The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates
dc.citation.epage | 286 | |
dc.citation.issue | 2 | |
dc.citation.spage | 279 | |
dc.contributor.affiliation | Urmia University | |
dc.contributor.author | Zeynizadeh, Behzad | |
dc.contributor.author | Gilanizadeh, Masumeh | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:44Z | |
dc.date.available | 2024-02-12T08:30:44Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Досліджено шаруватий подвійний гідроксид Cu-Ni-Fe-Cr (LDH), іммобілізований на шарі магнетиту (Fe3O4@SiO2@Cu-Ni-Fe-Cr LDH) для розкриття кільця різних епоксидів оцтовим ангідридом з метою отримання віц-діацетатів протягом 15–40 хв із високим виходом. Багаторазове використання нано-LDH також вивчали протягом шести послідовних циклів без значних втрат каталітичної активності. | |
dc.description.abstract | In this study, Cu-Ni-Fe-Cr layered double hydroxide (LDH) immobilized on silica layered magnetite (Fe3O4@SiO2@Cu-Ni-Fe-Cr LDH) was investigated towards ring opening of diverse epoxides with acetic anhydride to afford vic-diacetates within 15–40 min in high yields. Reusability of the nano-LDH was also studied for 6 consecutive cycles without the significant loss of catalytic activity. | |
dc.format.extent | 279-286 | |
dc.format.pages | 8 | |
dc.identifier.citation | Zeynizadeh B. The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates / Behzad Zeynizadeh, Masumeh Gilanizadeh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 279–286. | |
dc.identifier.citationen | Zeynizadeh B. The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates / Behzad Zeynizadeh, Masumeh Gilanizadeh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 279–286. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.279 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61256 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Zeynizadeh, B.; Gilanizadeh, M. Green and Highly Efficient Approach for the Reductive Coupling of Nitroarenes to Azoxya-renes Using the New Mesoporous Fe3O4@SiO2@Co–Zr–Sb Cata-lyst. Res. Chem. Intermed. 2020, 46, 2969-2984. https://doi.org/10.1007/s11164-020-04126-7 | |
dc.relation.references | [2] Zeynizadeh, B.; Gilanizadeh, M. Synthesis and Characterization of a Magnetic Graphene Oxide/Zn–Ni–Fe Layered Double Hydrox-ide Nanocomposite: An Efficient Mesoporous Catalyst for the Green Preparation of Biscoumarins. New J. Chem. 2019, 43, 18794-18804. https://doi.org/10.1039/C9NJ04718B | |
dc.relation.references | [3] Gilanizadeh, M.; Zeynizadeh, B. Synthesis and Characterization of the Immobilized Ni–Zn–Fe Layered Double Hydroxide (LDH) on Silica-Coated Magnetite as a Mesoporous and Magnetically Reusable Catalyst for the Preparation of Benzylidenemalononitriles and Bisdimedones (Tetraketones) under Green Conditions. New J. Chem. 2018, 42, 8553-8566. https://doi.org/10.1039/C8NJ00788H | |
dc.relation.references | [4] Gilanizadeh, M.; Zeynizadeh, B. Binary Copper and Iron Oxides Immobilized on Silica-Layered Magnetite as a New Reusable Heterogeneous Nanostructure Catalyst for the Knoevenagel Condensation in Water. Res. Chem. Intermed. 2018, 44, 6053-6070. https://doi.org/10.1007/s11164-018-3475-0 | |
dc.relation.references | [5] Gilanizadeh, M.; Zeynizadeh, B.; Gholamiyan E. Green Formy-lation of Alcohols Catalyzed by Magnetic Nanoparticles of the Core–Shell Fe3O4@SiO2-SO3H. Iran. J. Sci. Technol. T. A Sci. 2019, 43, 819-827. https://doi.org/10.1007/s40995-018-0594-9 | |
dc.relation.references | [6] Zeynizadeh, B.; Gholamiyan, E.; Gilanizadeh, M. Magnetically Recoverable CuFe2O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Green Formylation of Alcohols. Curr. Chem. Lett. 2018, 7, 121-130. | |
dc.relation.references | [7] Gilanizadeh, M.; Zeynizadeh, B. Cascade Synthesis of Fused Polycyclic Dihydropyridines by Ni–Zn–Fe Hydrotalcite (HT) Im-mobilized on Silica-coated Magnetite as Magnetically Reusable Nanocatalyst. Res. Chem. Intermed. 2019, 45, 2811-2825. https://doi.org/10.1007/s11164-019-03764-w | |
dc.relation.references | [8] Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Publishers: New York, 2001. | |
dc.relation.references | [9] Mandal, S.; Mayadevi, S. Adsorption of Fluoride Ions by Zn–Al Layered Double Hydroxides. Appl. Clay Sci. 2008, 40, 54-62. https://doi.org/10.1016/j.clay.2007.07.004 | |
dc.relation.references | [10] Goh, K.-H.; Lim, T.-T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42, 1343-1368. https://doi.org/10.1016/j.watres.2007.10.043 | |
dc.relation.references | [11] Lee, W.F.; Chen, Y.-C. Effect of Hydrotalcite on the Physical Properties and Drug-release Behavior of Nanocomposite Hydrogels Based on Poly[acrylic Acid-co-poly(ethylene glycol) Methyl ETher Acrylate] Gels. J. Appl. Polym. Sci. 2004, 94, 692-699. https://doi.org/10.1002/app.20936 | |
dc.relation.references | [12] Evans, D.G.; Duan, X. Preparation of Layered Double Hydroxides and their Applications as Additives in Polymers, as Precursors to Magnetic Materials and in Biology and Medicine. ChemComm 2006, 485-496 https://doi.org/10.1039/B510313B | |
dc.relation.references | [13] Chang, Y.-C.; Chang, S.-W.; Chen, D.-H. Magnetic Chitosan Nanoparticles: Studies on Chitosan Binding and Adsorption of Co(II) Ions. React. Funct. Polym. 2006, 66, 335-341. https://doi.org/10.1016/j.reactfunctpolym.2005.08.006 | |
dc.relation.references | [14] Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M.L. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 2006, 128, 5279-5282. https://doi.org/10.1021/ja060140u | |
dc.relation.references | [15] Zhang, D.-H.; Li, G.-D.; Li, J.-H.; Chen, J.-S. One-Pot Synthesis of Ag-Fe3O4 Nanocomposite: A Magnetically Recyclable and Efficient Catalyst for Epoxidation of Styrene. ChemComm 2008, 29, 3414-3416. https://doi.org/10.1039/B805737K | |
dc.relation.references | [16] Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371-3393. https://doi.org/10.1039/C3CS35480F | |
dc.relation.references | [17] Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically Sepa-rable Nanocatalysts: Bridges between Homogeneous and Heteroge-neous Catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428-3459. https://doi.org/10.1002/anie.200905684 | |
dc.relation.references | [18] Shokouhimehr, M.; Piao, Y.; Kim J.; Jang, Y.; Hyeon, T. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxi-dation. Angew. Chem. Int. Ed. 2007, 46, 7039-7043. https://doi.org/10.1002/anie.200702386 | |
dc.relation.references | [19] Lu, A.-H.; Salabas, E.L.; Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244. https://doi.org/10.1002/anie.200602866 | |
dc.relation.references | [20] Jacobsen, E.; Pfaltz, A.; Yamamoto, H. Comprehensive Asym-metric Catalysis; SpringerVerlag: Berlin Heidelberg, 1999. | |
dc.relation.references | [21] Yudin, A. Aziridines and Epoxides in Organic Synthesis; Wi-ley-VCH: Weinheim, 2006. | |
dc.relation.references | [22] Ramesh, P.; Niranjan Reddy, V.L.; Venugopal, D.; Subrahmanyam, M.; Venkateswarlu, Y. Zeolite Catalyzed RIng Opening of Epoxides to Acetylated Diols with Acetic Anhydride. Synth. Commun. 2001, 31, 2599-2604. https://doi.org/10.1081/SCC-100105384 | |
dc.relation.references | [23] Azizi, N.; Mirmashhori, B.; Saidi, M.R. Lithium Perchlorate Promoted Highly Regioselective Ring Opening of Epoxides under Solvent-Free Conditions. Catal. Commun. 2007, 8, 2198-2203. https://doi.org/10.1016/j.catcom.2007.04.032 | |
dc.relation.references | [24] Gilanizadeh, M.; Zeynizadeh, B. 4Å Molecular Sieves Catalyzed Ring-Opening of Epoxides to 1,2-Diacetates with Acetic Anhydride. Curr. Chem. Lett. 2015, 4, 153-158. | |
dc.relation.references | [25] Gilanizadeh, M.; Zeynizadeh, B. Heterogeneous Acidic and Eco-Friendly Reagents for Mild and Convenient Conversion of Epoxides to 1,2-Diacetates. J. Chem. Res. 2016, 40, 296-298. https://doi.org/10.3184/174751916X14604770409296 | |
dc.relation.references | [26] Zeynizadeh, B.; Gilanizadeh, M.; Mohammad Aminzadeh, F. A highly Efficient Protocol for Regioselective Ring-Opening of Epoxides with Alcohols, Water, Acetic Acid, and Acetic Anhydride Catalyzed by SbF3. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 1051-1056. https://doi.org/10.1080/10426507.2015.1135439 | |
dc.relation.references | [27] Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Shariati, L.; Babaghanbari, M.; Zarea, M. Zirconyl Triflate, [ZrO(OTf)2], as a New and Highly Efficient Catalyst for Ring-Opening of Epoxides. J. Iran. Chem. Soc. 2009, 6, 789-799. https://doi.org/10.1007/BF03246171 | |
dc.relation.references | [28] Gilanizadeh, M.; Zeynizadeh, B. Direct Transformation of Epoxides to 1,2-Diacetates with Ac2O/B(OH)3 System. J. Chem. Soc. Pak. 2015, 37, 1234-1238. | |
dc.relation.references | [29] Das, B.; Saidi Reddy, V.; Tehseen, F. A Mild, Rapid and Highly Regioselective Ring-Opening of Epoxides and Aziridines with Acetic Anhydride under Solvent-Free Conditions Using Ammonium-12-molybdophosphate. Tetrahedron Lett. 2006, 47, 6865-6868. https://doi.org/10.1016/j.tetlet.2006.07.055 | |
dc.relation.references | [30] Gilanizadeh, M.; Zeynizadeh, B. Facile Conversion of Epox-ides to 1,2-Diacetates with NAOAC 3H2O/AC2O System. Iran. J. Chem. Chem. Eng. 2016, 35, 25-29. | |
dc.relation.references | [31] Fogassy, G.; Pinel, C.; Gelbard, G. Solvent-Free Ring Opening Reaction of Epoxides Using Quaternary Ammonium Salts as Catalyst. Catal. Commun. 2009, 10, 557-560. https://doi.org/10.1016/j.catcom.2008.10.039 | |
dc.relation.references | [32] Fan, R.-H.; Hou, X.-L. Tributylphosphine-Catalyzed Ring-Opening Reaction of Epoxides and Aziridines with Acetic Anhydride. Tetrahedron Lett. 2003, 44, 4411-4413. https://doi.org/10.1016/S0040-4039(03)00943-2 | |
dc.relation.references | [33] Dalpozzo, R.; De Nino, A.; Nardi, M.; Russo, B.; Procopio, A. 1,2-Diacetates by Epoxide Ring Opening Promoted by Erbium(III) Triflate. ARKIVOC 2006, vi, 67-73. | |
dc.relation.references | [34] Yadollahi, B.; Kabiri Esfahani, F. Efficient Preparation of vic-Diacetates from Epoxides and Acetic Anhydride in the Presence of Iron(III)-substituted Polyoxometalate as Catalyst. Chem. Lett. 2007, 36, 676-677. https://doi.org/10.1246/cl.2007.676 | |
dc.relation.references | [35] Taghavi, S.A.; Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Khosropour, A.R.; Ahmadi, V. Investigation of the Catalytic Activity of an Electron-Deficient Va-nadium(IV) Tetraphenylporphyrin: A New, Highly Efficient and Reusable Catalyst for Ring-Opening of Epoxides. Polyhedron 2011, 30, 2244-2252. https://doi.org/10.1016/j.poly.2011.06.008 | |
dc.relation.references | [36] Gilanizadeh, M.; Zeynizadeh, B. Synthesis of Magnetic Fe3O4@SiO2@Cu–Ni–Fe–Cr LDH: An Efficient and Reusable Mesoporous Catalyst for Reduction and One-Pot Reductive-Acetylation of Nitroarenes. J. Iran Chem. Soc. 2018, 15, 2821-2837. https://doi.org/10.1007/s13738-018-1469-x | |
dc.relation.references | [37] Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and Characteriza-tion of Amino–Silane Modified Superparamagnetic Silica Nanos-pheres. J. Magn. Magn. Mater. 2004, 270, 1-6. https://doi.org/10.1016/j.jmmm.2003.07.006 | |
dc.relation.references | [38] Zhang, Y.; Zeng, G.-M.; Tang, L.; Huang, D.-L.; Jiang, X.-Y.; Chen, Y.-N. A Hydroquinone Biosensor Using Modified Core–Shell Magnetic Nanoparticles Supported on Carbon Paste Electrode. Biosens. Bioelectron. 2007, 22, 2121-2126. https://doi.org/10.1016/j.bios.2006.09.030 | |
dc.relation.references | [39] Busetto, C.; Del Piero, G.; Manara, G.; Trifirò, F.; Vaccari A. Catalysts for Low-Temperature Methanol Synthesis. Preparation of Cu-Zn-Al Mixed Oxides via Hydrotalcite-Like Precursors. J. Catal. 1984, 85, 260-266. https://doi.org/10.1016/0021-9517(84)90130-1 | |
dc.relation.references | [40] Li, G.-Y.; Jiang, Y.-R.; Huang, K.-L.; Ding, P.; Yao, L.-L. Kinetics of Adsorption of Saccharomyces Cerevisiae Mandelated Dehydrogenase on Magnetic Fe3O4–Chitosan Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 11-18. https://doi.org/10.1016/j.colsurfa.2008.01.017 | |
dc.relation.references | [41] Lopez, J.A.; González, F.; Bonilla, F.A.; Zambrano, G.; Gómez, M.E. Synthesis and Characterization of Fe3O4 Magnetic Nanofluid. Rev. Latinoam. Metal. Mater. 2010, 30, 60-66. | |
dc.relation.referencesen | [1] Zeynizadeh, B.; Gilanizadeh, M. Green and Highly Efficient Approach for the Reductive Coupling of Nitroarenes to Azoxya-renes Using the New Mesoporous Fe3O4@SiO2@Co–Zr–Sb Cata-lyst. Res. Chem. Intermed. 2020, 46, 2969-2984. https://doi.org/10.1007/s11164-020-04126-7 | |
dc.relation.referencesen | [2] Zeynizadeh, B.; Gilanizadeh, M. Synthesis and Characterization of a Magnetic Graphene Oxide/Zn–Ni–Fe Layered Double Hydrox-ide Nanocomposite: An Efficient Mesoporous Catalyst for the Green Preparation of Biscoumarins. New J. Chem. 2019, 43, 18794-18804. https://doi.org/10.1039/P.9NJ04718B | |
dc.relation.referencesen | [3] Gilanizadeh, M.; Zeynizadeh, B. Synthesis and Characterization of the Immobilized Ni–Zn–Fe Layered Double Hydroxide (LDH) on Silica-Coated Magnetite as a Mesoporous and Magnetically Reusable Catalyst for the Preparation of Benzylidenemalononitriles and Bisdimedones (Tetraketones) under Green Conditions. New J. Chem. 2018, 42, 8553-8566. https://doi.org/10.1039/P.8NJ00788H | |
dc.relation.referencesen | [4] Gilanizadeh, M.; Zeynizadeh, B. Binary Copper and Iron Oxides Immobilized on Silica-Layered Magnetite as a New Reusable Heterogeneous Nanostructure Catalyst for the Knoevenagel Condensation in Water. Res. Chem. Intermed. 2018, 44, 6053-6070. https://doi.org/10.1007/s11164-018-3475-0 | |
dc.relation.referencesen | [5] Gilanizadeh, M.; Zeynizadeh, B.; Gholamiyan E. Green Formy-lation of Alcohols Catalyzed by Magnetic Nanoparticles of the Core–Shell Fe3O4@SiO2-SO3H. Iran. J. Sci. Technol. T. A Sci. 2019, 43, 819-827. https://doi.org/10.1007/s40995-018-0594-9 | |
dc.relation.referencesen | [6] Zeynizadeh, B.; Gholamiyan, E.; Gilanizadeh, M. Magnetically Recoverable CuFe2O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Green Formylation of Alcohols. Curr. Chem. Lett. 2018, 7, 121-130. | |
dc.relation.referencesen | [7] Gilanizadeh, M.; Zeynizadeh, B. Cascade Synthesis of Fused Polycyclic Dihydropyridines by Ni–Zn–Fe Hydrotalcite (HT) Im-mobilized on Silica-coated Magnetite as Magnetically Reusable Nanocatalyst. Res. Chem. Intermed. 2019, 45, 2811-2825. https://doi.org/10.1007/s11164-019-03764-w | |
dc.relation.referencesen | [8] Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Publishers: New York, 2001. | |
dc.relation.referencesen | [9] Mandal, S.; Mayadevi, S. Adsorption of Fluoride Ions by Zn–Al Layered Double Hydroxides. Appl. Clay Sci. 2008, 40, 54-62. https://doi.org/10.1016/j.clay.2007.07.004 | |
dc.relation.referencesen | [10] Goh, K.-H.; Lim, T.-T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42, 1343-1368. https://doi.org/10.1016/j.watres.2007.10.043 | |
dc.relation.referencesen | [11] Lee, W.F.; Chen, Y.-C. Effect of Hydrotalcite on the Physical Properties and Drug-release Behavior of Nanocomposite Hydrogels Based on Poly[acrylic Acid-co-poly(ethylene glycol) Methyl ETher Acrylate] Gels. J. Appl. Polym. Sci. 2004, 94, 692-699. https://doi.org/10.1002/app.20936 | |
dc.relation.referencesen | [12] Evans, D.G.; Duan, X. Preparation of Layered Double Hydroxides and their Applications as Additives in Polymers, as Precursors to Magnetic Materials and in Biology and Medicine. ChemComm 2006, 485-496 https://doi.org/10.1039/B510313B | |
dc.relation.referencesen | [13] Chang, Y.-C.; Chang, S.-W.; Chen, D.-H. Magnetic Chitosan Nanoparticles: Studies on Chitosan Binding and Adsorption of Co(II) Ions. React. Funct. Polym. 2006, 66, 335-341. https://doi.org/10.1016/j.reactfunctpolym.2005.08.006 | |
dc.relation.referencesen | [14] Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M.L. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 2006, 128, 5279-5282. https://doi.org/10.1021/ja060140u | |
dc.relation.referencesen | [15] Zhang, D.-H.; Li, G.-D.; Li, J.-H.; Chen, J.-S. One-Pot Synthesis of Ag-Fe3O4 Nanocomposite: A Magnetically Recyclable and Efficient Catalyst for Epoxidation of Styrene. ChemComm 2008, 29, 3414-3416. https://doi.org/10.1039/B805737K | |
dc.relation.referencesen | [16] Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371-3393. https://doi.org/10.1039/P.3CS35480F | |
dc.relation.referencesen | [17] Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically Sepa-rable Nanocatalysts: Bridges between Homogeneous and Heteroge-neous Catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428-3459. https://doi.org/10.1002/anie.200905684 | |
dc.relation.referencesen | [18] Shokouhimehr, M.; Piao, Y.; Kim J.; Jang, Y.; Hyeon, T. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxi-dation. Angew. Chem. Int. Ed. 2007, 46, 7039-7043. https://doi.org/10.1002/anie.200702386 | |
dc.relation.referencesen | [19] Lu, A.-H.; Salabas, E.L.; Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244. https://doi.org/10.1002/anie.200602866 | |
dc.relation.referencesen | [20] Jacobsen, E.; Pfaltz, A.; Yamamoto, H. Comprehensive Asym-metric Catalysis; SpringerVerlag: Berlin Heidelberg, 1999. | |
dc.relation.referencesen | [21] Yudin, A. Aziridines and Epoxides in Organic Synthesis; Wi-ley-VCH: Weinheim, 2006. | |
dc.relation.referencesen | [22] Ramesh, P.; Niranjan Reddy, V.L.; Venugopal, D.; Subrahmanyam, M.; Venkateswarlu, Y. Zeolite Catalyzed RIng Opening of Epoxides to Acetylated Diols with Acetic Anhydride. Synth. Commun. 2001, 31, 2599-2604. https://doi.org/10.1081/SCC-100105384 | |
dc.relation.referencesen | [23] Azizi, N.; Mirmashhori, B.; Saidi, M.R. Lithium Perchlorate Promoted Highly Regioselective Ring Opening of Epoxides under Solvent-Free Conditions. Catal. Commun. 2007, 8, 2198-2203. https://doi.org/10.1016/j.catcom.2007.04.032 | |
dc.relation.referencesen | [24] Gilanizadeh, M.; Zeynizadeh, B. 4Å Molecular Sieves Catalyzed Ring-Opening of Epoxides to 1,2-Diacetates with Acetic Anhydride. Curr. Chem. Lett. 2015, 4, 153-158. | |
dc.relation.referencesen | [25] Gilanizadeh, M.; Zeynizadeh, B. Heterogeneous Acidic and Eco-Friendly Reagents for Mild and Convenient Conversion of Epoxides to 1,2-Diacetates. J. Chem. Res. 2016, 40, 296-298. https://doi.org/10.3184/174751916X14604770409296 | |
dc.relation.referencesen | [26] Zeynizadeh, B.; Gilanizadeh, M.; Mohammad Aminzadeh, F. A highly Efficient Protocol for Regioselective Ring-Opening of Epoxides with Alcohols, Water, Acetic Acid, and Acetic Anhydride Catalyzed by SbF3. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 1051-1056. https://doi.org/10.1080/10426507.2015.1135439 | |
dc.relation.referencesen | [27] Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Shariati, L.; Babaghanbari, M.; Zarea, M. Zirconyl Triflate, [ZrO(OTf)2], as a New and Highly Efficient Catalyst for Ring-Opening of Epoxides. J. Iran. Chem. Soc. 2009, 6, 789-799. https://doi.org/10.1007/BF03246171 | |
dc.relation.referencesen | [28] Gilanizadeh, M.; Zeynizadeh, B. Direct Transformation of Epoxides to 1,2-Diacetates with Ac2O/B(OH)3 System. J. Chem. Soc. Pak. 2015, 37, 1234-1238. | |
dc.relation.referencesen | [29] Das, B.; Saidi Reddy, V.; Tehseen, F. A Mild, Rapid and Highly Regioselective Ring-Opening of Epoxides and Aziridines with Acetic Anhydride under Solvent-Free Conditions Using Ammonium-12-molybdophosphate. Tetrahedron Lett. 2006, 47, 6865-6868. https://doi.org/10.1016/j.tetlet.2006.07.055 | |
dc.relation.referencesen | [30] Gilanizadeh, M.; Zeynizadeh, B. Facile Conversion of Epox-ides to 1,2-Diacetates with NAOAC 3H2O/AC2O System. Iran. J. Chem. Chem. Eng. 2016, 35, 25-29. | |
dc.relation.referencesen | [31] Fogassy, G.; Pinel, C.; Gelbard, G. Solvent-Free Ring Opening Reaction of Epoxides Using Quaternary Ammonium Salts as Catalyst. Catal. Commun. 2009, 10, 557-560. https://doi.org/10.1016/j.catcom.2008.10.039 | |
dc.relation.referencesen | [32] Fan, R.-H.; Hou, X.-L. Tributylphosphine-Catalyzed Ring-Opening Reaction of Epoxides and Aziridines with Acetic Anhydride. Tetrahedron Lett. 2003, 44, 4411-4413. https://doi.org/10.1016/S0040-4039(03)00943-2 | |
dc.relation.referencesen | [33] Dalpozzo, R.; De Nino, A.; Nardi, M.; Russo, B.; Procopio, A. 1,2-Diacetates by Epoxide Ring Opening Promoted by Erbium(III) Triflate. ARKIVOC 2006, vi, 67-73. | |
dc.relation.referencesen | [34] Yadollahi, B.; Kabiri Esfahani, F. Efficient Preparation of vic-Diacetates from Epoxides and Acetic Anhydride in the Presence of Iron(III)-substituted Polyoxometalate as Catalyst. Chem. Lett. 2007, 36, 676-677. https://doi.org/10.1246/cl.2007.676 | |
dc.relation.referencesen | [35] Taghavi, S.A.; Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Khosropour, A.R.; Ahmadi, V. Investigation of the Catalytic Activity of an Electron-Deficient Va-nadium(IV) Tetraphenylporphyrin: A New, Highly Efficient and Reusable Catalyst for Ring-Opening of Epoxides. Polyhedron 2011, 30, 2244-2252. https://doi.org/10.1016/j.poly.2011.06.008 | |
dc.relation.referencesen | [36] Gilanizadeh, M.; Zeynizadeh, B. Synthesis of Magnetic Fe3O4@SiO2@Cu–Ni–Fe–Cr LDH: An Efficient and Reusable Mesoporous Catalyst for Reduction and One-Pot Reductive-Acetylation of Nitroarenes. J. Iran Chem. Soc. 2018, 15, 2821-2837. https://doi.org/10.1007/s13738-018-1469-x | |
dc.relation.referencesen | [37] Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and Characteriza-tion of Amino–Silane Modified Superparamagnetic Silica Nanos-pheres. J. Magn. Magn. Mater. 2004, 270, 1-6. https://doi.org/10.1016/j.jmmm.2003.07.006 | |
dc.relation.referencesen | [38] Zhang, Y.; Zeng, G.-M.; Tang, L.; Huang, D.-L.; Jiang, X.-Y.; Chen, Y.-N. A Hydroquinone Biosensor Using Modified Core–Shell Magnetic Nanoparticles Supported on Carbon Paste Electrode. Biosens. Bioelectron. 2007, 22, 2121-2126. https://doi.org/10.1016/j.bios.2006.09.030 | |
dc.relation.referencesen | [39] Busetto, C.; Del Piero, G.; Manara, G.; Trifirò, F.; Vaccari A. Catalysts for Low-Temperature Methanol Synthesis. Preparation of Cu-Zn-Al Mixed Oxides via Hydrotalcite-Like Precursors. J. Catal. 1984, 85, 260-266. https://doi.org/10.1016/0021-9517(84)90130-1 | |
dc.relation.referencesen | [40] Li, G.-Y.; Jiang, Y.-R.; Huang, K.-L.; Ding, P.; Yao, L.-L. Kinetics of Adsorption of Saccharomyces Cerevisiae Mandelated Dehydrogenase on Magnetic Fe3O4–Chitosan Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 11-18. https://doi.org/10.1016/j.colsurfa.2008.01.017 | |
dc.relation.referencesen | [41] Lopez, J.A.; González, F.; Bonilla, F.A.; Zambrano, G.; Gómez, M.E. Synthesis and Characterization of Fe3O4 Magnetic Nanofluid. Rev. Latinoam. Metal. Mater. 2010, 30, 60-66. | |
dc.relation.uri | https://doi.org/10.1007/s11164-020-04126-7 | |
dc.relation.uri | https://doi.org/10.1039/C9NJ04718B | |
dc.relation.uri | https://doi.org/10.1039/C8NJ00788H | |
dc.relation.uri | https://doi.org/10.1007/s11164-018-3475-0 | |
dc.relation.uri | https://doi.org/10.1007/s40995-018-0594-9 | |
dc.relation.uri | https://doi.org/10.1007/s11164-019-03764-w | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2007.07.004 | |
dc.relation.uri | https://doi.org/10.1016/j.watres.2007.10.043 | |
dc.relation.uri | https://doi.org/10.1002/app.20936 | |
dc.relation.uri | https://doi.org/10.1039/B510313B | |
dc.relation.uri | https://doi.org/10.1016/j.reactfunctpolym.2005.08.006 | |
dc.relation.uri | https://doi.org/10.1021/ja060140u | |
dc.relation.uri | https://doi.org/10.1039/B805737K | |
dc.relation.uri | https://doi.org/10.1039/C3CS35480F | |
dc.relation.uri | https://doi.org/10.1002/anie.200905684 | |
dc.relation.uri | https://doi.org/10.1002/anie.200702386 | |
dc.relation.uri | https://doi.org/10.1002/anie.200602866 | |
dc.relation.uri | https://doi.org/10.1081/SCC-100105384 | |
dc.relation.uri | https://doi.org/10.1016/j.catcom.2007.04.032 | |
dc.relation.uri | https://doi.org/10.3184/174751916X14604770409296 | |
dc.relation.uri | https://doi.org/10.1080/10426507.2015.1135439 | |
dc.relation.uri | https://doi.org/10.1007/BF03246171 | |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2006.07.055 | |
dc.relation.uri | https://doi.org/10.1016/j.catcom.2008.10.039 | |
dc.relation.uri | https://doi.org/10.1016/S0040-4039(03)00943-2 | |
dc.relation.uri | https://doi.org/10.1246/cl.2007.676 | |
dc.relation.uri | https://doi.org/10.1016/j.poly.2011.06.008 | |
dc.relation.uri | https://doi.org/10.1007/s13738-018-1469-x | |
dc.relation.uri | https://doi.org/10.1016/j.jmmm.2003.07.006 | |
dc.relation.uri | https://doi.org/10.1016/j.bios.2006.09.030 | |
dc.relation.uri | https://doi.org/10.1016/0021-9517(84)90130-1 | |
dc.relation.uri | https://doi.org/10.1016/j.colsurfa.2008.01.017 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Zeynizadeh B., Gilanizadeh M., 2023 | |
dc.subject | Ac2O | |
dc.subject | 1 | |
dc.subject | 2-діацетат | |
dc.subject | епоксид | |
dc.subject | Fe3O4@SiO2@Cu-Ni-Fe-Cr LDH | |
dc.subject | розкриття кільця | |
dc.subject | Ac2O | |
dc.subject | 1 | |
dc.subject | 2-diacetate | |
dc.subject | epoxide | |
dc.subject | Fe3O4@SiO2@Cu-Ni-Fe-Cr LDH | |
dc.subject | ring-opening | |
dc.title | The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates | |
dc.title.alternative | Шаруватий подвійний гідроксид Cu-Ni-Fe-Cr, іммобілізований на магнетиті з шаром кремнію, як багаторазовий мезопористий каталізатор для практичного перетворення епоксидів в 1,2-діацетати | |
dc.type | Article |
Files
License bundle
1 - 1 of 1