Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation

dc.citation.epage266
dc.citation.issue2
dc.citation.spage259
dc.contributor.affiliationInstitute of Sorption and Problem Endoecology of NAS of Ukraine
dc.contributor.authorRedkina, Antonina
dc.contributor.authorKonovalova, Nadezhda
dc.contributor.authorKravchenko, Nikolay
dc.contributor.authorStrelko, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:12:58Z
dc.date.available2024-01-22T11:12:58Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractСферично гранульований, аморфний, мезопоруватий каталізатор отримано нанесенням V2O5 на синтезований прямим золь-гель способом гідрогель ZrO2-SiO2 та ідентифікований методами СЕМ, РФА та адсорбції/десорбції N2. Показано, що його гідротермальне і спиртове оброблення підвищує питому поверхню, об'єм і ширину пор і приводить до збільшення виходу пропілену в реакції дегідрування пропану та зниження температури досягнення його високих значень.
dc.description.abstractA spherically granular, amorphous, mesoporous catalyst was obtained by supporting V2O5 on synthesized by direct sol-gel method of ZrO2-SiO2 hydrogel and was identified by SEM, XRD and N2 adsorption / desorption. It is shown that its hydrothermal and alcohol treatment increases the specific surface, volume and width of pores and leads to an increase in the yield of propylene in the reaction of propane dehydrogenation and decreases the temperature of reaching its high values.
dc.format.extent259-266
dc.format.pages8
dc.identifier.citationInfluence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation / Antonina Redkina, Nadezhda Konovalova, Nikolay Kravchenko, Volodymyr Strelko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 259–266.
dc.identifier.citationenInfluence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation / Antonina Redkina, Nadezhda Konovalova, Nikolay Kravchenko, Volodymyr Strelko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 259–266.
dc.identifier.doidoi.org/10.23939/chcht16.02.259
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60966
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Liu, G.; Zhao, Z.-J.; Wu, T.; Zeng, L.; Gong, J. Nature of the Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation. ACS Catal. 2016, 6, 5207-5214. https://doi.org/10.1021/acscatal.6b00893
dc.relation.references[2] Rodemerck, U.; Stoyanova, M.; Kondratenko, E.V.; Linke D. Influence of the Kind of VOx Structures in VOx/MCM-41 on Activity, Selectivity and Stability in Dehydrogenation of Propane and Isobutane. J. Catal. 2017, 352, 256-263. https://doi.org/10.1016/j.jcat.2017.05.022
dc.relation.references[3] Zhao, J.-Z.; Wu, T.; Xiong, C.; Sun, G.; Mu, R.; Zeng, L.; Gong, J. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VOx/γ-Al2O3 Catalysts with Improved Stability. Angew. Chem. Int. Ed. 2018, 57, 6791-6795. https://doi.org/10.1002/ange.201800123
dc.relation.references[4] Nawaz, Z. Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review. Rev. Chem. Eng. 2015, 31, 413-436. https://doi.org/10.1515/revce-2015-0012
dc.relation.references[5] Sattler, J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114 (20), 10613-10653. https://doi.org/10.1021/cr5002436
dc.relation.references[6] Pham, H.N.; Sattler, J.H.B.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the Regeneration of Pt/γ-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal., 2016, 6, 2257-2264. https://doi.org/10.1021/acscatal.5b02917
dc.relation.references[7] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Comparative Study of Propane Dehydrogenation Over V-, Cr-, and Pt-Based Catalysts: Time On-Stream Behavior and Origins of Deactivation. J. Catal. 2012, 293, 67-75. https://doi.org/10.1016/j.jcat.2012.06.005
dc.relation.references[8] Zazhigalov, V.A.; Konovalova, N.D.; Redkina, A.V.; Khomenko, K.N. Sravnitelnoe Issledovanie Degidrirovaniia Propana na VOx/MCM-41 i VOx/Ti-MCM-41 s Polucheniem Propilena i Vodoroda. Ukr. Khim. Zh. 2013, 79 (11), 63-72.
dc.relation.references[9] Redkina, A.V.; Konovalova, N.D.; Khomenko, K.N. Degidrirovanie Propana na VxOy/H-Ti-MCM-41. Zh. Khim. Phis. ta Tekhnol. Poverkhni, 2014, 5 (2), 174-189.
dc.relation.references[10] Cavani, F.; Ballarini, N.; Cericola, A. Oxidative Dehydrogenation of Ethane and Propane: How far from Commercial Implementation? Catal. Today, 2007, 127, 113-131. https://doi.org/10.1016/j.cattod.2007.05.009
dc.relation.references[11] Otroshchenko, T.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-Based Unconventional Catalysts for Non-Oxidative Propane Dehydrogenation: Factors Determining Catalytic Activity. J. Catal. 2017, 348, 282-290. https://doi.org/10.1016/j.jcat.2017.02.016
dc.relation.references[12] Otroshchenko, T.; Bulavchenko, O.; Thanh, H.V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Rodemerck, U.; Paul, B.; Kraehnert, R.; Linke, D. et al. Controlling Activity and Selectivity of Bare ZrO2 in Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 585, 117189. https://doi.org/10.1016/j.apcata.2019.117189
dc.relation.references[13] Jeon, N.; Choe, H.; Jrong, B.; Yun, Y. Cu-Promoted Zirconia Catalysts for Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 586, 117211. https://doi.org/10.1016/j.apcata.2019.117211
dc.relation.references[14] Redkina, A.V.; Konovalova, N.D.; Kravchenko, N.V.; Strelko, V.V. Degidrirovanie Propana v Propilen na V2O5, Nanesennom na Micro-Mezoporistuiu Sistemu Oksidov ZrO2-SiO2-TiO2. Ukr. Khim. Zh., 2018, 84 (7), 43-59.
dc.relation.references[15] Redkina A.V., Konovalova N.D., Strelko V.V.: Sposib Oderzhannia Katalizatora Dehidruvannia Propanu v Propilen. Patent UA 131758 U, January 25, 2019.
dc.relation.references[16] Karakoulia, S.A.; Triantafyllidis, K.S.; Lemonidou, A.A. Preparation and Characterization of Vanadia Catalysts Supported on Non-Porous, Microporous and Mesoporous Silicates for Oxidative Dehydrogenation of Propane (ODP). Micropor. Mesopor. Mater. 2008, 110, 157-166. https://doi.org/10.1016/j.micromeso.2007.10.027
dc.relation.references[17] Selvam, P.; Dapurkar, S.E. The Effect of Vanadium Sources on the Synthesis and Catalytic Activity of VMCM-41. J. Catal. 2005, 229, 64-71. https://doi.org/10.1016/j.jcat.2004.10.005
dc.relation.references[18] Yamaguchi, T. Application of ZrO2 as a Catalyst and a Catalyst Support. Catal. Today 1994, 20, 199-217. https://doi.org/10.1016/0920-5861(94)80003-0
dc.relation.references[19] Cimino, A.; Cordischi, D.; De Rossi, S. Ferraris, G.; Gazzoli, D.; Indovina, V.; Minelli, G.; Occhiuzzi, M.; Valigi, M. Studies on Chromia/Zirconia Catalysts I. Preparation and Characterization of the System. J. Catal. 1991, 127, 744-760. https://doi.org/10.1016/0021-9517(91)90196-B
dc.relation.references[20] Zhao, B.Y.; Xu, X.P.; Ma, H.R.; Sun, D.H.; Gao. J.M. Monolayer Dispersion of Oxides and Salts on Surface of ZrO2 and Its Application in Preparation of ZrO2-Supported Catalysts with High Surface Areas. Catal. Lett. 1997, 45, 237-244. https://doi.org/10.1023/A:1019048503124
dc.relation.references[21] Tanabe, K.; Yamaguchi, T. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides. Catal. Today, 1994, 20, 185-197. https://doi.org/10.1016/0920-5861(94)80002-2
dc.relation.references[22] Raju, V.; Jaenicke, S.; Chuah, G.-K. Effect of Hydrothermal Treatment and Silica on Thermal Stability and Oxygen Storage Capacity of Ceria–Zirconia. Appl. Catal. B, 2009, 91, 92-100. https://doi.org/10.1016/j.apcatb.2009.05.010
dc.relation.references[23] He, X.; Zhang, H.; Li ,Y.; Hong, C.Q.; Zhao, J.P. Preparation and Structural Characterization of SiO2-ZrO2 Aerogels. Key Eng. Mater. 2007, 336-338, 2282-2285. https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282
dc.relation.references[24] Sing, K.S.W.; Everett, D.H.; Haul. R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619. https://doi.org/10.1351/pac198254112201
dc.relation.references[25] Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. J. Phys. Chem. B, 2001, 105, 8107-8111. https://doi.org/10.1021/jp010526l
dc.relation.references[26] Khodakov, A.; Yang, J.; Su, S.; Iglesia, E.; Bell, A.T. Structure and Properties of Vanadium Oxide-Zirconia Catalysts for Propane Oxidative Dehydrogenation. J. Catal. 1998, 177, 343-351. https://doi.org/10.1006/jcat.1998.2143
dc.relation.references[27] del Monte F., Larsen W., Mackenzie J.D. Stabilization of Tetragonal ZrO2 in ZrO2–SiO2 Binary Oxides. J. Am. Chem. Soc. 2000, 83 (3), 628-634. https://doi.org/10.1111/j.1151-2916.2000.tb01243.x
dc.relation.references[28] Bosman, H.J.M.; Kruissink, E.C.; van der Spoel, J.; van den Brink, F. Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides. J. Catal. 1994, 148, 660-672. https://doi.org/10.1006/jcat.1994.1253
dc.relation.references[29] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Effect of Support on Selectivity and On-Stream Stability of Surface VOx Species in Non-Oxidative Propane Dehydrogenation. Catal. Sci. Technol. 2014, 4, 1323-1332. https://doi.org/10.1039/C3CY01083J
dc.relation.references[30] Sokolov, S.; Bychkov, V.Yu.; Stoyanova, M.; Rodemerck, U.; Bentrup, U.; Linke, D.; Tyulenin. Y.P.; Korchak, V.N.; Kondratenko, E.V. Effect of VOx Species and Support on Coke Formation and Catalyst Stability in Nonoxidative Propane Dehydrogenation. ChemCatChem 2015, 7, 1691-1700. https://doi.org/10.1002/cctc.201500151
dc.relation.references[31] Fujdala, K.L.; Tilley, T.D. Thermolytic Molecular Precursor Routes to Cr/Si/Al/O and Cr/Si/Zr/O Catalysts for the Oxidative Dehydrogenation and Dehydrogenation of Propane. J. Catal. 2003, 218, 123-134. https://doi.org/10.1016/S0021-9517(03)00141-6
dc.relation.references[32] Maddah H.A. A Comparative Study between Propane Dehydrogenation (PDH) Technologies and Plants in Saudi Arabia. Am. Sci. Res. J. Eng., Technol., Sci. 2018, 45, 49-63.
dc.relation.referencesen[1] Liu, G.; Zhao, Z.-J.; Wu, T.; Zeng, L.; Gong, J. Nature of the Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation. ACS Catal. 2016, 6, 5207-5214. https://doi.org/10.1021/acscatal.6b00893
dc.relation.referencesen[2] Rodemerck, U.; Stoyanova, M.; Kondratenko, E.V.; Linke D. Influence of the Kind of VOx Structures in VOx/MCM-41 on Activity, Selectivity and Stability in Dehydrogenation of Propane and Isobutane. J. Catal. 2017, 352, 256-263. https://doi.org/10.1016/j.jcat.2017.05.022
dc.relation.referencesen[3] Zhao, J.-Z.; Wu, T.; Xiong, C.; Sun, G.; Mu, R.; Zeng, L.; Gong, J. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VOx/g-Al2O3 Catalysts with Improved Stability. Angew. Chem. Int. Ed. 2018, 57, 6791-6795. https://doi.org/10.1002/ange.201800123
dc.relation.referencesen[4] Nawaz, Z. Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review. Rev. Chem. Eng. 2015, 31, 413-436. https://doi.org/10.1515/revce-2015-0012
dc.relation.referencesen[5] Sattler, J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114 (20), 10613-10653. https://doi.org/10.1021/cr5002436
dc.relation.referencesen[6] Pham, H.N.; Sattler, J.H.B.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the Regeneration of Pt/g-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal., 2016, 6, 2257-2264. https://doi.org/10.1021/acscatal.5b02917
dc.relation.referencesen[7] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Comparative Study of Propane Dehydrogenation Over V-, Cr-, and Pt-Based Catalysts: Time On-Stream Behavior and Origins of Deactivation. J. Catal. 2012, 293, 67-75. https://doi.org/10.1016/j.jcat.2012.06.005
dc.relation.referencesen[8] Zazhigalov, V.A.; Konovalova, N.D.; Redkina, A.V.; Khomenko, K.N. Sravnitelnoe Issledovanie Degidrirovaniia Propana na VOx/MCM-41 i VOx/Ti-MCM-41 s Polucheniem Propilena i Vodoroda. Ukr. Khim. Zh. 2013, 79 (11), 63-72.
dc.relation.referencesen[9] Redkina, A.V.; Konovalova, N.D.; Khomenko, K.N. Degidrirovanie Propana na VxOy/H-Ti-MCM-41. Zh. Khim. Phis. ta Tekhnol. Poverkhni, 2014, 5 (2), 174-189.
dc.relation.referencesen[10] Cavani, F.; Ballarini, N.; Cericola, A. Oxidative Dehydrogenation of Ethane and Propane: How far from Commercial Implementation? Catal. Today, 2007, 127, 113-131. https://doi.org/10.1016/j.cattod.2007.05.009
dc.relation.referencesen[11] Otroshchenko, T.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-Based Unconventional Catalysts for Non-Oxidative Propane Dehydrogenation: Factors Determining Catalytic Activity. J. Catal. 2017, 348, 282-290. https://doi.org/10.1016/j.jcat.2017.02.016
dc.relation.referencesen[12] Otroshchenko, T.; Bulavchenko, O.; Thanh, H.V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Rodemerck, U.; Paul, B.; Kraehnert, R.; Linke, D. et al. Controlling Activity and Selectivity of Bare ZrO2 in Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 585, 117189. https://doi.org/10.1016/j.apcata.2019.117189
dc.relation.referencesen[13] Jeon, N.; Choe, H.; Jrong, B.; Yun, Y. Cu-Promoted Zirconia Catalysts for Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 586, 117211. https://doi.org/10.1016/j.apcata.2019.117211
dc.relation.referencesen[14] Redkina, A.V.; Konovalova, N.D.; Kravchenko, N.V.; Strelko, V.V. Degidrirovanie Propana v Propilen na V2O5, Nanesennom na Micro-Mezoporistuiu Sistemu Oksidov ZrO2-SiO2-TiO2. Ukr. Khim. Zh., 2018, 84 (7), 43-59.
dc.relation.referencesen[15] Redkina A.V., Konovalova N.D., Strelko V.V., Sposib Oderzhannia Katalizatora Dehidruvannia Propanu v Propilen. Patent UA 131758 U, January 25, 2019.
dc.relation.referencesen[16] Karakoulia, S.A.; Triantafyllidis, K.S.; Lemonidou, A.A. Preparation and Characterization of Vanadia Catalysts Supported on Non-Porous, Microporous and Mesoporous Silicates for Oxidative Dehydrogenation of Propane (ODP). Micropor. Mesopor. Mater. 2008, 110, 157-166. https://doi.org/10.1016/j.micromeso.2007.10.027
dc.relation.referencesen[17] Selvam, P.; Dapurkar, S.E. The Effect of Vanadium Sources on the Synthesis and Catalytic Activity of VMCM-41. J. Catal. 2005, 229, 64-71. https://doi.org/10.1016/j.jcat.2004.10.005
dc.relation.referencesen[18] Yamaguchi, T. Application of ZrO2 as a Catalyst and a Catalyst Support. Catal. Today 1994, 20, 199-217. https://doi.org/10.1016/0920-5861(94)80003-0
dc.relation.referencesen[19] Cimino, A.; Cordischi, D.; De Rossi, S. Ferraris, G.; Gazzoli, D.; Indovina, V.; Minelli, G.; Occhiuzzi, M.; Valigi, M. Studies on Chromia/Zirconia Catalysts I. Preparation and Characterization of the System. J. Catal. 1991, 127, 744-760. https://doi.org/10.1016/0021-9517(91)90196-B
dc.relation.referencesen[20] Zhao, B.Y.; Xu, X.P.; Ma, H.R.; Sun, D.H.; Gao. J.M. Monolayer Dispersion of Oxides and Salts on Surface of ZrO2 and Its Application in Preparation of ZrO2-Supported Catalysts with High Surface Areas. Catal. Lett. 1997, 45, 237-244. https://doi.org/10.1023/A:1019048503124
dc.relation.referencesen[21] Tanabe, K.; Yamaguchi, T. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides. Catal. Today, 1994, 20, 185-197. https://doi.org/10.1016/0920-5861(94)80002-2
dc.relation.referencesen[22] Raju, V.; Jaenicke, S.; Chuah, G.-K. Effect of Hydrothermal Treatment and Silica on Thermal Stability and Oxygen Storage Capacity of Ceria–Zirconia. Appl. Catal. B, 2009, 91, 92-100. https://doi.org/10.1016/j.apcatb.2009.05.010
dc.relation.referencesen[23] He, X.; Zhang, H.; Li ,Y.; Hong, C.Q.; Zhao, J.P. Preparation and Structural Characterization of SiO2-ZrO2 Aerogels. Key Eng. Mater. 2007, 336-338, 2282-2285. https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282
dc.relation.referencesen[24] Sing, K.S.W.; Everett, D.H.; Haul. R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619. https://doi.org/10.1351/pac198254112201
dc.relation.referencesen[25] Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. J. Phys. Chem. B, 2001, 105, 8107-8111. https://doi.org/10.1021/jp010526l
dc.relation.referencesen[26] Khodakov, A.; Yang, J.; Su, S.; Iglesia, E.; Bell, A.T. Structure and Properties of Vanadium Oxide-Zirconia Catalysts for Propane Oxidative Dehydrogenation. J. Catal. 1998, 177, 343-351. https://doi.org/10.1006/jcat.1998.2143
dc.relation.referencesen[27] del Monte F., Larsen W., Mackenzie J.D. Stabilization of Tetragonal ZrO2 in ZrO2–SiO2 Binary Oxides. J. Am. Chem. Soc. 2000, 83 (3), 628-634. https://doi.org/10.1111/j.1151-2916.2000.tb01243.x
dc.relation.referencesen[28] Bosman, H.J.M.; Kruissink, E.C.; van der Spoel, J.; van den Brink, F. Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides. J. Catal. 1994, 148, 660-672. https://doi.org/10.1006/jcat.1994.1253
dc.relation.referencesen[29] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Effect of Support on Selectivity and On-Stream Stability of Surface VOx Species in Non-Oxidative Propane Dehydrogenation. Catal. Sci. Technol. 2014, 4, 1323-1332. https://doi.org/10.1039/P.3CY01083J
dc.relation.referencesen[30] Sokolov, S.; Bychkov, V.Yu.; Stoyanova, M.; Rodemerck, U.; Bentrup, U.; Linke, D.; Tyulenin. Y.P.; Korchak, V.N.; Kondratenko, E.V. Effect of VOx Species and Support on Coke Formation and Catalyst Stability in Nonoxidative Propane Dehydrogenation. ChemCatChem 2015, 7, 1691-1700. https://doi.org/10.1002/cctc.201500151
dc.relation.referencesen[31] Fujdala, K.L.; Tilley, T.D. Thermolytic Molecular Precursor Routes to Cr/Si/Al/O and Cr/Si/Zr/O Catalysts for the Oxidative Dehydrogenation and Dehydrogenation of Propane. J. Catal. 2003, 218, 123-134. https://doi.org/10.1016/S0021-9517(03)00141-6
dc.relation.referencesen[32] Maddah H.A. A Comparative Study between Propane Dehydrogenation (PDH) Technologies and Plants in Saudi Arabia. Am. Sci. Res. J. Eng., Technol., Sci. 2018, 45, 49-63.
dc.relation.urihttps://doi.org/10.1021/acscatal.6b00893
dc.relation.urihttps://doi.org/10.1016/j.jcat.2017.05.022
dc.relation.urihttps://doi.org/10.1002/ange.201800123
dc.relation.urihttps://doi.org/10.1515/revce-2015-0012
dc.relation.urihttps://doi.org/10.1021/cr5002436
dc.relation.urihttps://doi.org/10.1021/acscatal.5b02917
dc.relation.urihttps://doi.org/10.1016/j.jcat.2012.06.005
dc.relation.urihttps://doi.org/10.1016/j.cattod.2007.05.009
dc.relation.urihttps://doi.org/10.1016/j.jcat.2017.02.016
dc.relation.urihttps://doi.org/10.1016/j.apcata.2019.117189
dc.relation.urihttps://doi.org/10.1016/j.apcata.2019.117211
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2007.10.027
dc.relation.urihttps://doi.org/10.1016/j.jcat.2004.10.005
dc.relation.urihttps://doi.org/10.1016/0920-5861(94)80003-0
dc.relation.urihttps://doi.org/10.1016/0021-9517(91)90196-B
dc.relation.urihttps://doi.org/10.1023/A:1019048503124
dc.relation.urihttps://doi.org/10.1016/0920-5861(94)80002-2
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2009.05.010
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/KEM.336-338.2282
dc.relation.urihttps://doi.org/10.1351/pac198254112201
dc.relation.urihttps://doi.org/10.1021/jp010526l
dc.relation.urihttps://doi.org/10.1006/jcat.1998.2143
dc.relation.urihttps://doi.org/10.1111/j.1151-2916.2000.tb01243.x
dc.relation.urihttps://doi.org/10.1006/jcat.1994.1253
dc.relation.urihttps://doi.org/10.1039/C3CY01083J
dc.relation.urihttps://doi.org/10.1002/cctc.201500151
dc.relation.urihttps://doi.org/10.1016/S0021-9517(03)00141-6
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Redkina A., Konovalova N., Kravchenko N., Strelko V., 2022
dc.subjectдегідрування пропану
dc.subjectпропілен
dc.subjectоксид ванадію
dc.subjectцирконій силікати
dc.subjectpropane dehydrogenation
dc.subjectpropylene
dc.subjectvanadium oxide
dc.subjectzirconium silicates
dc.titleInfluence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation
dc.title.alternativeВплив поруватої структури V2O5-ZrO2-SiO2 каталізатора на реакцію дегідрування пропану
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n2_Redkina_A-Influence_of_the_Porous_259-266.pdf
Size:
576.04 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n2_Redkina_A-Influence_of_the_Porous_259-266__COVER.png
Size:
499.81 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: