Magneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview

dc.citation.epage96
dc.citation.issue2 (29)
dc.citation.journalTitleГеодинаміка
dc.citation.spage89
dc.contributor.affiliationІнститут геофізики ім. С. І. Субботіна Національної академії наук України
dc.contributor.affiliationSubbotin Institute of Geophysics, National Academy of Sciences of Ukraine
dc.contributor.authorОрлюк, М. І.
dc.contributor.authorДрукаренко, В. В.
dc.contributor.authorШестопалова, О. Є.
dc.contributor.authorOrlyuk, M. I.
dc.contributor.authorDrukarenko, V. V.
dc.contributor.authorShestopalova, O. Ye.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-20T08:16:19Z
dc.date.available2023-06-20T08:16:19Z
dc.date.created2020-02-25
dc.date.issued2020-02-25
dc.description.abstractМета дослідження. Обґрунтувати, що джерела виявлених нині магнітних аномалій з довжинами хвиль у перші тисячі кілометрів можуть мати магнітно-мінералогічну природу за рахунок існування на мантійних глибинах магнітних мінералів, зокрема магнетиту, гематиту, самородного заліза, а також сплаву заліза та кобальту. Показати також, що зміна магнітних властивостей цих мінералів за рахунок термодинамічного та флюїдного режимів може бути причиною сучасних часових змін довгохвильових магнітних аномалій. Згідно з численними роботами різних авторів трансформації магнітних мінералів відбуваються в особливих тектонічних зонах верхньої мантії Землі, зокрема областях різних типів зчленування літосферних плит, рифтів, плюмів, тектонотермальної активізації тощо. Магнітними можуть бути ділянки верхньої мантії із температурами, нижчими від температури Кюрі магнетиту, наприклад, у зонах субдукції, кратонах та місцях з древньою океанічною літосферою. Окрім магнетиту та самородного заліза, потенційним джерелом магнітних аномалій верхньої мантії можуть бути оксиди заліза, зокрема гематит (α-Fe2O3), який є домінантним оксидом у зонах субдукції на глибинах від 300 до 600 км. Експериментально зарубіжні дослідники довели, що в холодних субдукційних плитах гематит може зберігати свої магнітні властивості до перехідної зони мантії (приблизно 410–600 км). Висновки. Виконаний огляд попередніх досліджень вітчизняних та зарубіжних авторів дав змогу обґрунтувати на магнітно-мінералогічному рівні можливість існування на мантійних глибинах намагнічених порід, зокрема самородного заліза, та можливі їх зміни за рахунок термодинамічних факторів та флюїдного режиму. Експериментально зарубіжні дослідники довели, що у місцях занурення літосферних плит на мантійних глибинах тривалий час може зберігатися їхня намагніченість, а також прогнозовано може спостерігатися підвищення магнітної сприйнятливості за рахунок ефекту Гопкінсона поблизу температури Кюрі магнітних мінералів. Практична значущість. Отримана інформація про те, що мантія до глибин перехідної зони може містити магнітні мінерали та мати залишкову намагніченість, допоможе в інтерпретації як сучасних магнітних аномалій, так і палеомагнітних даних
dc.description.abstractThe purpose of the study. It needs to substantiate that sources of magnetic anomalies with wavelengths of the first thousand kilometers detected at the present time might have a magneto-mineralogical origin due to the existence of magnetic minerals at the mantle depths, in particular magnetite, hematite, native iron, as well as iron alloys. It should be also shown that present temporal changes of long-wave magnetic anomalies should be induced by changes of the magnetic properties of these minerals due to thermodynamic and fluid modes. According to numerous authors, the transformations of magnetic minerals occur in special tectonic zones of the upper mantle of the Earth, in particular at junction zones of lithospheric plates of different types, rifts, plumes, tectonic-thermal activation, etc. Areas of the upper mantle with temperatures below the Curie temperature of magnetite can be magnetic, such as subduction zones, cratons, and regions with the old oceanic lithosphere. Iron oxides might be a potential source of magnetic anomalies of the upper mantle besides magnetite and native iron, in particular hematite (α-Fe2O3), which is the dominant oxide in subduction zones at depths of 300 to 600 km. It was proved experimentally by foreign researchers that in cold subduction slabs, hematite remains its magnetic properties up to the mantle transition zone (approximately 410–600 km). Conclusions. A review of previous studies of native and foreign authors has made it possible to substantiate the possibility of the existence of magnetized rocks at the mantle depths, including native iron at the magneto-mineralogical level, and their possible changes due to thermodynamic factors and fluid regime. It has been experimentally proven by foreign researchers that in subduction zones of the lithospheric slabs their magnetization might be preserved for a long time at the mantle depths, as well as increase of magnetic susceptibility may observed due to the Hopkinson effect near the Curie temperature of magnetic minerals. Practical value. Information about the ability of the mantle to contain magnetic minerals and to have a residual magnetization up to the depths of the transition zone was obtained. It should be used in the interpretation of both modern magnetic anomalies and paleomagnetic data.
dc.format.extent89-96
dc.format.pages8
dc.identifier.citationOrlyuk M. I. Magneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview / M. I. Orlyuk, V. V. Drukarenko, O. Ye. Shestopalova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 89–96.
dc.identifier.citationenOrlyuk M. I. Magneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview / M. I. Orlyuk, V. V. Drukarenko, O. Ye. Shestopalova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 89–96.
dc.identifier.doidoi.org/10.23939/jgd2020.02.089
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59304
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2 (29), 2020
dc.relation.ispartofGeodynamics, 2 (29), 2020
dc.relation.referencesBlakely, B., Brocher, T. & Wells, R. (2005). Subduction – zone magnetic anomalies and implications for
dc.relation.referenceshydrated forearc mantle. Geology, 33 (6), 445–448. DOI: 10.1130/G21447.1
dc.relation.referencesDrukarenko, V., Orlyuk, M. & Shestopalova, O.
dc.relation.references(2019). Magnetomineralogical substantiation of
dc.relation.referencesmagnetization of the rocks of the lower crust and
dc.relation.referencesupper mantle. Monitoring of Geological Processes
dc.relation.referencesand Ecological Condition of the Environment:
dc.relation.referencesMaterials of XIIIth International Scientific Conference,
dc.relation.referencesKyiv, 12–15 November 2019, Kyiv, Ukraine.
dc.relation.referencesConference CD-ROM Proceedings. DOI: 10.3997/2214-4609.201903209
dc.relation.referencesDunlop, D., Ozdemir, O. & Costanzo–Alvarez, V.
dc.relation.references(2010). Magnetic properties of rocks of the
dc.relation.referencesKapuskasing uplift (Ontario, Canada) and origin of
dc.relation.referenceslong-wavelength magnetic anomalies. Geophysical
dc.relation.referencesJournal International, 183, 645–658.
dc.relation.referencesDunlop, D. (2014). High-temperature susceptibility of
dc.relation.referencesmagnetite: a new pseudo-single-domain effect.
dc.relation.referencesGeophysical Journal International, 199, 707–716. DOI: 10.1093/gji/ggu247
dc.relation.referencesDyment, J., Lesur, V., Hamoudi, M., Choi, Y.,
dc.relation.referencesThebault, E., & Catalan, M. (2016). World Digital
dc.relation.referencesMagnetic Anomaly Map version 2.0. AGU Fall
dc.relation.referencesMeeting: Abstract GP13B-1310, San Francisco,
dc.relation.referencesCalif., 2015. Retrieved from http://www.wdmam.org
dc.relation.referencesFedorova, N. V. & Shapiro, V. A. (1998). Reference
dc.relation.referencesfield for the airborne magnetic data. Earth
dc.relation.referencesPlanets Space, 50, 397–404.
dc.relation.referencesFerre, E. C., Friedman, S. A., Martin-Hernandez, F.,
dc.relation.referencesFeinberg, J. M., Conder, J. A., & Lonov, D. A.
dc.relation.references(2013). The magnetism of mantle xenoliths and
dc.relation.referencespotential implications for sub – Moho magnetic
dc.relation.referencessources. Geophysical Researh Letters,
dc.relation.referencesAmerican Geophysics Union, 40 (1), 105–110.
dc.relation.referenceshttps://doi.org/10.1029/2012GL054100.
dc.relation.referencesFerré, E. C., Friedman, S. A, Martín-Hernández, F.,
dc.relation.referencesFeinberg, J. M., Till, J. L., Ionov, D. A. &
dc.relation.referencesConder, J. A. (2014). Eight good reasons why the
dc.relation.referencesuppermost mantle could be magnetic. Tectonophysics, 624–625, 3–14.
dc.relation.referencesFluid regime of the Earth’s crust and upper mantle
dc.relation.references(1977). Мoscow: Nauka, 210 p. (in Russian).
dc.relation.referencesFrost, D. J. & McCammon, C. A. (2008). The redox
dc.relation.referencesstate of Earth’s mantle. Ann. Rev. Earth Planet.
dc.relation.referencesSci., 36, 389–420.
dc.relation.referencesGadirov, V. G., Eppelbaum, L. V., Kuderavets, R.,
dc.relation.referencesMenshov, O., Gadirov, K. (2018). Indicative
dc.relation.referencesfeatures of local magnetic anomalies from
dc.relation.referenceshydrocarbon deposits: Examples from Azerbaijan
dc.relation.referencesand Ukraine. Acta Geophysica, 66(6), 1463–1483. DOI: 10.1007/s11600-018-0224-0.
dc.relation.referencesGantimurov, А. F. (1982). Fluid regime of iron-silicon
dc.relation.referencessystems. Nauka, Novosibirsk, 69. (in Russian)
dc.relation.referencesGenshaft, Yu. S., Tselmovich, V. А. & Gapeev, А. К.
dc.relation.references(2000). Crystallization of high-titanium ferrospinel in
dc.relation.referencessilicate melts under PT conditions of the upper
dc.relation.referencesmantle. Paleomagnetism and rock magnetism.
dc.relation.referencesМoscow, 18–20. (in Russian).
dc.relation.referencesGoncharov, A. G., Ionov, D. A., Doucet, L. S. &
dc.relation.referencesPokhilenko, L. N. (2012). Thermal state, oxygen
dc.relation.referencesfugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data peridotite xenoliths from the
dc.relation.referencesUdachnaya kimberlite, Siberia. Earth Planet. Sci.
dc.relation.referencesLett., 357–358. doi:10.1016/j.epsl.2012.09.016.
dc.relation.referencesIshii, T., Huang, R., Myhill, R., Fei, H., Koemets, I.,
dc.relation.referencesLiu, Z., Katsura, T. (2019). Sharp 660-km
dc.relation.referencesdiscontinuity controlled by extremely narrow
dc.relation.referencesbinary post-spinel transition. Nature Geoscience, 12 (10), 1–4. DOI: 10.1038/s41561-019-0452-1.
dc.relation.referencesКadik, А. А., Lukanin, О. А. & Portnyagin, А. L.
dc.relation.references(1990). Magma formation during the upward
dc.relation.referencesmovement of mantle matter: temperature regime
dc.relation.referencesand composition of the melts formed during
dc.relation.referencesadiabatic decompression of mantle ultrabasites.
dc.relation.referencesGeohimiya, 9, 1263–1276. (in Russian).
dc.relation.referencesKiseeva, E., Vasiukov, D., Wood, B., McCammon,
dc.relation.referencesC., Stachel, T., Bykov, Dubrovinsky, L. (2018).
dc.relation.referencesOxidized iron in garnets from the mantle transition
dc.relation.referenceszone. Nature Geoscience, 11(2), 144–147. DOI: 10.1038/s41561-017-0055-7
dc.relation.referencesKiss, J., Prácser, E., Szarka, L., & Ádám, A. (2010).
dc.relation.referencesMagnetic phase transition and the magnetotellurics.
dc.relation.referencesMagyar geofizika, 51 (2), 1–15.
dc.relation.referencesKletetschka, G., Wasilewski, P. & Taylor, P. (2002). The
dc.relation.referencesrole of hematite-ilmenite solid solution in the
dc.relation.referencesproduction of magnetic anomalies in ground- and
dc.relation.referencessatellite-based data. Tectonophysics, 347,167–177.
dc.relation.referencesKomabayashi, T. & Fei, Y. (2010). Internally
dc.relation.referencesconsistent thermodynamic database for iron to
dc.relation.referencesthe Earth’s core conditions. Journal of
dc.relation.referencesGeophysical research. Solid Earth, 115, B3.
dc.relation.referenceshttps://doi.org/10.1029/2009JB006442
dc.relation.referencesKorolev, E. A., Bakhtin A. I., Shilovskii, O. P., Nikolaeva, V. M., Vorobjov, V. V., Osin, Yu. N., Barieva, E.
dc.relation.referencesR. (2013). The finds of native iron in pyrite nodules
dc.relation.referencesfrom the Middle Jurassic deposits of Tatarstan.
dc.relation.referencesUchenye zapiski Kazanskogo Universiteta.
dc.relation.referencesEstestvennye nauki, 155, 2, 182–189. (in Russian).
dc.relation.referencesKnafelc, J., Filiberto, J., Ferre, E., Conder, J.,
dc.relation.referencesCostello, L., Crandall, J., Schwenzer, S (2019).
dc.relation.referencesThe effect of oxidation on the mineralogy
dc.relation.referencesand magnetic properties of olivine. American
dc.relation.referencesMineralogist, Vol. 104, 694–702. DOI: 10.2138/am2019-6829.
dc.relation.referencesKupenko, I., Aprilis, G., Vasiukov, D. M., McCammon,
dc.relation.referencesC., Chariton, S., Cerantola, V., ... & Sanchez-Valle,
dc.relation.referencesC. (2019). Magnetism in cold subducting slabs at
dc.relation.referencesmantle transition zone depths. Nature, 570(7759), 102–106. DOI: 10.1038/s41586-019-1254-8.
dc.relation.referencesKvasnitsa, I. V. & Kosovskiy, Ya. I. (2006). Native iron
dc.relation.referencesfrom the basalts of Volhyn (Ukraine). Theory, history,
dc.relation.referencesphilosophy and practice of mineralogy: Materials of
dc.relation.referencesIV International mineralogical seminar, Syktyvkar,
dc.relation.referencesGeoprint, 2006, 122–123. (in Russian).
dc.relation.referencesLykasov, А. А., Ryss, G. М. & Vlasova, I. S. (2013).
dc.relation.referencesPhase transformations during the reduction of
dc.relation.referencessulphide copper smelting slag by gasification
dc.relation.referencesproducts of carbonaceous reducing agents at a
dc.relation.referencestemperature of 1320 K. Vestnik YuUUrGU. Seriya
dc.relation.references“Мetallurgiya”, 13 (1), 24–28. (in Russian).
dc.relation.referencesMalvoisin, B., Carlut, J. & Brunet, F. (2012). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production
dc.relation.referencesin hydrothermal experiments. Journal of
dc.relation.referencesGeophysical research, Vol. 117, B01104.
dc.relation.referencesDOI: 10.1029/2011JB008612.
dc.relation.referencesМarakushev, А. А. & Genkin, А. D. (1972). Thermodynamic conditions of the formation of metal
dc.relation.referencescarbides in connection with their presence in mafic,
dc.relation.referenceshyperbasite and in copper-nickel sulfide ores. Vestnik
dc.relation.referencesMGU. Geology, 5, 7–27. (in Russian).
dc.relation.referencesMcEnroe, S. A., Robinson P., Church, N. & Purucker,
dc.relation.referencesM. (2018). Magnetism at Depth: A View from an
dc.relation.referencesAncient Continental Subduction and Collision
dc.relation.referencesZone. Geochemistry Geophysics Geosystems, 4
dc.relation.references(19). https://doi.org/10.1002/2017GC007344.
dc.relation.referencesМelnik, Yu. P. & Stebnovskaya, Yu. М. (1976). The
dc.relation.referencesnature of the distribution of iron and the conditions
dc.relation.referencesof the formation of ferromagnetic minerals.
dc.relation.referencesMagnetic Anomalies of the Earth’s Depths. Кiev:
dc.relation.referencesNaukova dumka, 64–73. (in Russian).
dc.relation.referencesMenshov, O. & Sukhorada, A. (2017). Basic theory and
dc.relation.referencesmethodology of soil geophysics: the first results of
dc.relation.referencesapplication. Visnyk of Taras Shevchenko National
dc.relation.referencesUniversity of Kyiv: Geology, 4 (79), 35–39. http://doi.org/10.17721/1728-2713.79.05 (in Ukrainian).
dc.relation.referencesOrlyuk, М. I. & Pashkevich, I. К. (2012). Deep sources of
dc.relation.referencesregional magnetic anomalies: tectonotypes and the
dc.relation.referencesrelationship with transcore faults. Heofizicheskiy
dc.relation.referenceszhurnal, 34 (4), 224–234. (in Russian).
dc.relation.referencesOrlyuk, М. I., Marchenko, А. V. & Romenets, А. А.
dc.relation.references(2017). Spatial-temporeral changes in the
dc.relation.referencesgeomagnetic field and seismisity. Heofizicheskiy
dc.relation.referenceszhurnal, 39 (6), 84–105. (in Russian).
dc.relation.referencesOrlyuk, М. I., Pashkevich, I. К., Marchenko, А. V. &
dc.relation.referencesRomenets, А. А. (2019). Crustal-mantle (?) origin
dc.relation.referencesof the long-wave Central European magnetic
dc.relation.referencesanomaly. Geophysics and geodynamics: forecasting
dc.relation.referencesand monitoring of the geological environment. Ed.
dc.relation.referencesV. Yu. Maksymchuk. Lviv: Rastr-7, 143–146. (in
dc.relation.referencesUkrainian).
dc.relation.referencesOrlyuk, M. I. (1999). Magnetic model of the Earth’s crust
dc.relation.referencesof the south-west of the East European platform
dc.relation.references(Doctoral dissertation). Kyiv, 404. (in Russian).
dc.relation.referencesPecherskiy, D. M. (Ed.). (1994). Petromagnetic model
dc.relation.referencesof the lithosphere. Кyiv: Naukova Dumka, 176.
dc.relation.references(in Russian).
dc.relation.referencesPecherskiy, D. M. (2016). Occurrence of metal iron
dc.relation.referencesinside planets. Heofizicheskiy zhurnal, 38 (5), 13–25. (in Russian).
dc.relation.referencesRyabov, V. V., Pavlov, А. А. & Lopatin, G. G. (1985).
dc.relation.referencesNative iron of Siberian traps. Novosibirsk: Nauka, 169. (in Russian)
dc.relation.referencesShteinberg, D. S. & Lagutina, М. V. (1984). Carbon
dc.relation.referencesin ultrabasits and basits. Мoscow: Nauka, 110 P.
dc.relation.references(in Russian).
dc.relation.referencesSlama, J., Usakova, M., Soka, M., Dosoudil, R. &
dc.relation.referencesJansarik, V. (2017). Hopkinson Effect in Soft and
dc.relation.referencesHard Magnetic Ferrites. 16th Czech and Slovak
dc.relation.referencesConference on Magnetism, Košice, Slovakia,
dc.relation.referencesJune 13–17. Acta Physica Polonica A, 131(4), 762–764. DOI: 10.12693/APhysPolA.131.762
dc.relation.referencesSorokhtin, О. G. & Ushakov, S А. (2002). Evolution
dc.relation.referencesof the Earth. Мoscow: Publishing of МGU, 506 p.
dc.relation.references(in Russian).
dc.relation.referencesThébault, E., Purucker, M., Whaler, K. A., Langlais, B. &
dc.relation.referencesSabaka,T. J. (2010). The Magnetic Field of the Earth’s
dc.relation.referencesLithosphere. Space Sci Rev. Springer Science+-
dc.relation.referencesBusiness Media B.V. DOI 10.1007/s11214-010-9667-6
dc.relation.referencesWasilewski, P. J. & Warner, R. D. (1988). Magnetic
dc.relation.referencespetrology of deep crustal rocks – Ivrea Zone,
dc.relation.referencesItaly. Earth. Planet. Sci.Lett. 87, 347–361.
dc.relation.referencesenBlakely, B., Brocher, T. & Wells, R. (2005). Subduction – zone magnetic anomalies and implications for
dc.relation.referencesenhydrated forearc mantle. Geology, 33 (6), 445–448. DOI: 10.1130/G21447.1
dc.relation.referencesenDrukarenko, V., Orlyuk, M. & Shestopalova, O.
dc.relation.referencesen(2019). Magnetomineralogical substantiation of
dc.relation.referencesenmagnetization of the rocks of the lower crust and
dc.relation.referencesenupper mantle. Monitoring of Geological Processes
dc.relation.referencesenand Ecological Condition of the Environment:
dc.relation.referencesenMaterials of XIIIth International Scientific Conference,
dc.relation.referencesenKyiv, 12–15 November 2019, Kyiv, Ukraine.
dc.relation.referencesenConference CD-ROM Proceedings. DOI: 10.3997/2214-4609.201903209
dc.relation.referencesenDunlop, D., Ozdemir, O. & Costanzo–Alvarez, V.
dc.relation.referencesen(2010). Magnetic properties of rocks of the
dc.relation.referencesenKapuskasing uplift (Ontario, Canada) and origin of
dc.relation.referencesenlong-wavelength magnetic anomalies. Geophysical
dc.relation.referencesenJournal International, 183, 645–658.
dc.relation.referencesenDunlop, D. (2014). High-temperature susceptibility of
dc.relation.referencesenmagnetite: a new pseudo-single-domain effect.
dc.relation.referencesenGeophysical Journal International, 199, 707–716. DOI: 10.1093/gji/ggu247
dc.relation.referencesenDyment, J., Lesur, V., Hamoudi, M., Choi, Y.,
dc.relation.referencesenThebault, E., & Catalan, M. (2016). World Digital
dc.relation.referencesenMagnetic Anomaly Map version 2.0. AGU Fall
dc.relation.referencesenMeeting: Abstract GP13B-1310, San Francisco,
dc.relation.referencesenCalif., 2015. Retrieved from http://www.wdmam.org
dc.relation.referencesenFedorova, N. V. & Shapiro, V. A. (1998). Reference
dc.relation.referencesenfield for the airborne magnetic data. Earth
dc.relation.referencesenPlanets Space, 50, 397–404.
dc.relation.referencesenFerre, E. C., Friedman, S. A., Martin-Hernandez, F.,
dc.relation.referencesenFeinberg, J. M., Conder, J. A., & Lonov, D. A.
dc.relation.referencesen(2013). The magnetism of mantle xenoliths and
dc.relation.referencesenpotential implications for sub – Moho magnetic
dc.relation.referencesensources. Geophysical Researh Letters,
dc.relation.referencesenAmerican Geophysics Union, 40 (1), 105–110.
dc.relation.referencesenhttps://doi.org/10.1029/2012GL054100.
dc.relation.referencesenFerré, E. C., Friedman, S. A, Martín-Hernández, F.,
dc.relation.referencesenFeinberg, J. M., Till, J. L., Ionov, D. A. &
dc.relation.referencesenConder, J. A. (2014). Eight good reasons why the
dc.relation.referencesenuppermost mantle could be magnetic. Tectonophysics, 624–625, 3–14.
dc.relation.referencesenFluid regime of the Earth’s crust and upper mantle
dc.relation.referencesen(1977). Moscow: Nauka, 210 p. (in Russian).
dc.relation.referencesenFrost, D. J. & McCammon, C. A. (2008). The redox
dc.relation.referencesenstate of Earth’s mantle. Ann. Rev. Earth Planet.
dc.relation.referencesenSci., 36, 389–420.
dc.relation.referencesenGadirov, V. G., Eppelbaum, L. V., Kuderavets, R.,
dc.relation.referencesenMenshov, O., Gadirov, K. (2018). Indicative
dc.relation.referencesenfeatures of local magnetic anomalies from
dc.relation.referencesenhydrocarbon deposits: Examples from Azerbaijan
dc.relation.referencesenand Ukraine. Acta Geophysica, 66(6), 1463–1483. DOI: 10.1007/s11600-018-0224-0.
dc.relation.referencesenGantimurov, A. F. (1982). Fluid regime of iron-silicon
dc.relation.referencesensystems. Nauka, Novosibirsk, 69. (in Russian)
dc.relation.referencesenGenshaft, Yu. S., Tselmovich, V. A. & Gapeev, A. K.
dc.relation.referencesen(2000). Crystallization of high-titanium ferrospinel in
dc.relation.referencesensilicate melts under PT conditions of the upper
dc.relation.referencesenmantle. Paleomagnetism and rock magnetism.
dc.relation.referencesenMoscow, 18–20. (in Russian).
dc.relation.referencesenGoncharov, A. G., Ionov, D. A., Doucet, L. S. &
dc.relation.referencesenPokhilenko, L. N. (2012). Thermal state, oxygen
dc.relation.referencesenfugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data peridotite xenoliths from the
dc.relation.referencesenUdachnaya kimberlite, Siberia. Earth Planet. Sci.
dc.relation.referencesenLett., 357–358. doi:10.1016/j.epsl.2012.09.016.
dc.relation.referencesenIshii, T., Huang, R., Myhill, R., Fei, H., Koemets, I.,
dc.relation.referencesenLiu, Z., Katsura, T. (2019). Sharp 660-km
dc.relation.referencesendiscontinuity controlled by extremely narrow
dc.relation.referencesenbinary post-spinel transition. Nature Geoscience, 12 (10), 1–4. DOI: 10.1038/s41561-019-0452-1.
dc.relation.referencesenKadik, A. A., Lukanin, O. A. & Portnyagin, A. L.
dc.relation.referencesen(1990). Magma formation during the upward
dc.relation.referencesenmovement of mantle matter: temperature regime
dc.relation.referencesenand composition of the melts formed during
dc.relation.referencesenadiabatic decompression of mantle ultrabasites.
dc.relation.referencesenGeohimiya, 9, 1263–1276. (in Russian).
dc.relation.referencesenKiseeva, E., Vasiukov, D., Wood, B., McCammon,
dc.relation.referencesenC., Stachel, T., Bykov, Dubrovinsky, L. (2018).
dc.relation.referencesenOxidized iron in garnets from the mantle transition
dc.relation.referencesenzone. Nature Geoscience, 11(2), 144–147. DOI: 10.1038/s41561-017-0055-7
dc.relation.referencesenKiss, J., Prácser, E., Szarka, L., & Ádám, A. (2010).
dc.relation.referencesenMagnetic phase transition and the magnetotellurics.
dc.relation.referencesenMagyar geofizika, 51 (2), 1–15.
dc.relation.referencesenKletetschka, G., Wasilewski, P. & Taylor, P. (2002). The
dc.relation.referencesenrole of hematite-ilmenite solid solution in the
dc.relation.referencesenproduction of magnetic anomalies in ground- and
dc.relation.referencesensatellite-based data. Tectonophysics, 347,167–177.
dc.relation.referencesenKomabayashi, T. & Fei, Y. (2010). Internally
dc.relation.referencesenconsistent thermodynamic database for iron to
dc.relation.referencesenthe Earth’s core conditions. Journal of
dc.relation.referencesenGeophysical research. Solid Earth, 115, B3.
dc.relation.referencesenhttps://doi.org/10.1029/2009JB006442
dc.relation.referencesenKorolev, E. A., Bakhtin A. I., Shilovskii, O. P., Nikolaeva, V. M., Vorobjov, V. V., Osin, Yu. N., Barieva, E.
dc.relation.referencesenR. (2013). The finds of native iron in pyrite nodules
dc.relation.referencesenfrom the Middle Jurassic deposits of Tatarstan.
dc.relation.referencesenUchenye zapiski Kazanskogo Universiteta.
dc.relation.referencesenEstestvennye nauki, 155, 2, 182–189. (in Russian).
dc.relation.referencesenKnafelc, J., Filiberto, J., Ferre, E., Conder, J.,
dc.relation.referencesenCostello, L., Crandall, J., Schwenzer, S (2019).
dc.relation.referencesenThe effect of oxidation on the mineralogy
dc.relation.referencesenand magnetic properties of olivine. American
dc.relation.referencesenMineralogist, Vol. 104, 694–702. DOI: 10.2138/am2019-6829.
dc.relation.referencesenKupenko, I., Aprilis, G., Vasiukov, D. M., McCammon,
dc.relation.referencesenC., Chariton, S., Cerantola, V., ... & Sanchez-Valle,
dc.relation.referencesenC. (2019). Magnetism in cold subducting slabs at
dc.relation.referencesenmantle transition zone depths. Nature, 570(7759), 102–106. DOI: 10.1038/s41586-019-1254-8.
dc.relation.referencesenKvasnitsa, I. V. & Kosovskiy, Ya. I. (2006). Native iron
dc.relation.referencesenfrom the basalts of Volhyn (Ukraine). Theory, history,
dc.relation.referencesenphilosophy and practice of mineralogy: Materials of
dc.relation.referencesenIV International mineralogical seminar, Syktyvkar,
dc.relation.referencesenGeoprint, 2006, 122–123. (in Russian).
dc.relation.referencesenLykasov, A. A., Ryss, G. M. & Vlasova, I. S. (2013).
dc.relation.referencesenPhase transformations during the reduction of
dc.relation.referencesensulphide copper smelting slag by gasification
dc.relation.referencesenproducts of carbonaceous reducing agents at a
dc.relation.referencesentemperature of 1320 K. Vestnik YuUUrGU. Seriya
dc.relation.referencesen"Metallurgiya", 13 (1), 24–28. (in Russian).
dc.relation.referencesenMalvoisin, B., Carlut, J. & Brunet, F. (2012). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production
dc.relation.referencesenin hydrothermal experiments. Journal of
dc.relation.referencesenGeophysical research, Vol. 117, B01104.
dc.relation.referencesenDOI: 10.1029/2011JB008612.
dc.relation.referencesenMarakushev, A. A. & Genkin, A. D. (1972). Thermodynamic conditions of the formation of metal
dc.relation.referencesencarbides in connection with their presence in mafic,
dc.relation.referencesenhyperbasite and in copper-nickel sulfide ores. Vestnik
dc.relation.referencesenMGU. Geology, 5, 7–27. (in Russian).
dc.relation.referencesenMcEnroe, S. A., Robinson P., Church, N. & Purucker,
dc.relation.referencesenM. (2018). Magnetism at Depth: A View from an
dc.relation.referencesenAncient Continental Subduction and Collision
dc.relation.referencesenZone. Geochemistry Geophysics Geosystems, 4
dc.relation.referencesen(19). https://doi.org/10.1002/2017GC007344.
dc.relation.referencesenMelnik, Yu. P. & Stebnovskaya, Yu. M. (1976). The
dc.relation.referencesennature of the distribution of iron and the conditions
dc.relation.referencesenof the formation of ferromagnetic minerals.
dc.relation.referencesenMagnetic Anomalies of the Earth’s Depths. Kiev:
dc.relation.referencesenNaukova dumka, 64–73. (in Russian).
dc.relation.referencesenMenshov, O. & Sukhorada, A. (2017). Basic theory and
dc.relation.referencesenmethodology of soil geophysics: the first results of
dc.relation.referencesenapplication. Visnyk of Taras Shevchenko National
dc.relation.referencesenUniversity of Kyiv: Geology, 4 (79), 35–39. http://doi.org/10.17721/1728-2713.79.05 (in Ukrainian).
dc.relation.referencesenOrlyuk, M. I. & Pashkevich, I. K. (2012). Deep sources of
dc.relation.referencesenregional magnetic anomalies: tectonotypes and the
dc.relation.referencesenrelationship with transcore faults. Heofizicheskiy
dc.relation.referencesenzhurnal, 34 (4), 224–234. (in Russian).
dc.relation.referencesenOrlyuk, M. I., Marchenko, A. V. & Romenets, A. A.
dc.relation.referencesen(2017). Spatial-temporeral changes in the
dc.relation.referencesengeomagnetic field and seismisity. Heofizicheskiy
dc.relation.referencesenzhurnal, 39 (6), 84–105. (in Russian).
dc.relation.referencesenOrlyuk, M. I., Pashkevich, I. K., Marchenko, A. V. &
dc.relation.referencesenRomenets, A. A. (2019). Crustal-mantle (?) origin
dc.relation.referencesenof the long-wave Central European magnetic
dc.relation.referencesenanomaly. Geophysics and geodynamics: forecasting
dc.relation.referencesenand monitoring of the geological environment. Ed.
dc.relation.referencesenV. Yu. Maksymchuk. Lviv: Rastr-7, 143–146. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenOrlyuk, M. I. (1999). Magnetic model of the Earth’s crust
dc.relation.referencesenof the south-west of the East European platform
dc.relation.referencesen(Doctoral dissertation). Kyiv, 404. (in Russian).
dc.relation.referencesenPecherskiy, D. M. (Ed.). (1994). Petromagnetic model
dc.relation.referencesenof the lithosphere. Kyiv: Naukova Dumka, 176.
dc.relation.referencesen(in Russian).
dc.relation.referencesenPecherskiy, D. M. (2016). Occurrence of metal iron
dc.relation.referenceseninside planets. Heofizicheskiy zhurnal, 38 (5), 13–25. (in Russian).
dc.relation.referencesenRyabov, V. V., Pavlov, A. A. & Lopatin, G. G. (1985).
dc.relation.referencesenNative iron of Siberian traps. Novosibirsk: Nauka, 169. (in Russian)
dc.relation.referencesenShteinberg, D. S. & Lagutina, M. V. (1984). Carbon
dc.relation.referencesenin ultrabasits and basits. Moscow: Nauka, 110 P.
dc.relation.referencesen(in Russian).
dc.relation.referencesenSlama, J., Usakova, M., Soka, M., Dosoudil, R. &
dc.relation.referencesenJansarik, V. (2017). Hopkinson Effect in Soft and
dc.relation.referencesenHard Magnetic Ferrites. 16th Czech and Slovak
dc.relation.referencesenConference on Magnetism, Košice, Slovakia,
dc.relation.referencesenJune 13–17. Acta Physica Polonica A, 131(4), 762–764. DOI: 10.12693/APhysPolA.131.762
dc.relation.referencesenSorokhtin, O. G. & Ushakov, S A. (2002). Evolution
dc.relation.referencesenof the Earth. Moscow: Publishing of MGU, 506 p.
dc.relation.referencesen(in Russian).
dc.relation.referencesenThébault, E., Purucker, M., Whaler, K. A., Langlais, B. &
dc.relation.referencesenSabaka,T. J. (2010). The Magnetic Field of the Earth’s
dc.relation.referencesenLithosphere. Space Sci Rev. Springer Science+-
dc.relation.referencesenBusiness Media B.V. DOI 10.1007/s11214-010-9667-6
dc.relation.referencesenWasilewski, P. J. & Warner, R. D. (1988). Magnetic
dc.relation.referencesenpetrology of deep crustal rocks – Ivrea Zone,
dc.relation.referencesenItaly. Earth. Planet. Sci.Lett. 87, 347–361.
dc.relation.urihttp://www.wdmam.org
dc.relation.urihttps://doi.org/10.1029/2012GL054100
dc.relation.urihttps://doi.org/10.1029/2009JB006442
dc.relation.urihttps://doi.org/10.1002/2017GC007344
dc.relation.urihttp://doi.org/10.17721/1728-2713.79.05
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2020
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2020
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Orlyuk M. I., Drukarenko V. V., Shestopalova O. Ye.
dc.subjectмагнітні аномалії
dc.subjectмантія
dc.subjectнамагніченість
dc.subjectлітосфера
dc.subjectмагнітні мінерали
dc.subjectmagnetic anomalies
dc.subjectmantle
dc.subjectmagnetization
dc.subjectlithosphere
dc.subjectmagnetic minerals
dc.subject.udc550.382.3
dc.subject.udc550.382.8
dc.titleMagneto-mineralogical grounds of the earth’s upper mantle magnetization. Overview
dc.title.alternativeМагнітномінералогічне обґрунтування намагніченості верхньої мантії Землі. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020n2_Orlyuk_M_I-Magneto_mineralogical_grounds_89-96.pdf
Size:
667.69 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020n2_Orlyuk_M_I-Magneto_mineralogical_grounds_89-96__COVER.png
Size:
1.43 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: