Mathematical modeling of non-stationary gas flow modes along a linear section of a gas transmission system

dc.citation.epage430
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage416
dc.contributor.affiliationХарківський національний університет радіоелектроніки
dc.contributor.affiliationНаціональний технічний університет “Харківський політехнічний інститут”
dc.contributor.affiliationKharkiv National University of Radio Electronics
dc.contributor.affiliationNational Technical University “Kharkiv Polytechnic Institute”
dc.contributor.authorГусарова, І. Г.
dc.contributor.authorТевяшев, А. Д.
dc.contributor.authorТевяшева, О. А.
dc.contributor.authorHusarova, I. H.
dc.contributor.authorTevyashev, A. D.
dc.contributor.authorTevyasheva, O. A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:14:24Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractУ статті обґрунтована актуальність моделювання нестаціонарного неізотермічного режиму течії газу по лінійній ділянці газотранспортної системи з використанням різних математичних моделей і сучасних чисельних методів. У роботі пропонується кілька моделей нестаціонарних неізотермічних режимів течії газу по ділянці трубопроводу, які входять в загальну модель, проводиться їх порівняльний аналіз на основі чисельного моделювання. Для розв’язання систем рівнянь математичної моделі по ділянці трубопроводу застосований метод скінченних різниць. Наводяться результати розрахунку параметрів газового потоку з використанням різних моделей: з урахуванням та без урахування кінетичної енергії, з урахуванням та без урахування ефекту Джоуля–Томпсона. Обговорюється питання вибору відповідної моделі. Отримані результати можуть бути використані на етапі експлуатації мереж магістральних трубопроводів з метою вироблення науково обґрунтованих рекомендацій щодо підвищення безпеки та ефективності роботи трубопровідної системи.
dc.description.abstractArticle demonstrates the applicability of modeling non-stationary non-isothermal gas flow along a linear section of a gas transmission system by means of using various numerically simulated models and sophisticated numerical techniques. There are described several models of non-stationary non-isothermal regimes of gas flow along the pipeline section. They are included in the considered general model and their comparative analysis is carried out by the virtue of numerical simulation. The finite difference algorithm is used to solve the simultaneous equations of the numerically simulated model for the pipeline section. The results of calculating the gas flow parameters using various models are presented: both with and without taking into account kinetic energy, as well as both with and without taking into account the Joule–Thompson effect. The matter of choosing the appropriate model is discussed. The obtained results can be used at the stage of transfer pipeline system operation in order to develop scientifically well-founded recommendations for improving the safety and efficiency of the pipeline transportation system.
dc.format.extent416-430
dc.format.pages15
dc.identifier.citationHusarova I. H. Mathematical modeling of non-stationary gas flow modes along a linear section of a gas transmission system / I. H. Husarova, A. D. Tevyashev, O. A. Tevyasheva // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 416–430.
dc.identifier.citationenHusarova I. H. Mathematical modeling of non-stationary gas flow modes along a linear section of a gas transmission system / I. H. Husarova, A. D. Tevyashev, O. A. Tevyasheva // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 416–430.
dc.identifier.doidoi.org/10.23939/mmc2022.02.416
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63441
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 2 (9), 2022
dc.relation.references[1] Pakin A. K. Perspektivy razvitiya mirovogo rynka prirodnogo gaza. Vestnik Rossiyskogo ekonomicheskogo universiteta imeni G. V. Plekhanova. 3, 147–153 (2016), (in Russian).
dc.relation.references[2] Sardanashvili S. A. Raschetnyye metody i algoritmy (truboprovodnyy transport gaza). Oil and gas, Moscow (2005), (in Russian).
dc.relation.references[3] Prytula N. Mathematical modelling of dynamic processes in gas transmission. ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes. 4 (3), 57–63 (2015).
dc.relation.references[4] Novyckyj N. N., Sukharev M. Gh., Tevjashev A. D. Truboprovodnyje sistemy energhetiki: Metodicheskije i prikladnyje problemy modelirovanija. Science, Novosibirsk, pp. 193–204 (2015), (in Russian).
dc.relation.references[5] Seleznev V. E., Pryalov S. N. Metody postroeniya modelej techenij v magistral’nyh truboprovodah i kanalah: monografiya. Direct-Media, Moscow–Berlin (2014), (in Russian).
dc.relation.references[6] Seleznev V. E., Aleshyn V. V., Pryalov S. N. Osnovy chislennogo modelirovanija magistralnyh truboprovodov. MAX Press, Moscow (2009), (in Russian).
dc.relation.references[7] Tevyashev A. D., Husarova I. H., Churkina A. V. Effektivnyy metod i algoritm rascheta nestatsionarnykh neizotermicheskikh rezhimov transporta gaza v gazotransportnoy seti proizvol’noy struktury. EasternEuropean Journal of Enterprise Technologies. 2/3 (20), 45–52 (2006).
dc.relation.references[8] Seleznev V. E., Aleshyn V. V., Prjalov S. N. Osnovy chyseljnogho modeljuvannja maghistraljnykh ghazoprovodov. KomKnygha, Moscow (2005), (in Russian).
dc.relation.references[9] Helgaker J. F., M¨uller B., Ytrehus T. Transient flow in natural gaspipelines using implicit finite difference schemes. Journal of Offshore Mechanics and Arctic Engineering. 136 (3), 031701–0317011 (2014).
dc.relation.references[10] Ermolaeva N. N. Nestacionarnye modeli teploobmena i transportirovki gaza po morskim gazoprovodam. Transactions of the Karelian Research Centre of the Russian Academy of Sciences, Mathematical Modeling and Information Technologies Series. 8, 3–10 (2016), (in Russian).
dc.relation.references[11] Ermolaeva N. N. Kompyuternoe modelirovanie oledeneniya morskogo gazoprovoda i povedeniya harakteristik potoka v neustanovivshihsya rezhimah’. Bulletin of St. Petersburg University. 4 (10), 75–86 (2016), (in Russian).
dc.relation.references[12] Husarova I. H., Melinevskyi D. V. Chislennoye modelirovaniye perekhodnykh rezhimov techeniya gaza s ispol’zovaniyem razlichnykh konechno-raznostnykh setok. Information Processing Systems. 2, 29–33 (2017), (in Russian).
dc.relation.references[13] Wang P., Yu B., Han D., Li J., Sun D., Xiang Y., Wang L. Adaptive implicit finite difference method for natural gas pipeline transient flow. Oil Gas Sci. Technol. 73, 21 (2018).
dc.relation.references[14] Zhang L. Simulation of the transient flow in a natural gas compression system using a high-order upwind scheme considering the real-gas behaviors. Journal of Natural Gas Science and Engineering. 28, 479–490 (2016).
dc.relation.references[15] Sung W.-P., Chen R. Application of π Equivalent Circuit in Mathematic Modeling and Simulation of Gas Pipeline. Applied Mechanics and Materials. 496, 943–946 (2014).
dc.relation.references[16] Husarova I. H., Korotenko A. N. Rezultaty chislennogo modelirovanija perekhodnykh rezhimov techenija gaza po uchastku truboprovoda metodom harakteristik. Information Processing Systems. 2 (153), 18–26 (2018), (in Russian).
dc.relation.references[17] Helgaker J. F. Modeling Transient Flow in Long Distance Offshore Natural Gas Pipelines. PhD Thesis. Trondheim (2013).
dc.relation.references[18] Zheng Y., Xiao J., Sun X., Hua H., Fang G. Application and understanding of Stoner Pipeline Simulator (SPS). Natural Gas Industry. 33, 104–109 (2013).
dc.relation.references[19] Zheng J. G., Chen G. Q., Song F., Ai-Mu Y., Zhao J. L. Research on simulation model and solving technology of large scale gas pipe network. Journal of System Simulation. 24 (6), 1339–1344 (2012).
dc.relation.references[20] Husarova I. H., Boyarskaya Y. V. Klassy zadach modelirovaniya i chislennogo analiza nestatsionarnykh rezhimov raboty gazotransportnoy sistemy. Eastern-European Journal of Enterprise Technologies. 3/6 (45), 26–32 (2010), (in Russian).
dc.relation.references[21] Galuza A., Grinberg G., Tevyasheva O., Lyubchyk L. Modeling and Optimization of Gas Transmission Systems under Uncertain Operation Conditions. 2019 9th International Conference on Advanced Computer Information Technologies (ACIT). 80–83 (2019).
dc.relation.references[22] Pyanylo Ya., Prytula N., Prytula M., Khymko O. On an invariant of a non-stationary model of pipelines gas flow. Mathematical Modeling and Computing. 6 (1), 116–128 (2019).
dc.relation.referencesen[1] Pakin A. K. Perspektivy razvitiya mirovogo rynka prirodnogo gaza. Vestnik Rossiyskogo ekonomicheskogo universiteta imeni G. V. Plekhanova. 3, 147–153 (2016), (in Russian).
dc.relation.referencesen[2] Sardanashvili S. A. Raschetnyye metody i algoritmy (truboprovodnyy transport gaza). Oil and gas, Moscow (2005), (in Russian).
dc.relation.referencesen[3] Prytula N. Mathematical modelling of dynamic processes in gas transmission. ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes. 4 (3), 57–63 (2015).
dc.relation.referencesen[4] Novyckyj N. N., Sukharev M. Gh., Tevjashev A. D. Truboprovodnyje sistemy energhetiki: Metodicheskije i prikladnyje problemy modelirovanija. Science, Novosibirsk, pp. 193–204 (2015), (in Russian).
dc.relation.referencesen[5] Seleznev V. E., Pryalov S. N. Metody postroeniya modelej techenij v magistral’nyh truboprovodah i kanalah: monografiya. Direct-Media, Moscow–Berlin (2014), (in Russian).
dc.relation.referencesen[6] Seleznev V. E., Aleshyn V. V., Pryalov S. N. Osnovy chislennogo modelirovanija magistralnyh truboprovodov. MAX Press, Moscow (2009), (in Russian).
dc.relation.referencesen[7] Tevyashev A. D., Husarova I. H., Churkina A. V. Effektivnyy metod i algoritm rascheta nestatsionarnykh neizotermicheskikh rezhimov transporta gaza v gazotransportnoy seti proizvol’noy struktury. EasternEuropean Journal of Enterprise Technologies. 2/3 (20), 45–52 (2006).
dc.relation.referencesen[8] Seleznev V. E., Aleshyn V. V., Prjalov S. N. Osnovy chyseljnogho modeljuvannja maghistraljnykh ghazoprovodov. KomKnygha, Moscow (2005), (in Russian).
dc.relation.referencesen[9] Helgaker J. F., M¨uller B., Ytrehus T. Transient flow in natural gaspipelines using implicit finite difference schemes. Journal of Offshore Mechanics and Arctic Engineering. 136 (3), 031701–0317011 (2014).
dc.relation.referencesen[10] Ermolaeva N. N. Nestacionarnye modeli teploobmena i transportirovki gaza po morskim gazoprovodam. Transactions of the Karelian Research Centre of the Russian Academy of Sciences, Mathematical Modeling and Information Technologies Series. 8, 3–10 (2016), (in Russian).
dc.relation.referencesen[11] Ermolaeva N. N. Kompyuternoe modelirovanie oledeneniya morskogo gazoprovoda i povedeniya harakteristik potoka v neustanovivshihsya rezhimah’. Bulletin of St. Petersburg University. 4 (10), 75–86 (2016), (in Russian).
dc.relation.referencesen[12] Husarova I. H., Melinevskyi D. V. Chislennoye modelirovaniye perekhodnykh rezhimov techeniya gaza s ispol’zovaniyem razlichnykh konechno-raznostnykh setok. Information Processing Systems. 2, 29–33 (2017), (in Russian).
dc.relation.referencesen[13] Wang P., Yu B., Han D., Li J., Sun D., Xiang Y., Wang L. Adaptive implicit finite difference method for natural gas pipeline transient flow. Oil Gas Sci. Technol. 73, 21 (2018).
dc.relation.referencesen[14] Zhang L. Simulation of the transient flow in a natural gas compression system using a high-order upwind scheme considering the real-gas behaviors. Journal of Natural Gas Science and Engineering. 28, 479–490 (2016).
dc.relation.referencesen[15] Sung W.-P., Chen R. Application of p Equivalent Circuit in Mathematic Modeling and Simulation of Gas Pipeline. Applied Mechanics and Materials. 496, 943–946 (2014).
dc.relation.referencesen[16] Husarova I. H., Korotenko A. N. Rezultaty chislennogo modelirovanija perekhodnykh rezhimov techenija gaza po uchastku truboprovoda metodom harakteristik. Information Processing Systems. 2 (153), 18–26 (2018), (in Russian).
dc.relation.referencesen[17] Helgaker J. F. Modeling Transient Flow in Long Distance Offshore Natural Gas Pipelines. PhD Thesis. Trondheim (2013).
dc.relation.referencesen[18] Zheng Y., Xiao J., Sun X., Hua H., Fang G. Application and understanding of Stoner Pipeline Simulator (SPS). Natural Gas Industry. 33, 104–109 (2013).
dc.relation.referencesen[19] Zheng J. G., Chen G. Q., Song F., Ai-Mu Y., Zhao J. L. Research on simulation model and solving technology of large scale gas pipe network. Journal of System Simulation. 24 (6), 1339–1344 (2012).
dc.relation.referencesen[20] Husarova I. H., Boyarskaya Y. V. Klassy zadach modelirovaniya i chislennogo analiza nestatsionarnykh rezhimov raboty gazotransportnoy sistemy. Eastern-European Journal of Enterprise Technologies. 3/6 (45), 26–32 (2010), (in Russian).
dc.relation.referencesen[21] Galuza A., Grinberg G., Tevyasheva O., Lyubchyk L. Modeling and Optimization of Gas Transmission Systems under Uncertain Operation Conditions. 2019 9th International Conference on Advanced Computer Information Technologies (ACIT). 80–83 (2019).
dc.relation.referencesen[22] Pyanylo Ya., Prytula N., Prytula M., Khymko O. On an invariant of a non-stationary model of pipelines gas flow. Mathematical Modeling and Computing. 6 (1), 116–128 (2019).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectлінійна ділянка
dc.subjectнестаціонарний неізотермічний режим течії газу
dc.subjectмоделювання
dc.subjectметод скінченних різниць
dc.subjectlinear section
dc.subjectnon-stationary non-isothermal mode of gas flow
dc.subjectmodeling
dc.subjectfinite difference algorithm
dc.titleMathematical modeling of non-stationary gas flow modes along a linear section of a gas transmission system
dc.title.alternativeМатематичне моделювання нестаціонарних режимів течії газу по лінійній ділянці газотранспортної системи
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n2_Husarova_I_H-Mathematical_modeling_416-430.pdf
Size:
6.22 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n2_Husarova_I_H-Mathematical_modeling_416-430__COVER.png
Size:
426.44 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: