Design, Synthesis and Biological Activity of the 4-Thioquinoline Derivative

dc.citation.epage785
dc.citation.issue4
dc.citation.spage774
dc.contributor.affiliationZaporizhzhia National University
dc.contributor.affiliationKhortytsia National Academy
dc.contributor.affiliationHeinrich-Heine-University Düsseldorf
dc.contributor.affiliationVasyl Stefanyk Precarpathian National University
dc.contributor.affiliationPGP College of Arts and Science Paramathi
dc.contributor.authorBohdan, Anna
dc.contributor.authorRomanenko, Yanina
dc.contributor.authorZavhorodnii, Mikhail
dc.contributor.authorKornet, Maryna
dc.contributor.authorShupeniuk, Vasyl
dc.contributor.authorNepolraj, Amaladoss
dc.contributor.authorKlimova, Olena
dc.contributor.authorBrazhko, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:19Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОдним із перспективних напрямів у створенні біорегуляторів є моделювання сполук, що поєднують декілька фармакофорів. Створення нових високоефективних і малотоксичних цитопротекторів значною мірою базується на похідних азотовмісних гетероциклів, серед яких значну роль відіграє хінолін. Проведені дослідження дозволили оцінити токсичність досліджуваних сполук in silico, in vitro та in vivo, що дало змогу визначити декілька факторів, які впливають на рівень токсичної дії похідних 4-тіохіноліну, і напрям пошуку нетоксичних речовин у цьому ряду сполук. Досліджувані 4-тіохіноліни показали в експерименті помірну антирадикальну дію,поступаючись референтному антиоксиданту – ацетилцистеїну. Найбільш активними сполуками є похідні 7-хлор-4-тіохіноліну із залишками пропанової кислоти в 4-муположенні – 2-(7-хлорхінолін-4-ілтіо)пропанова кислота та натрієва сіль 2-аміно-3-((7-хлорхінолін-4-іл)тіо)пропанової кислоти. Антиоксидантна дія цих сполук була вищою,ніж тіотриазолін (препарат порівняння) на 27 % та 41 % відповідно. Досліджувані сполуки показали високу захисну дію при Н2О2-індукованому окисному стресі щодо чоловічої сперми за основними показниками фертильності сперми.Встановлено, що сполуки із залишками янтарної кислоти, цистеаміну або цистеїну в структурі молекули не поступаються препаратам порівняння. У середньому 2-((7-хлорхінолін-4-іл)тіо)бурштинова кислота та 2-((хінолін-4-іл)тіо)етанамінудигідрохлоридперевищували препарат порівняння ацетилцистеїн і були на рівні з аскорбіновою кислотою.
dc.description.abstractOne of the promising areas in the creation of bioregulators is the modeling of compounds that combine several pharmacophores. The design of new highly efficient and low-toxic cytoprotectors is largely based on the derivatives of nitrogen-containing heterocycles, and quinoline plays a significant role among these compounds. The researchers evaluated the toxicity of the tested compounds in silico, in vitro, and in vivo, which allowed determiningseveral factors that affect the level of toxic action of 4-thioquinoline derivatives and the direction of non-toxic substances in this sequence. The studied 4-thioquinolines showed a moderate antiradical action in the experiment, inferior to the reference antioxidant Acetylcysteine. The most active compounds are 7-chloro-4-thioquinoline derivatives with propanoic acid residues in the 4th position. 2-(7-chloroquinolin-4-ylthio)propanoic acid and sodium salt of 2-amino-3-((7-chloroquinolin-4-yl)thio)propanoic acid showed the most promising results and their antioxidant action was higher than Tiotriazolin (the comparator) by 27 % and 41 %, respectively. The studied compounds showed a protective effect under H2O2-induced oxidative stress against male sperm according to the main indicators of sperm fertility. It was found that the compounds withresidues of succinic acid, cysteamine, or cysteine in the molecule structure are not inferior to reference drugs. On average, 2-((7-chloroquinolin-4-yl)thio)succinic acid and 2-((quinolin-4-yl)thio)ethanaminedihydrochloride exceeded the comparison drug Acetylcysteine and were on a par with the effect of Ascorbic acid.
dc.format.extent774-785
dc.format.pages12
dc.identifier.citationDesign, Synthesis and Biological Activity of the 4-Thioquinoline Derivative / Anna Bohdan, Yanina Romanenko, Mikhail Zavhorodnii, Maryna Kornet, Vasyl Shupeniuk, Amaladoss Nepolraj, Olena Klimova, Oleksandr Brazhko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 774–785.
dc.identifier.citationenDesign, Synthesis and Biological Activity of the 4-Thioquinoline Derivative / Anna Bohdan, Yanina Romanenko, Mikhail Zavhorodnii, Maryna Kornet, Vasyl Shupeniuk, Amaladoss Nepolraj, Olena Klimova, Oleksandr Brazhko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 774–785.
dc.identifier.doidoi.org/10.23939/chcht17.04.774
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63712
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018,20, 12. https://doi.org/10.1007/s11906-018-0812-z
dc.relation.references[2] Martins, A.D.; Majzoub, A.; Agawal, A. Metabolic Syndrome and Male Fertility. World J. Men's Health2019, 37, 113–127. https://doi.org/10.5534/wjmh.180055
dc.relation.references[3] Barati, E.; Nikzad, H.; Karimian, M. Oxidative Stress and Male Infertility: Current Knowledge of Pathophysiology and Role of Antioxidant Therapy in Disease Management. Cell. Mol. Life Sci.2020, 77, 93–113. https://doi.org/10.1007/s00018-019-03253-8
dc.relation.references[4] Sanocka, D.; Kurpisz, M. Reactive Oxygen Species and Sperm Cells. Reprod. Biol. Endocrinol.2004, 2, 12. https://doi.org/10.1186/1477-7827-2-12
dc.relation.references[5] Ursini, F. Oxygen, Sulfur, Selenium, Iron and Lipid Peroxidation: How GPx4 Controls Cell Life and Death. Free Radic. Biol. Med. 2019, 139, S3–S3.
dc.relation.references[6] Yadav, V.; Reang, J.; Sharma, V.; Majeed, J.; Sharma, P. C.; Sharma, K.; Giri, N.; Kumar, A.; Tonk, R. K. Quinoline-Derivatives as Privileged Scaffolds for Medicinal and Pharmaceutical Chemists: A Comprehensive Review. Chem. Biol. Drug Design 2022, 100, 389–418. https://doi.org/10.1111/cbdd.14099
dc.relation.references[7] Brazhko, O.A.; Omelyanchik, L.O.; Zavgorodniy, M.P.; Martynovsky, M.P. Khimiya ta biolohichnaaktyvnistʹ 2(4)-tiokhinolinivi 9-tioakrydyniv;ZNU:Zaporizhzhia, 2013.
dc.relation.references[8] Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives. J Chem2020,2020, 1324096. https://doi.org/10.1155/2020/1324096
dc.relation.references[9] Ali, M.M.A.; Suriyan, G.U.; Surya, K.J.; Mani, K.S. Synthesis of Bioactive Quinoline Appended Spiro Pyrrolidinesas Antioxidants. J. Heterocycl. Chem. 2023, 60,1558–1564. https://doi.org/10.1002/jhet.4699
dc.relation.references[10] Haeusler, I.L.; Chan, X.H.S; Guerin, P.J. The Arrhythmogenic Cardiotoxicity of the Quinoline and Structurally Related Antimalarial Drugs: A Systematic Review. BMC Med.2018, 16, 200. https://doi.org/10.1186/s12916-018-1188-2
dc.relation.references[11] Kang, S.K.; Woo, J.; Cho, S.; Lee, S,E.; Kim, Y.K.; Yoon, S.S. Synthesis of Benzo[g]quinoline Derivatives and Their Electroluminescent Properties. J. Nanosci. Nanotechnol.2019,19, 4543–4548. https://doi.org/10.1166/jnn.2019.16687
dc.relation.references[12] Hu, Y.Q.; Gao, C.; Zhang, S. Quinoline Hybrids and Their Antiplasmodial and Antimalarial Activities. Eur. J. Med. Chem. 2017, 139, 22–47. https://doi.org/10.1016/j.ejmech.2017.07.061
dc.relation.references[13] Brazhko, O.; Gencheva V.; Kornet M.; Zavgorodniy, M. Modern Aspects of Creating of Drugs Based QuS-Program Development;LAP LAMBERT Academic Publishing, 2020.
dc.relation.references[14] Kornet, M.M.; Brazhko, О.А., Zavhorodniy M.P.; Tkach, V.V.; Kruglyak, O.S.; de Oliveira, S.C. Electrochemical Determination of Antioxidant Activity of New 4-Thiosubstituted Quinoline Derivatives with Potential Radioprotecting Properties. Biointerface Res. Appl. Chem.2021,11, 9148–9156. https://doi.org/10.33263/BRIAC112.91489156
dc.relation.references[15] Bogdan, A.M.; Brazhko, S.; Labenska, I.B.; Brazhko, O.A. Acute Toxicity and Hypoglycemic Activity of 7-Chloro-4-thio-substituted Quinoline. Bulletin of Zaporizhzhia National University. Biological Sciences2019, 1, 23–30. https://doi.org/10.26661/2410-0943-2019-1-03
dc.relation.references[16] Brazhko, O.O.; Zavgorodny, M.P.; Kruglyak, O.S.; Omeljanchik, L.O.; Shapoval, G.A.Antioxidant Activity of Alkoxy Derivatives of (Quinoline-4-ylthio)carboxylic Acids. UkrBiochem J2015, 87, 95–102. https://doi.org/10.15407/ubj87.02.095
dc.relation.references[17] Yang, R.; Ma, Y.; Huang, T.; Xie, W.; Zhang, X.; Huang, G.; Liu, X. Synthesis and Antifungal Activities of 4-Thioquinoline Compounds. Chinese J Org Chem2018, 38, 2143–2150. https://doi.org/10.6023/cjoc201801024
dc.relation.references[18] Chen, J.; Lu, J.; Xie, F.; Huang, L. QuinolineMercaptoacetate Sulfonamide Derivative, Intermediate, Pharmaceutical Derivative or Formulation, and Preparation Method and Use Therefor. WO2022242782 A1, November 24, 2022.
dc.relation.references[19] Metelytsia, L.; Hodyna, D.; Dobrodub, I.; Semenyuta, I.; Zavhorodnii, M.; Blagodatny, V.; Brazhko, O.; Design of (Quinolin-4-ylthio)carboxylic Acids as New Escherichia coli DNA Gyrase B Inhibitors: Machine Learning Studies, Molecular Docking, Synthesis and Biological Testing. ComputBiolChem2020, 85, 107224. https://doi.org/10.1016/j.compbiolchem.2020.107224
dc.relation.references[20] Lagunin, A.; Zakharov, A.; Filimonov, D. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol. Inform. 2011, 30, 241–250. https://doi.org/10.1002/minf.201000151
dc.relation.references[21] Brazhko, O.A.; Zavgorodniy, M.P.; Kornet, M.M.; Lagron, A.V.; Dobrodub, I.V. Synthesis and Biological Activity of Derivatives (2-Methyl(phenyl)-6-R-quinolin-4-yl-sulphanyl)carboxylic Acid. Sci. Rev.[Online] 2018, 7, 8–10. (accessed Nov 10, 2022).
dc.relation.references[22] Brazhko, O.A.; Zavgorodniy, M.P.; Dobrodub, I.V.; Omelyanchik, L.O.; Gencheva, V.I.; Novosad, N.V.; Brazhko, O.O. SposibOtrymannya A(Heteryl-(Tio))-BurshtynovoyiKysloty. Pat. Ukraine 60110, June 10, 2011.
dc.relation.references[23] Brazhko, O.A.; Kornet, M.M.; Zavgorodniy, M.P. S-(Azaheteryl)tsysteaminy ta Yikh Soli. Pat. Ukraine 97937, March 26, 2012.
dc.relation.references[24] Toxicity Estimation Software Tool (TEST).Washington: U.S. Environmental Protection Agency. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-... (accessed 2022-10-21).
dc.relation.references[25] Web service for predicting acute toxicity of compounds to mammals. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-... (accessed 2023-04-20).
dc.relation.references[26] Reznikov, O.G. Zahalʹni etychni pryntsypy eksperymentiv na tvarynakh. Pershyynatsionalʹnyykonhres z bioetyky. Endocrinology2003,8, 142–145.
dc.relation.references[27] Stefanov, O.V. Doklinichnidoslidzhennyalikarsʹkykhzasobiv (metodychnirekomendatsiyi);Avitsena:Kyiv, 2001.
dc.relation.references[28] Gubskiy, Yu.I.;Dunayev, V.V.; Bulenichev, I.F. Metodyotsinkyantyoksydantnykhvlastyvosteyfiziolohichnoaktyvnykhspoluk pry initsiatsiyivilʹnoradykalʹnykhprotsesiv in vitro (metodychnirekomendatsiyi); Kiev, 2002.
dc.relation.references[29] PASS. http://www.ibmh.msk.su/PASS(accessed 2023-04-17).
dc.relation.references[30] Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem.Heterocycl. Compd. 2014, 50, 444–457. https://doi.org/10.1007/s10593-014-1496-1
dc.relation.references[31] European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. Strasbourg: Council of Europe, 1986. http://www.arsal.ro/wp-content/uploads/2017/02/ETS-123-1.pdf(accessed 2023-01-11).
dc.relation.references[32] Rudik, A.; Dmitriev, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. MetaPASS: A Web Application for Analyzing the Biological Activity Spectrum of Organic Compounds Taking into Account Their Biotransformation. Mol. Inform. 2021, 40, 2000231. https://doi.org/10.1002/minf.202000231
dc.relation.referencesen[1] Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018,20, 12. https://doi.org/10.1007/s11906-018-0812-z
dc.relation.referencesen[2] Martins, A.D.; Majzoub, A.; Agawal, A. Metabolic Syndrome and Male Fertility. World J. Men's Health2019, 37, 113–127. https://doi.org/10.5534/wjmh.180055
dc.relation.referencesen[3] Barati, E.; Nikzad, H.; Karimian, M. Oxidative Stress and Male Infertility: Current Knowledge of Pathophysiology and Role of Antioxidant Therapy in Disease Management. Cell. Mol. Life Sci.2020, 77, 93–113. https://doi.org/10.1007/s00018-019-03253-8
dc.relation.referencesen[4] Sanocka, D.; Kurpisz, M. Reactive Oxygen Species and Sperm Cells. Reprod. Biol. Endocrinol.2004, 2, 12. https://doi.org/10.1186/1477-7827-2-12
dc.relation.referencesen[5] Ursini, F. Oxygen, Sulfur, Selenium, Iron and Lipid Peroxidation: How GPx4 Controls Cell Life and Death. Free Radic. Biol. Med. 2019, 139, S3–S3.
dc.relation.referencesen[6] Yadav, V.; Reang, J.; Sharma, V.; Majeed, J.; Sharma, P. C.; Sharma, K.; Giri, N.; Kumar, A.; Tonk, R. K. Quinoline-Derivatives as Privileged Scaffolds for Medicinal and Pharmaceutical Chemists: A Comprehensive Review. Chem. Biol. Drug Design 2022, 100, 389–418. https://doi.org/10.1111/cbdd.14099
dc.relation.referencesen[7] Brazhko, O.A.; Omelyanchik, L.O.; Zavgorodniy, M.P.; Martynovsky, M.P. Khimiya ta biolohichnaaktyvnistʹ 2(4)-tiokhinolinivi 9-tioakrydyniv;ZNU:Zaporizhzhia, 2013.
dc.relation.referencesen[8] Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives. J Chem2020,2020, 1324096. https://doi.org/10.1155/2020/1324096
dc.relation.referencesen[9] Ali, M.M.A.; Suriyan, G.U.; Surya, K.J.; Mani, K.S. Synthesis of Bioactive Quinoline Appended Spiro Pyrrolidinesas Antioxidants. J. Heterocycl. Chem. 2023, 60,1558–1564. https://doi.org/10.1002/jhet.4699
dc.relation.referencesen[10] Haeusler, I.L.; Chan, X.H.S; Guerin, P.J. The Arrhythmogenic Cardiotoxicity of the Quinoline and Structurally Related Antimalarial Drugs: A Systematic Review. BMC Med.2018, 16, 200. https://doi.org/10.1186/s12916-018-1188-2
dc.relation.referencesen[11] Kang, S.K.; Woo, J.; Cho, S.; Lee, S,E.; Kim, Y.K.; Yoon, S.S. Synthesis of Benzo[g]quinoline Derivatives and Their Electroluminescent Properties. J. Nanosci. Nanotechnol.2019,19, 4543–4548. https://doi.org/10.1166/jnn.2019.16687
dc.relation.referencesen[12] Hu, Y.Q.; Gao, C.; Zhang, S. Quinoline Hybrids and Their Antiplasmodial and Antimalarial Activities. Eur. J. Med. Chem. 2017, 139, 22–47. https://doi.org/10.1016/j.ejmech.2017.07.061
dc.relation.referencesen[13] Brazhko, O.; Gencheva V.; Kornet M.; Zavgorodniy, M. Modern Aspects of Creating of Drugs Based QuS-Program Development;LAP LAMBERT Academic Publishing, 2020.
dc.relation.referencesen[14] Kornet, M.M.; Brazhko, O.A., Zavhorodniy M.P.; Tkach, V.V.; Kruglyak, O.S.; de Oliveira, S.C. Electrochemical Determination of Antioxidant Activity of New 4-Thiosubstituted Quinoline Derivatives with Potential Radioprotecting Properties. Biointerface Res. Appl. Chem.2021,11, 9148–9156. https://doi.org/10.33263/BRIAC112.91489156
dc.relation.referencesen[15] Bogdan, A.M.; Brazhko, S.; Labenska, I.B.; Brazhko, O.A. Acute Toxicity and Hypoglycemic Activity of 7-Chloro-4-thio-substituted Quinoline. Bulletin of Zaporizhzhia National University. Biological Sciences2019, 1, 23–30. https://doi.org/10.26661/2410-0943-2019-1-03
dc.relation.referencesen[16] Brazhko, O.O.; Zavgorodny, M.P.; Kruglyak, O.S.; Omeljanchik, L.O.; Shapoval, G.A.Antioxidant Activity of Alkoxy Derivatives of (Quinoline-4-ylthio)carboxylic Acids. UkrBiochem J2015, 87, 95–102. https://doi.org/10.15407/ubj87.02.095
dc.relation.referencesen[17] Yang, R.; Ma, Y.; Huang, T.; Xie, W.; Zhang, X.; Huang, G.; Liu, X. Synthesis and Antifungal Activities of 4-Thioquinoline Compounds. Chinese J Org Chem2018, 38, 2143–2150. https://doi.org/10.6023/cjoc201801024
dc.relation.referencesen[18] Chen, J.; Lu, J.; Xie, F.; Huang, L. QuinolineMercaptoacetate Sulfonamide Derivative, Intermediate, Pharmaceutical Derivative or Formulation, and Preparation Method and Use Therefor. WO2022242782 A1, November 24, 2022.
dc.relation.referencesen[19] Metelytsia, L.; Hodyna, D.; Dobrodub, I.; Semenyuta, I.; Zavhorodnii, M.; Blagodatny, V.; Brazhko, O.; Design of (Quinolin-4-ylthio)carboxylic Acids as New Escherichia coli DNA Gyrase B Inhibitors: Machine Learning Studies, Molecular Docking, Synthesis and Biological Testing. ComputBiolChem2020, 85, 107224. https://doi.org/10.1016/j.compbiolchem.2020.107224
dc.relation.referencesen[20] Lagunin, A.; Zakharov, A.; Filimonov, D. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol. Inform. 2011, 30, 241–250. https://doi.org/10.1002/minf.201000151
dc.relation.referencesen[21] Brazhko, O.A.; Zavgorodniy, M.P.; Kornet, M.M.; Lagron, A.V.; Dobrodub, I.V. Synthesis and Biological Activity of Derivatives (2-Methyl(phenyl)-6-R-quinolin-4-yl-sulphanyl)carboxylic Acid. Sci. Rev.[Online] 2018, 7, 8–10. (accessed Nov 10, 2022).
dc.relation.referencesen[22] Brazhko, O.A.; Zavgorodniy, M.P.; Dobrodub, I.V.; Omelyanchik, L.O.; Gencheva, V.I.; Novosad, N.V.; Brazhko, O.O. SposibOtrymannya A(Heteryl-(Tio))-BurshtynovoyiKysloty. Pat. Ukraine 60110, June 10, 2011.
dc.relation.referencesen[23] Brazhko, O.A.; Kornet, M.M.; Zavgorodniy, M.P. S-(Azaheteryl)tsysteaminy ta Yikh Soli. Pat. Ukraine 97937, March 26, 2012.
dc.relation.referencesen[24] Toxicity Estimation Software Tool (TEST).Washington: U.S. Environmental Protection Agency. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-... (accessed 2022-10-21).
dc.relation.referencesen[25] Web service for predicting acute toxicity of compounds to mammals. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-... (accessed 2023-04-20).
dc.relation.referencesen[26] Reznikov, O.G. Zahalʹni etychni pryntsypy eksperymentiv na tvarynakh. Pershyynatsionalʹnyykonhres z bioetyky. Endocrinology2003,8, 142–145.
dc.relation.referencesen[27] Stefanov, O.V. Doklinichnidoslidzhennyalikarsʹkykhzasobiv (metodychnirekomendatsiyi);Avitsena:Kyiv, 2001.
dc.relation.referencesen[28] Gubskiy, Yu.I.;Dunayev, V.V.; Bulenichev, I.F. Metodyotsinkyantyoksydantnykhvlastyvosteyfiziolohichnoaktyvnykhspoluk pry initsiatsiyivilʹnoradykalʹnykhprotsesiv in vitro (metodychnirekomendatsiyi); Kiev, 2002.
dc.relation.referencesen[29] PASS. http://www.ibmh.msk.su/PASS(accessed 2023-04-17).
dc.relation.referencesen[30] Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem.Heterocycl. Compd. 2014, 50, 444–457. https://doi.org/10.1007/s10593-014-1496-1
dc.relation.referencesen[31] European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. Strasbourg: Council of Europe, 1986. http://www.arsal.ro/wp-content/uploads/2017/02/ETS-123-1.pdf(accessed 2023-01-11).
dc.relation.referencesen[32] Rudik, A.; Dmitriev, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. MetaPASS: A Web Application for Analyzing the Biological Activity Spectrum of Organic Compounds Taking into Account Their Biotransformation. Mol. Inform. 2021, 40, 2000231. https://doi.org/10.1002/minf.202000231
dc.relation.urihttps://doi.org/10.1007/s11906-018-0812-z
dc.relation.urihttps://doi.org/10.5534/wjmh.180055
dc.relation.urihttps://doi.org/10.1007/s00018-019-03253-8
dc.relation.urihttps://doi.org/10.1186/1477-7827-2-12
dc.relation.urihttps://doi.org/10.1111/cbdd.14099
dc.relation.urihttps://doi.org/10.1155/2020/1324096
dc.relation.urihttps://doi.org/10.1002/jhet.4699
dc.relation.urihttps://doi.org/10.1186/s12916-018-1188-2
dc.relation.urihttps://doi.org/10.1166/jnn.2019.16687
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2017.07.061
dc.relation.urihttps://doi.org/10.33263/BRIAC112.91489156
dc.relation.urihttps://doi.org/10.26661/2410-0943-2019-1-03
dc.relation.urihttps://doi.org/10.15407/ubj87.02.095
dc.relation.urihttps://doi.org/10.6023/cjoc201801024
dc.relation.urihttps://doi.org/10.1016/j.compbiolchem.2020.107224
dc.relation.urihttps://doi.org/10.1002/minf.201000151
dc.relation.urihttps://www.epa.gov/chemical-research/toxicity-estimation-software-tool-..
dc.relation.urihttp://www.ibmh.msk.su/PASS(accessed
dc.relation.urihttps://doi.org/10.1007/s10593-014-1496-1
dc.relation.urihttp://www.arsal.ro/wp-content/uploads/2017/02/ETS-123-1.pdf(accessed
dc.relation.urihttps://doi.org/10.1002/minf.202000231
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Bohdan A., Romanenko Y., Zavhorodnii M., Kornet M., Shupeniuk V., Nepolraj A., Klimova O, Brazhko O., 2023
dc.subject4-тіохіноліни
dc.subjectPASS-прогноз
dc.subjectтоксичність
dc.subjectантиоксидантна активність
dc.subjectзахист сперматозоїдів
dc.subject4-thioquinolines
dc.subjectPASS-prognosis
dc.subjecttoxicity
dc.subjectantioxidant activity
dc.subjectsperm cells protection
dc.titleDesign, Synthesis and Biological Activity of the 4-Thioquinoline Derivative
dc.title.alternativeСтворення, синтез і біологічна активність похідних 4-тіохіноліну
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Bohdan_A-Design_Synthesis_and_Biological_774-785.pdf
Size:
767.43 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Bohdan_A-Design_Synthesis_and_Biological_774-785__COVER.png
Size:
537.97 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: