. М. (1976). The | |
dc.relation.references | nature of the distribution of iron and the conditions | |
dc.relation.references | of the formation of ferromagnetic minerals. | |
dc.relation.references | Magnetic Anomalies of the Earth’s Depths. Кiev: | |
dc.relation.references | Naukova dumka, 64–73. (in Russian). | |
dc.relation.references | Menshov, O. & Sukhorada, A. (2017). Basic theory and | |
dc.relation.references | methodology of soil geophysics: the first results of | |
dc.relation.references | application. Visnyk of Taras Shevchenko National | |
dc.relation.references | University of Kyiv: Geology, 4 (79), 35–39. http://doi.org/10.17721/1728-2713.79.05 (in Ukrainian). | |
dc.relation.references | Orlyuk, М. I. & Pashkevich, I. К. (2012). Deep sources of | |
dc.relation.references | regional magnetic anomalies: tectonotypes and the | |
dc.relation.references | relationship with transcore faults. Heofizicheskiy | |
dc.relation.references | zhurnal, 34 (4), 224–234. (in Russian). | |
dc.relation.references | Orlyuk, М. I., Marchenko, А. V. & Romenets, А. А. | |
dc.relation.references | (2017). Spatial-temporeral changes in the | |
dc.relation.references | geomagnetic field and seismisity. Heofizicheskiy | |
dc.relation.references | zhurnal, 39 (6), 84–105. (in Russian). | |
dc.relation.references | Orlyuk, М. I., Pashkevich, I. К., Marchenko, А. V. & | |
dc.relation.references | Romenets, А. А. (2019). Crustal-mantle (?) origin | |
dc.relation.references | of the long-wave Central European magnetic | |
dc.relation.references | anomaly. Geophysics and geodynamics: forecasting | |
dc.relation.references | and monitoring of the geological environment. Ed. | |
dc.relation.references | V. Yu. Maksymchuk. Lviv: Rastr-7, 143–146. (in | |
dc.relation.references | Ukrainian). | |
dc.relation.references | Orlyuk, M. I. (1999). Magnetic model of the Earth’s crust | |
dc.relation.references | of the south-west of the East European platform | |
dc.relation.references | (Doctoral dissertation). Kyiv, 404. (in Russian). | |
dc.relation.references | Pecherskiy, D. M. (Ed.). (1994). Petromagnetic model | |
dc.relation.references | of the lithosphere. Кyiv: Naukova Dumka, 176. | |
dc.relation.references | (in Russian). | |
dc.relation.references | Pecherskiy, D. M. (2016). Occurrence of metal iron | |
dc.relation.references | inside planets. Heofizicheskiy zhurnal, 38 (5), 13–25. (in Russian). | |
dc.relation.references | Ryabov, V. V., Pavlov, А. А. & Lopatin, G. G. (1985). | |
dc.relation.references | Native iron of Siberian traps. Novosibirsk: Nauka, 169. (in Russian) | |
dc.relation.references | Shteinberg, D. S. & Lagutina, М. V. (1984). Carbon | |
dc.relation.references | in ultrabasits and basits. Мoscow: Nauka, 110 P. | |
dc.relation.references | (in Russian). | |
dc.relation.references | Slama, J., Usakova, M., Soka, M., Dosoudil, R. & | |
dc.relation.references | Jansarik, V. (2017). Hopkinson Effect in Soft and | |
dc.relation.references | Hard Magnetic Ferrites. 16th Czech and Slovak | |
dc.relation.references | Conference on Magnetism, Košice, Slovakia, | |
dc.relation.references | June 13–17. Acta Physica Polonica A, 131(4), 762–764. DOI: 10.12693/APhysPolA.131.762 | |
dc.relation.references | Sorokhtin, О. G. & Ushakov, S А. (2002). Evolution | |
dc.relation.references | of the Earth. Мoscow: Publishing of МGU, 506 p. | |
dc.relation.references | (in Russian). | |
dc.relation.references | Thébault, E., Purucker, M., Whaler, K. A., Langlais, B. & | |
dc.relation.references | Sabaka,T. J. (2010). The Magnetic Field of the Earth’s | |
dc.relation.references | Lithosphere. Space Sci Rev. Springer Science+- | |
dc.relation.references | Business Media B.V. DOI 10.1007/s11214-010-9667-6 | |
dc.relation.references | Wasilewski, P. J. & Warner, R. D. (1988). Magnetic | |
dc.relation.references | petrology of deep crustal rocks – Ivrea Zone, | |
dc.relation.references | Italy. Earth. Planet. Sci.Lett. 87, 347–361. | |
dc.relation.referencesen | Blakely, B., Brocher, T. & Wells, R. (2005). Subduction – zone magnetic anomalies and implications for | |
dc.relation.referencesen | hydrated forearc mantle. Geology, 33 (6), 445–448. DOI: 10.1130/G21447.1 | |
dc.relation.referencesen | Drukarenko, V., Orlyuk, M. & Shestopalova, O. | |
dc.relation.referencesen | (2019). Magnetomineralogical substantiation of | |
dc.relation.referencesen | magnetization of the rocks of the lower crust and | |
dc.relation.referencesen | upper mantle. Monitoring of Geological Processes | |
dc.relation.referencesen | and Ecological Condition of the Environment: | |
dc.relation.referencesen | Materials of XIIIth International Scientific Conference, | |
dc.relation.referencesen | Kyiv, 12–15 November 2019, Kyiv, Ukraine. | |
dc.relation.referencesen | Conference CD-ROM Proceedings. DOI: 10.3997/2214-4609.201903209 | |
dc.relation.referencesen | Dunlop, D., Ozdemir, O. & Costanzo–Alvarez, V. | |
dc.relation.referencesen | (2010). Magnetic properties of rocks of the | |
dc.relation.referencesen | Kapuskasing uplift (Ontario, Canada) and origin of | |
dc.relation.referencesen | long-wavelength magnetic anomalies. Geophysical | |
dc.relation.referencesen | Journal International, 183, 645–658. | |
dc.relation.referencesen | Dunlop, D. (2014). High-temperature susceptibility of | |
dc.relation.referencesen | magnetite: a new pseudo-single-domain effect. | |
dc.relation.referencesen | Geophysical Journal International, 199, 707–716. DOI: 10.1093/gji/ggu247 | |
dc.relation.referencesen | Dyment, J., Lesur, V., Hamoudi, M., Choi, Y., | |
dc.relation.referencesen | Thebault, E., & Catalan, M. (2016). World Digital | |
dc.relation.referencesen | Magnetic Anomaly Map version 2.0. AGU Fall | |
dc.relation.referencesen | Meeting: Abstract GP13B-1310, San Francisco, | |
dc.relation.referencesen | Calif., 2015. Retrieved from http://www.wdmam.org | |
dc.relation.referencesen | Fedorova, N. V. & Shapiro, V. A. (1998). Reference | |
dc.relation.referencesen | field for the airborne magnetic data. Earth | |
dc.relation.referencesen | Planets Space, 50, 397–404. | |
dc.relation.referencesen | Ferre, E. C., Friedman, S. A., Martin-Hernandez, F., | |
dc.relation.referencesen | Feinberg, J. M., Conder, J. A., & Lonov, D. A. | |
dc.relation.referencesen | (2013). The magnetism of mantle xenoliths and | |
dc.relation.referencesen | potential implications for sub – Moho magnetic | |
dc.relation.referencesen | sources. Geophysical Researh Letters, | |
dc.relation.referencesen | American Geophysics Union, 40 (1), 105–110. | |
dc.relation.referencesen | https://doi.org/10.1029/2012GL054100. | |
dc.relation.referencesen | Ferré, E. C., Friedman, S. A, Martín-Hernández, F., | |
dc.relation.referencesen | Feinberg, J. M., Till, J. L., Ionov, D. A. & | |
dc.relation.referencesen | Conder, J. A. (2014). Eight good reasons why the | |
dc.relation.referencesen | uppermost mantle could be magnetic. Tectonophysics, 624–625, 3–14. | |
dc.relation.referencesen | Fluid regime of the Earth’s crust and upper mantle | |
dc.relation.referencesen | (1977). Moscow: Nauka, 210 p. (in Russian). | |
dc.relation.referencesen | Frost, D. J. & McCammon, C. A. (2008). The redox | |
dc.relation.referencesen | state of Earth’s mantle. Ann. Rev. Earth Planet. | |
dc.relation.referencesen | Sci., 36, 389–420. | |
dc.relation.referencesen | Gadirov, V. G., Eppelbaum, L. V., Kuderavets, R., | |
dc.relation.referencesen | Menshov, O., Gadirov, K. (2018). Indicative | |
dc.relation.referencesen | features of local magnetic anomalies from | |
dc.relation.referencesen | hydrocarbon deposits: Examples from Azerbaijan | |
dc.relation.referencesen | and Ukraine. Acta Geophysica, 66(6), 1463–1483. DOI: 10.1007/s11600-018-0224-0. | |
dc.relation.referencesen | Gantimurov, A. F. (1982). Fluid regime of iron-silicon | |
dc.relation.referencesen | systems. Nauka, Novosibirsk, 69. (in Russian) | |
dc.relation.referencesen | Genshaft, Yu. S., Tselmovich, V. A. & Gapeev, A. K. | |
dc.relation.referencesen | (2000). Crystallization of high-titanium ferrospinel in | |
dc.relation.referencesen | silicate melts under PT conditions of the upper | |
dc.relation.referencesen | mantle. Paleomagnetism and rock magnetism. | |
dc.relation.referencesen | Moscow, 18–20. (in Russian). | |
dc.relation.referencesen | Goncharov, A. G., Ionov, D. A., Doucet, L. S. & | |
dc.relation.referencesen | Pokhilenko, L. N. (2012). Thermal state, oxygen | |
dc.relation.referencesen | fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data peridotite xenoliths from the | |
dc.relation.referencesen | Udachnaya kimberlite, Siberia. Earth Planet. Sci. | |
dc.relation.referencesen | Lett., 357–358. doi:10.1016/j.epsl.2012.09.016. | |
dc.relation.referencesen | Ishii, T., Huang, R., Myhill, R., Fei, H., Koemets, I., | |
dc.relation.referencesen | Liu, Z., Katsura, T. (2019). Sharp 660-km | |
dc.relation.referencesen | discontinuity controlled by extremely narrow | |
dc.relation.referencesen | binary post-spinel transition. Nature Geoscience, 12 (10), 1–4. DOI: 10.1038/s41561-019-0452-1. | |
dc.relation.referencesen | Kadik, A. A., Lukanin, O. A. & Portnyagin, A. L. | |
dc.relation.referencesen | (1990). Magma formation during the upward | |
dc.relation.referencesen | movement of mantle matter: temperature regime | |
dc.relation.referencesen | and composition of the melts formed during | |
dc.relation.referencesen | adiabatic decompression of mantle ultrabasites. | |
dc.relation.referencesen | Geohimiya, 9, 1263–1276. (in Russian). | |
dc.relation.referencesen | Kiseeva, E., Vasiukov, D., Wood, B., McCammon, | |
dc.relation.referencesen | C., Stachel, T., Bykov, Dubrovinsky, L. (2018). | |
dc.relation.referencesen | Oxidized iron in garnets from the mantle transition | |
dc.relation.referencesen | zone. Nature Geoscience, 11(2), 144–147. DOI: 10.1038/s41561-017-0055-7 | |
dc.relation.referencesen | Kiss, J., Prácser, E., Szarka, L., & Ádám, A. (2010). | |
dc.relation.referencesen | Magnetic phase transition and the magnetotellurics. | |
dc.relation.referencesen | Magyar geofizika, 51 (2), 1–15. | |
dc.relation.referencesen | Kletetschka, G., Wasilewski, P. & Taylor, P. (2002). The | |
dc.relation.referencesen | role of hematite-ilmenite solid solution in the | |
dc.relation.referencesen | production of magnetic anomalies in ground- and | |
dc.relation.referencesen | satellite-based data. Tectonophysics, 347,167–177. | |
dc.relation.referencesen | Komabayashi, T. & Fei, Y. (2010). Internally | |
dc.relation.referencesen | consistent thermodynamic database for iron to | |
dc.relation.referencesen | the Earth’s core conditions. Journal of | |
dc.relation.referencesen | Geophysical research. Solid Earth, 115, B3. | |
dc.relation.referencesen | https://doi.org/10.1029/2009JB006442 | |
dc.relation.referencesen | Korolev, E. A., Bakhtin A. I., Shilovskii, O. P., Nikolaeva, V. M., Vorobjov, V. V., Osin, Yu. N., Barieva, E. | |
dc.relation.referencesen | R. (2013). The finds of native iron in pyrite nodules | |
dc.relation.referencesen | from the Middle Jurassic deposits of Tatarstan. | |
dc.relation.referencesen | Uchenye zapiski Kazanskogo Universiteta. | |
dc.relation.referencesen | Estestvennye nauki, 155, 2, 182–189. (in Russian). | |
dc.relation.referencesen | Knafelc, J., Filiberto, J., Ferre, E., Conder, J., | |
dc.relation.referencesen | Costello, L., Crandall, J., Schwenzer, S (2019). | |
dc.relation.referencesen | The effect of oxidation on the mineralogy | |
dc.relation.referencesen | and magnetic properties of olivine. American | |
dc.relation.referencesen | Mineralogist, Vol. 104, 694–702. DOI: 10.2138/am2019-6829. | |
dc.relation.referencesen | Kupenko, I., Aprilis, G., Vasiukov, D. M., McCammon, | |
dc.relation.referencesen | C., Chariton, S., Cerantola, V., ... & Sanchez-Valle, | |
dc.relation.referencesen | C. (2019). Magnetism in cold subducting slabs at | |
dc.relation.referencesen | mantle transition zone depths. Nature, 570(7759), 102–106. DOI: 10.1038/s41586-019-1254-8. | |
dc.relation.referencesen | Kvasnitsa, I. V. & Kosovskiy, Ya. I. (2006). Native iron | |
dc.relation.referencesen | from the basalts of Volhyn (Ukraine). Theory, history, | |
dc.relation.referencesen | philosophy and practice of mineralogy: Materials of | |
dc.relation.referencesen | IV International mineralogical seminar, Syktyvkar, | |
dc.relation.referencesen | Geoprint, 2006, 122–123. (in Russian). | |
dc.relation.referencesen | Lykasov, A. A., Ryss, G. M. & Vlasova, I. S. (2013). | |
dc.relation.referencesen | Phase transformations during the reduction of | |
dc.relation.referencesen | sulphide copper smelting slag by gasification | |
dc.relation.referencesen | products of carbonaceous reducing agents at a | |
dc.relation.referencesen | temperature of 1320 K. Vestnik YuUUrGU. Seriya | |
dc.relation.referencesen | "Metallurgiya", 13 (1), 24–28. (in Russian). | |
dc.relation.referencesen | Malvoisin, B., Carlut, J. & Brunet, F. (2012). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production | |
dc.relation.referencesen | in hydrothermal experiments. Journal of | |
dc.relation.referencesen | Geophysical research, Vol. 117, B01104. | |
dc.relation.referencesen | DOI: 10.1029/2011JB008612. | |
dc.relation.referencesen | Marakushev, A. A. & Genkin, A. D. (1972). Thermodynamic conditions of the formation of metal | |
dc.relation.referencesen | carbides in connection with their presence in mafic, | |
dc.relation.referencesen | hyperbasite and in copper-nickel sulfide ores. Vestnik | |
dc.relation.referencesen | MGU. Geology, 5, 7–27. (in Russian). | |
dc.relation.referencesen | McEnroe, S. A., Robinson P., Church, N. & Purucker, | |
dc.relation.referencesen | M. (2018). Magnetism at Depth: A View from an | |
dc.relation.referencesen | Ancient Continental Subduction and Collision | |
dc.relation.referencesen | Zone. Geochemistry Geophysics Geosystems, 4 | |
dc.relation.referencesen | (19). https://doi.org/10.1002/2017GC007344. | |
dc.relation.referencesen | Melnik, Yu. P. & Stebnovskaya, Yu. M. (1976). The | |
dc.relation.referencesen | nature of the distribution of iron and the conditions | |
dc.relation.referencesen | of the formation of ferromagnetic minerals. | |
dc.relation.referencesen | Magnetic Anomalies of the Earth’s Depths. Kiev: | |
dc.relation.referencesen | Naukova dumka, 64–73. (in Russian). | |
dc.relation.referencesen | Menshov, O. & Sukhorada, A. (2017). Basic theory and | |
dc.relation.referencesen | methodology of soil geophysics: the first results of | |
dc.relation.referencesen | application. Visnyk of Taras Shevchenko National | |
dc.relation.referencesen | University of Kyiv: Geology, 4 (79), 35–39. http://doi.org/10.17721/1728-2713.79.05 (in Ukrainian). | |
dc.relation.referencesen | Orlyuk, M. I. & Pashkevich, I. K. (2012). Deep sources of | |
dc.relation.referencesen | regional magnetic anomalies: tectonotypes and the | |
dc.relation.referencesen | relationship with transcore faults. Heofizicheskiy | |
dc.relation.referencesen | zhurnal, 34 (4), 224–234. (in Russian). | |
dc.relation.referencesen | Orlyuk, M. I., Marchenko, A. V. & Romenets, A. A. | |
dc.relation.referencesen | (2017). Spatial-temporeral changes in the | |
dc.relation.referencesen | geomagnetic field and seismisity. Heofizicheskiy | |
dc.relation.referencesen | zhurnal, 39 (6), 84–105. (in Russian). | |
dc.relation.referencesen | Orlyuk, M. I., Pashkevich, I. K., Marchenko, A. V. & | |
dc.relation.referencesen | Romenets, A. A. (2019). Crustal-mantle (?) origin | |
dc.relation.referencesen | of the long-wave Central European magnetic | |
dc.relation.referencesen | anomaly. Geophysics and geodynamics: forecasting | |
dc.relation.referencesen | and monitoring of the geological environment. Ed. | |
dc.relation.referencesen | V. Yu. Maksymchuk. Lviv: Rastr-7, 143–146. (in | |
dc.relation.referencesen | Ukrainian). | |
dc.relation.referencesen | Orlyuk, M. I. (1999). Magnetic model of the Earth’s crust | |
dc.relation.referencesen | of the south-west of the East European platform | |
dc.relation.referencesen | (Doctoral dissertation). Kyiv, 404. (in Russian). | |
dc.relation.referencesen | Pecherskiy, D. M. (Ed.). (1994). Petromagnetic model | |
dc.relation.referencesen | of the lithosphere. Kyiv: Naukova Dumka, 176. | |
dc.relation.referencesen | (in Russian). | |
dc.relation.referencesen | Pecherskiy, D. M. (2016). Occurrence of metal iron | |
dc.relation.referencesen | inside planets. Heofizicheskiy zhurnal, 38 (5), 13–25. (in Russian). | |
dc.relation.referencesen | Ryabov, V. V., Pavlov, A. A. & Lopatin, G. G. (1985). | |
dc.relation.referencesen | Native iron of Siberian traps. Novosibirsk: Nauka, 169. (in Russian) | |
dc.relation.referencesen | Shteinberg, D. S. & Lagutina, M. V. (1984). Carbon | |
dc.relation.referencesen | in ultrabasits and basits. Moscow: Nauka, 110 P. | |
dc.relation.referencesen | (in Russian). | |
dc.relation.referencesen | Slama, J., Usakova, M., Soka, M., Dosoudil, R. & | |
dc.relation.referencesen | Jansarik, V. (2017). Hopkinson Effect in Soft and | |
dc.relation.referencesen | Hard Magnetic Ferrites. 16th Czech and Slovak | |
dc.relation.referencesen | Conference on Magnetism, Košice, Slovakia, | |
dc.relation.referencesen | June 13–17. Acta Physica Polonica A, 131(4), 762–764. DOI: 10.12693/APhysPolA.131.762 | |
dc.relation.referencesen | Sorokhtin, O. G. & Ushakov, S A. (2002). Evolution | |
dc.relation.referencesen | of the Earth. Moscow: Publishing of MGU, 506 p. | |
dc.relation.referencesen | (in Russian). | |
dc.relation.referencesen | Thébault, E., Purucker, M., Whaler, K. A., Langlais, B. & | |
dc.relation.referencesen | Sabaka,T. J. (2010). The Magnetic Field of the Earth’s | |
dc.relation.referencesen | Lithosphere. Space Sci Rev. Springer Science+- | |
dc.relation.referencesen | Business Media B.V. DOI 10.1007/s11214-010-9667-6 | |
dc.relation.referencesen | Wasilewski, P. J. & Warner, R. D. (1988). Magnetic | |
dc.relation.referencesen | petrology of deep crustal rocks – Ivrea Zone, | |
dc.relation.referencesen | Italy. Earth. Planet. Sci.Lett. 87, 347–361. | |
dc.relation.uri | http://www.wdmam.org | |
dc.relation.uri | https://doi.org/10.1029/2012GL054100 | |
dc.relation.uri | https://doi.org/10.1029/2009JB006442 | |
dc.relation.uri | https://doi.org/10.1002/2017GC007344 | |
dc.relation.uri | http://doi.org/10.17721/1728-2713.79.05 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2020 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2020 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Orlyuk M. I., Drukarenko V. V., Shestopalova O. Ye. | |
dc.subject | магнітні аномалії | |
dc.subject | мантія | |
dc.subject | намагніченість | |
dc.subject | літосфера | |
dc.subject | магнітні мінерали | |
dc.subject | magnetic anomalies | |
dc.subject | mantle | |
dc.subject | magnetization | |
dc.subject | lithosphere | |
dc.subject | magnetic minerals | |
dc.subject.udc | 550.382.3 | |
dc.subject.udc | 550.382.8 | |
dc.title | Magneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview | |
dc.title.alternative | Магнітномінералогічне обґрунтування намагніченості верхньої мантії Землі. Огляд | |
dc.type | Article |
Files
License bundle
1 - 1 of 1