Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation
dc.citation.epage | 266 | |
dc.citation.issue | 2 | |
dc.citation.spage | 259 | |
dc.contributor.affiliation | Institute of Sorption and Problem Endoecology of NAS of Ukraine | |
dc.contributor.author | Redkina, Antonina | |
dc.contributor.author | Konovalova, Nadezhda | |
dc.contributor.author | Kravchenko, Nikolay | |
dc.contributor.author | Strelko, Volodymyr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T11:12:58Z | |
dc.date.available | 2024-01-22T11:12:58Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Сферично гранульований, аморфний, мезопоруватий каталізатор отримано нанесенням V2O5 на синтезований прямим золь-гель способом гідрогель ZrO2-SiO2 та ідентифікований методами СЕМ, РФА та адсорбції/десорбції N2. Показано, що його гідротермальне і спиртове оброблення підвищує питому поверхню, об'єм і ширину пор і приводить до збільшення виходу пропілену в реакції дегідрування пропану та зниження температури досягнення його високих значень. | |
dc.description.abstract | A spherically granular, amorphous, mesoporous catalyst was obtained by supporting V2O5 on synthesized by direct sol-gel method of ZrO2-SiO2 hydrogel and was identified by SEM, XRD and N2 adsorption / desorption. It is shown that its hydrothermal and alcohol treatment increases the specific surface, volume and width of pores and leads to an increase in the yield of propylene in the reaction of propane dehydrogenation and decreases the temperature of reaching its high values. | |
dc.format.extent | 259-266 | |
dc.format.pages | 8 | |
dc.identifier.citation | Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation / Antonina Redkina, Nadezhda Konovalova, Nikolay Kravchenko, Volodymyr Strelko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 259–266. | |
dc.identifier.citationen | Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation / Antonina Redkina, Nadezhda Konovalova, Nikolay Kravchenko, Volodymyr Strelko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 259–266. | |
dc.identifier.doi | doi.org/10.23939/chcht16.02.259 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60966 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (16), 2022 | |
dc.relation.references | [1] Liu, G.; Zhao, Z.-J.; Wu, T.; Zeng, L.; Gong, J. Nature of the Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation. ACS Catal. 2016, 6, 5207-5214. https://doi.org/10.1021/acscatal.6b00893 | |
dc.relation.references | [2] Rodemerck, U.; Stoyanova, M.; Kondratenko, E.V.; Linke D. Influence of the Kind of VOx Structures in VOx/MCM-41 on Activity, Selectivity and Stability in Dehydrogenation of Propane and Isobutane. J. Catal. 2017, 352, 256-263. https://doi.org/10.1016/j.jcat.2017.05.022 | |
dc.relation.references | [3] Zhao, J.-Z.; Wu, T.; Xiong, C.; Sun, G.; Mu, R.; Zeng, L.; Gong, J. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VOx/γ-Al2O3 Catalysts with Improved Stability. Angew. Chem. Int. Ed. 2018, 57, 6791-6795. https://doi.org/10.1002/ange.201800123 | |
dc.relation.references | [4] Nawaz, Z. Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review. Rev. Chem. Eng. 2015, 31, 413-436. https://doi.org/10.1515/revce-2015-0012 | |
dc.relation.references | [5] Sattler, J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114 (20), 10613-10653. https://doi.org/10.1021/cr5002436 | |
dc.relation.references | [6] Pham, H.N.; Sattler, J.H.B.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the Regeneration of Pt/γ-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal., 2016, 6, 2257-2264. https://doi.org/10.1021/acscatal.5b02917 | |
dc.relation.references | [7] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Comparative Study of Propane Dehydrogenation Over V-, Cr-, and Pt-Based Catalysts: Time On-Stream Behavior and Origins of Deactivation. J. Catal. 2012, 293, 67-75. https://doi.org/10.1016/j.jcat.2012.06.005 | |
dc.relation.references | [8] Zazhigalov, V.A.; Konovalova, N.D.; Redkina, A.V.; Khomenko, K.N. Sravnitelnoe Issledovanie Degidrirovaniia Propana na VOx/MCM-41 i VOx/Ti-MCM-41 s Polucheniem Propilena i Vodoroda. Ukr. Khim. Zh. 2013, 79 (11), 63-72. | |
dc.relation.references | [9] Redkina, A.V.; Konovalova, N.D.; Khomenko, K.N. Degidrirovanie Propana na VxOy/H-Ti-MCM-41. Zh. Khim. Phis. ta Tekhnol. Poverkhni, 2014, 5 (2), 174-189. | |
dc.relation.references | [10] Cavani, F.; Ballarini, N.; Cericola, A. Oxidative Dehydrogenation of Ethane and Propane: How far from Commercial Implementation? Catal. Today, 2007, 127, 113-131. https://doi.org/10.1016/j.cattod.2007.05.009 | |
dc.relation.references | [11] Otroshchenko, T.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-Based Unconventional Catalysts for Non-Oxidative Propane Dehydrogenation: Factors Determining Catalytic Activity. J. Catal. 2017, 348, 282-290. https://doi.org/10.1016/j.jcat.2017.02.016 | |
dc.relation.references | [12] Otroshchenko, T.; Bulavchenko, O.; Thanh, H.V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Rodemerck, U.; Paul, B.; Kraehnert, R.; Linke, D. et al. Controlling Activity and Selectivity of Bare ZrO2 in Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 585, 117189. https://doi.org/10.1016/j.apcata.2019.117189 | |
dc.relation.references | [13] Jeon, N.; Choe, H.; Jrong, B.; Yun, Y. Cu-Promoted Zirconia Catalysts for Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 586, 117211. https://doi.org/10.1016/j.apcata.2019.117211 | |
dc.relation.references | [14] Redkina, A.V.; Konovalova, N.D.; Kravchenko, N.V.; Strelko, V.V. Degidrirovanie Propana v Propilen na V2O5, Nanesennom na Micro-Mezoporistuiu Sistemu Oksidov ZrO2-SiO2-TiO2. Ukr. Khim. Zh., 2018, 84 (7), 43-59. | |
dc.relation.references | [15] Redkina A.V., Konovalova N.D., Strelko V.V.: Sposib Oderzhannia Katalizatora Dehidruvannia Propanu v Propilen. Patent UA 131758 U, January 25, 2019. | |
dc.relation.references | [16] Karakoulia, S.A.; Triantafyllidis, K.S.; Lemonidou, A.A. Preparation and Characterization of Vanadia Catalysts Supported on Non-Porous, Microporous and Mesoporous Silicates for Oxidative Dehydrogenation of Propane (ODP). Micropor. Mesopor. Mater. 2008, 110, 157-166. https://doi.org/10.1016/j.micromeso.2007.10.027 | |
dc.relation.references | [17] Selvam, P.; Dapurkar, S.E. The Effect of Vanadium Sources on the Synthesis and Catalytic Activity of VMCM-41. J. Catal. 2005, 229, 64-71. https://doi.org/10.1016/j.jcat.2004.10.005 | |
dc.relation.references | [18] Yamaguchi, T. Application of ZrO2 as a Catalyst and a Catalyst Support. Catal. Today 1994, 20, 199-217. https://doi.org/10.1016/0920-5861(94)80003-0 | |
dc.relation.references | [19] Cimino, A.; Cordischi, D.; De Rossi, S. Ferraris, G.; Gazzoli, D.; Indovina, V.; Minelli, G.; Occhiuzzi, M.; Valigi, M. Studies on Chromia/Zirconia Catalysts I. Preparation and Characterization of the System. J. Catal. 1991, 127, 744-760. https://doi.org/10.1016/0021-9517(91)90196-B | |
dc.relation.references | [20] Zhao, B.Y.; Xu, X.P.; Ma, H.R.; Sun, D.H.; Gao. J.M. Monolayer Dispersion of Oxides and Salts on Surface of ZrO2 and Its Application in Preparation of ZrO2-Supported Catalysts with High Surface Areas. Catal. Lett. 1997, 45, 237-244. https://doi.org/10.1023/A:1019048503124 | |
dc.relation.references | [21] Tanabe, K.; Yamaguchi, T. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides. Catal. Today, 1994, 20, 185-197. https://doi.org/10.1016/0920-5861(94)80002-2 | |
dc.relation.references | [22] Raju, V.; Jaenicke, S.; Chuah, G.-K. Effect of Hydrothermal Treatment and Silica on Thermal Stability and Oxygen Storage Capacity of Ceria–Zirconia. Appl. Catal. B, 2009, 91, 92-100. https://doi.org/10.1016/j.apcatb.2009.05.010 | |
dc.relation.references | [23] He, X.; Zhang, H.; Li ,Y.; Hong, C.Q.; Zhao, J.P. Preparation and Structural Characterization of SiO2-ZrO2 Aerogels. Key Eng. Mater. 2007, 336-338, 2282-2285. https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282 | |
dc.relation.references | [24] Sing, K.S.W.; Everett, D.H.; Haul. R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619. https://doi.org/10.1351/pac198254112201 | |
dc.relation.references | [25] Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. J. Phys. Chem. B, 2001, 105, 8107-8111. https://doi.org/10.1021/jp010526l | |
dc.relation.references | [26] Khodakov, A.; Yang, J.; Su, S.; Iglesia, E.; Bell, A.T. Structure and Properties of Vanadium Oxide-Zirconia Catalysts for Propane Oxidative Dehydrogenation. J. Catal. 1998, 177, 343-351. https://doi.org/10.1006/jcat.1998.2143 | |
dc.relation.references | [27] del Monte F., Larsen W., Mackenzie J.D. Stabilization of Tetragonal ZrO2 in ZrO2–SiO2 Binary Oxides. J. Am. Chem. Soc. 2000, 83 (3), 628-634. https://doi.org/10.1111/j.1151-2916.2000.tb01243.x | |
dc.relation.references | [28] Bosman, H.J.M.; Kruissink, E.C.; van der Spoel, J.; van den Brink, F. Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides. J. Catal. 1994, 148, 660-672. https://doi.org/10.1006/jcat.1994.1253 | |
dc.relation.references | [29] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Effect of Support on Selectivity and On-Stream Stability of Surface VOx Species in Non-Oxidative Propane Dehydrogenation. Catal. Sci. Technol. 2014, 4, 1323-1332. https://doi.org/10.1039/C3CY01083J | |
dc.relation.references | [30] Sokolov, S.; Bychkov, V.Yu.; Stoyanova, M.; Rodemerck, U.; Bentrup, U.; Linke, D.; Tyulenin. Y.P.; Korchak, V.N.; Kondratenko, E.V. Effect of VOx Species and Support on Coke Formation and Catalyst Stability in Nonoxidative Propane Dehydrogenation. ChemCatChem 2015, 7, 1691-1700. https://doi.org/10.1002/cctc.201500151 | |
dc.relation.references | [31] Fujdala, K.L.; Tilley, T.D. Thermolytic Molecular Precursor Routes to Cr/Si/Al/O and Cr/Si/Zr/O Catalysts for the Oxidative Dehydrogenation and Dehydrogenation of Propane. J. Catal. 2003, 218, 123-134. https://doi.org/10.1016/S0021-9517(03)00141-6 | |
dc.relation.references | [32] Maddah H.A. A Comparative Study between Propane Dehydrogenation (PDH) Technologies and Plants in Saudi Arabia. Am. Sci. Res. J. Eng., Technol., Sci. 2018, 45, 49-63. | |
dc.relation.referencesen | [1] Liu, G.; Zhao, Z.-J.; Wu, T.; Zeng, L.; Gong, J. Nature of the Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation. ACS Catal. 2016, 6, 5207-5214. https://doi.org/10.1021/acscatal.6b00893 | |
dc.relation.referencesen | [2] Rodemerck, U.; Stoyanova, M.; Kondratenko, E.V.; Linke D. Influence of the Kind of VOx Structures in VOx/MCM-41 on Activity, Selectivity and Stability in Dehydrogenation of Propane and Isobutane. J. Catal. 2017, 352, 256-263. https://doi.org/10.1016/j.jcat.2017.05.022 | |
dc.relation.referencesen | [3] Zhao, J.-Z.; Wu, T.; Xiong, C.; Sun, G.; Mu, R.; Zeng, L.; Gong, J. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VOx/g-Al2O3 Catalysts with Improved Stability. Angew. Chem. Int. Ed. 2018, 57, 6791-6795. https://doi.org/10.1002/ange.201800123 | |
dc.relation.referencesen | [4] Nawaz, Z. Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review. Rev. Chem. Eng. 2015, 31, 413-436. https://doi.org/10.1515/revce-2015-0012 | |
dc.relation.referencesen | [5] Sattler, J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114 (20), 10613-10653. https://doi.org/10.1021/cr5002436 | |
dc.relation.referencesen | [6] Pham, H.N.; Sattler, J.H.B.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the Regeneration of Pt/g-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal., 2016, 6, 2257-2264. https://doi.org/10.1021/acscatal.5b02917 | |
dc.relation.referencesen | [7] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Comparative Study of Propane Dehydrogenation Over V-, Cr-, and Pt-Based Catalysts: Time On-Stream Behavior and Origins of Deactivation. J. Catal. 2012, 293, 67-75. https://doi.org/10.1016/j.jcat.2012.06.005 | |
dc.relation.referencesen | [8] Zazhigalov, V.A.; Konovalova, N.D.; Redkina, A.V.; Khomenko, K.N. Sravnitelnoe Issledovanie Degidrirovaniia Propana na VOx/MCM-41 i VOx/Ti-MCM-41 s Polucheniem Propilena i Vodoroda. Ukr. Khim. Zh. 2013, 79 (11), 63-72. | |
dc.relation.referencesen | [9] Redkina, A.V.; Konovalova, N.D.; Khomenko, K.N. Degidrirovanie Propana na VxOy/H-Ti-MCM-41. Zh. Khim. Phis. ta Tekhnol. Poverkhni, 2014, 5 (2), 174-189. | |
dc.relation.referencesen | [10] Cavani, F.; Ballarini, N.; Cericola, A. Oxidative Dehydrogenation of Ethane and Propane: How far from Commercial Implementation? Catal. Today, 2007, 127, 113-131. https://doi.org/10.1016/j.cattod.2007.05.009 | |
dc.relation.referencesen | [11] Otroshchenko, T.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-Based Unconventional Catalysts for Non-Oxidative Propane Dehydrogenation: Factors Determining Catalytic Activity. J. Catal. 2017, 348, 282-290. https://doi.org/10.1016/j.jcat.2017.02.016 | |
dc.relation.referencesen | [12] Otroshchenko, T.; Bulavchenko, O.; Thanh, H.V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Rodemerck, U.; Paul, B.; Kraehnert, R.; Linke, D. et al. Controlling Activity and Selectivity of Bare ZrO2 in Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 585, 117189. https://doi.org/10.1016/j.apcata.2019.117189 | |
dc.relation.referencesen | [13] Jeon, N.; Choe, H.; Jrong, B.; Yun, Y. Cu-Promoted Zirconia Catalysts for Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 586, 117211. https://doi.org/10.1016/j.apcata.2019.117211 | |
dc.relation.referencesen | [14] Redkina, A.V.; Konovalova, N.D.; Kravchenko, N.V.; Strelko, V.V. Degidrirovanie Propana v Propilen na V2O5, Nanesennom na Micro-Mezoporistuiu Sistemu Oksidov ZrO2-SiO2-TiO2. Ukr. Khim. Zh., 2018, 84 (7), 43-59. | |
dc.relation.referencesen | [15] Redkina A.V., Konovalova N.D., Strelko V.V., Sposib Oderzhannia Katalizatora Dehidruvannia Propanu v Propilen. Patent UA 131758 U, January 25, 2019. | |
dc.relation.referencesen | [16] Karakoulia, S.A.; Triantafyllidis, K.S.; Lemonidou, A.A. Preparation and Characterization of Vanadia Catalysts Supported on Non-Porous, Microporous and Mesoporous Silicates for Oxidative Dehydrogenation of Propane (ODP). Micropor. Mesopor. Mater. 2008, 110, 157-166. https://doi.org/10.1016/j.micromeso.2007.10.027 | |
dc.relation.referencesen | [17] Selvam, P.; Dapurkar, S.E. The Effect of Vanadium Sources on the Synthesis and Catalytic Activity of VMCM-41. J. Catal. 2005, 229, 64-71. https://doi.org/10.1016/j.jcat.2004.10.005 | |
dc.relation.referencesen | [18] Yamaguchi, T. Application of ZrO2 as a Catalyst and a Catalyst Support. Catal. Today 1994, 20, 199-217. https://doi.org/10.1016/0920-5861(94)80003-0 | |
dc.relation.referencesen | [19] Cimino, A.; Cordischi, D.; De Rossi, S. Ferraris, G.; Gazzoli, D.; Indovina, V.; Minelli, G.; Occhiuzzi, M.; Valigi, M. Studies on Chromia/Zirconia Catalysts I. Preparation and Characterization of the System. J. Catal. 1991, 127, 744-760. https://doi.org/10.1016/0021-9517(91)90196-B | |
dc.relation.referencesen | [20] Zhao, B.Y.; Xu, X.P.; Ma, H.R.; Sun, D.H.; Gao. J.M. Monolayer Dispersion of Oxides and Salts on Surface of ZrO2 and Its Application in Preparation of ZrO2-Supported Catalysts with High Surface Areas. Catal. Lett. 1997, 45, 237-244. https://doi.org/10.1023/A:1019048503124 | |
dc.relation.referencesen | [21] Tanabe, K.; Yamaguchi, T. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides. Catal. Today, 1994, 20, 185-197. https://doi.org/10.1016/0920-5861(94)80002-2 | |
dc.relation.referencesen | [22] Raju, V.; Jaenicke, S.; Chuah, G.-K. Effect of Hydrothermal Treatment and Silica on Thermal Stability and Oxygen Storage Capacity of Ceria–Zirconia. Appl. Catal. B, 2009, 91, 92-100. https://doi.org/10.1016/j.apcatb.2009.05.010 | |
dc.relation.referencesen | [23] He, X.; Zhang, H.; Li ,Y.; Hong, C.Q.; Zhao, J.P. Preparation and Structural Characterization of SiO2-ZrO2 Aerogels. Key Eng. Mater. 2007, 336-338, 2282-2285. https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282 | |
dc.relation.referencesen | [24] Sing, K.S.W.; Everett, D.H.; Haul. R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619. https://doi.org/10.1351/pac198254112201 | |
dc.relation.referencesen | [25] Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. J. Phys. Chem. B, 2001, 105, 8107-8111. https://doi.org/10.1021/jp010526l | |
dc.relation.referencesen | [26] Khodakov, A.; Yang, J.; Su, S.; Iglesia, E.; Bell, A.T. Structure and Properties of Vanadium Oxide-Zirconia Catalysts for Propane Oxidative Dehydrogenation. J. Catal. 1998, 177, 343-351. https://doi.org/10.1006/jcat.1998.2143 | |
dc.relation.referencesen | [27] del Monte F., Larsen W., Mackenzie J.D. Stabilization of Tetragonal ZrO2 in ZrO2–SiO2 Binary Oxides. J. Am. Chem. Soc. 2000, 83 (3), 628-634. https://doi.org/10.1111/j.1151-2916.2000.tb01243.x | |
dc.relation.referencesen | [28] Bosman, H.J.M.; Kruissink, E.C.; van der Spoel, J.; van den Brink, F. Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides. J. Catal. 1994, 148, 660-672. https://doi.org/10.1006/jcat.1994.1253 | |
dc.relation.referencesen | [29] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Effect of Support on Selectivity and On-Stream Stability of Surface VOx Species in Non-Oxidative Propane Dehydrogenation. Catal. Sci. Technol. 2014, 4, 1323-1332. https://doi.org/10.1039/P.3CY01083J | |
dc.relation.referencesen | [30] Sokolov, S.; Bychkov, V.Yu.; Stoyanova, M.; Rodemerck, U.; Bentrup, U.; Linke, D.; Tyulenin. Y.P.; Korchak, V.N.; Kondratenko, E.V. Effect of VOx Species and Support on Coke Formation and Catalyst Stability in Nonoxidative Propane Dehydrogenation. ChemCatChem 2015, 7, 1691-1700. https://doi.org/10.1002/cctc.201500151 | |
dc.relation.referencesen | [31] Fujdala, K.L.; Tilley, T.D. Thermolytic Molecular Precursor Routes to Cr/Si/Al/O and Cr/Si/Zr/O Catalysts for the Oxidative Dehydrogenation and Dehydrogenation of Propane. J. Catal. 2003, 218, 123-134. https://doi.org/10.1016/S0021-9517(03)00141-6 | |
dc.relation.referencesen | [32] Maddah H.A. A Comparative Study between Propane Dehydrogenation (PDH) Technologies and Plants in Saudi Arabia. Am. Sci. Res. J. Eng., Technol., Sci. 2018, 45, 49-63. | |
dc.relation.uri | https://doi.org/10.1021/acscatal.6b00893 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2017.05.022 | |
dc.relation.uri | https://doi.org/10.1002/ange.201800123 | |
dc.relation.uri | https://doi.org/10.1515/revce-2015-0012 | |
dc.relation.uri | https://doi.org/10.1021/cr5002436 | |
dc.relation.uri | https://doi.org/10.1021/acscatal.5b02917 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2012.06.005 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2007.05.009 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2017.02.016 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2019.117189 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2019.117211 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2007.10.027 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2004.10.005 | |
dc.relation.uri | https://doi.org/10.1016/0920-5861(94)80003-0 | |
dc.relation.uri | https://doi.org/10.1016/0021-9517(91)90196-B | |
dc.relation.uri | https://doi.org/10.1023/A:1019048503124 | |
dc.relation.uri | https://doi.org/10.1016/0920-5861(94)80002-2 | |
dc.relation.uri | https://doi.org/10.1016/j.apcatb.2009.05.010 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282 | |
dc.relation.uri | https://doi.org/10.1351/pac198254112201 | |
dc.relation.uri | https://doi.org/10.1021/jp010526l | |
dc.relation.uri | https://doi.org/10.1006/jcat.1998.2143 | |
dc.relation.uri | https://doi.org/10.1111/j.1151-2916.2000.tb01243.x | |
dc.relation.uri | https://doi.org/10.1006/jcat.1994.1253 | |
dc.relation.uri | https://doi.org/10.1039/C3CY01083J | |
dc.relation.uri | https://doi.org/10.1002/cctc.201500151 | |
dc.relation.uri | https://doi.org/10.1016/S0021-9517(03)00141-6 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Redkina A., Konovalova N., Kravchenko N., Strelko V., 2022 | |
dc.subject | дегідрування пропану | |
dc.subject | пропілен | |
dc.subject | оксид ванадію | |
dc.subject | цирконій силікати | |
dc.subject | propane dehydrogenation | |
dc.subject | propylene | |
dc.subject | vanadium oxide | |
dc.subject | zirconium silicates | |
dc.title | Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation | |
dc.title.alternative | Вплив поруватої структури V2O5-ZrO2-SiO2 каталізатора на реакцію дегідрування пропану | |
dc.type | Article |
Files
License bundle
1 - 1 of 1