The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates

dc.citation.epage286
dc.citation.issue2
dc.citation.spage279
dc.contributor.affiliationUrmia University
dc.contributor.authorZeynizadeh, Behzad
dc.contributor.authorGilanizadeh, Masumeh
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:44Z
dc.date.available2024-02-12T08:30:44Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractДосліджено шаруватий подвійний гідроксид Cu-Ni-Fe-Cr (LDH), іммобілізований на шарі магнетиту (Fe3O4@SiO2@Cu-Ni-Fe-Cr LDH) для розкриття кільця різних епоксидів оцтовим ангідридом з метою отримання віц-діацетатів протягом 15–40 хв із високим виходом. Багаторазове використання нано-LDH також вивчали протягом шести послідовних циклів без значних втрат каталітичної активності.
dc.description.abstractIn this study, Cu-Ni-Fe-Cr layered double hydroxide (LDH) immobilized on silica layered magnetite (Fe3O4@SiO2@Cu-Ni-Fe-Cr LDH) was investigated towards ring opening of diverse epoxides with acetic anhydride to afford vic-diacetates within 15–40 min in high yields. Reusability of the nano-LDH was also studied for 6 consecutive cycles without the significant loss of catalytic activity.
dc.format.extent279-286
dc.format.pages8
dc.identifier.citationZeynizadeh B. The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates / Behzad Zeynizadeh, Masumeh Gilanizadeh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 279–286.
dc.identifier.citationenZeynizadeh B. The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates / Behzad Zeynizadeh, Masumeh Gilanizadeh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 279–286.
dc.identifier.doidoi.org/10.23939/chcht17.02.279
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61256
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Zeynizadeh, B.; Gilanizadeh, M. Green and Highly Efficient Approach for the Reductive Coupling of Nitroarenes to Azoxya-renes Using the New Mesoporous Fe3O4@SiO2@Co–Zr–Sb Cata-lyst. Res. Chem. Intermed. 2020, 46, 2969-2984. https://doi.org/10.1007/s11164-020-04126-7
dc.relation.references[2] Zeynizadeh, B.; Gilanizadeh, M. Synthesis and Characterization of a Magnetic Graphene Oxide/Zn–Ni–Fe Layered Double Hydrox-ide Nanocomposite: An Efficient Mesoporous Catalyst for the Green Preparation of Biscoumarins. New J. Chem. 2019, 43, 18794-18804. https://doi.org/10.1039/C9NJ04718B
dc.relation.references[3] Gilanizadeh, M.; Zeynizadeh, B. Synthesis and Characterization of the Immobilized Ni–Zn–Fe Layered Double Hydroxide (LDH) on Silica-Coated Magnetite as a Mesoporous and Magnetically Reusable Catalyst for the Preparation of Benzylidenemalononitriles and Bisdimedones (Tetraketones) under Green Conditions. New J. Chem. 2018, 42, 8553-8566. https://doi.org/10.1039/C8NJ00788H
dc.relation.references[4] Gilanizadeh, M.; Zeynizadeh, B. Binary Copper and Iron Oxides Immobilized on Silica-Layered Magnetite as a New Reusable Heterogeneous Nanostructure Catalyst for the Knoevenagel Condensation in Water. Res. Chem. Intermed. 2018, 44, 6053-6070. https://doi.org/10.1007/s11164-018-3475-0
dc.relation.references[5] Gilanizadeh, M.; Zeynizadeh, B.; Gholamiyan E. Green Formy-lation of Alcohols Catalyzed by Magnetic Nanoparticles of the Core–Shell Fe3O4@SiO2-SO3H. Iran. J. Sci. Technol. T. A Sci. 2019, 43, 819-827. https://doi.org/10.1007/s40995-018-0594-9
dc.relation.references[6] Zeynizadeh, B.; Gholamiyan, E.; Gilanizadeh, M. Magnetically Recoverable CuFe2O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Green Formylation of Alcohols. Curr. Chem. Lett. 2018, 7, 121-130.
dc.relation.references[7] Gilanizadeh, M.; Zeynizadeh, B. Cascade Synthesis of Fused Polycyclic Dihydropyridines by Ni–Zn–Fe Hydrotalcite (HT) Im-mobilized on Silica-coated Magnetite as Magnetically Reusable Nanocatalyst. Res. Chem. Intermed. 2019, 45, 2811-2825. https://doi.org/10.1007/s11164-019-03764-w
dc.relation.references[8] Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Publishers: New York, 2001.
dc.relation.references[9] Mandal, S.; Mayadevi, S. Adsorption of Fluoride Ions by Zn–Al Layered Double Hydroxides. Appl. Clay Sci. 2008, 40, 54-62. https://doi.org/10.1016/j.clay.2007.07.004
dc.relation.references[10] Goh, K.-H.; Lim, T.-T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42, 1343-1368. https://doi.org/10.1016/j.watres.2007.10.043
dc.relation.references[11] Lee, W.F.; Chen, Y.-C. Effect of Hydrotalcite on the Physical Properties and Drug-release Behavior of Nanocomposite Hydrogels Based on Poly[acrylic Acid-co-poly(ethylene glycol) Methyl ETher Acrylate] Gels. J. Appl. Polym. Sci. 2004, 94, 692-699. https://doi.org/10.1002/app.20936
dc.relation.references[12] Evans, D.G.; Duan, X. Preparation of Layered Double Hydroxides and their Applications as Additives in Polymers, as Precursors to Magnetic Materials and in Biology and Medicine. ChemComm 2006, 485-496 https://doi.org/10.1039/B510313B
dc.relation.references[13] Chang, Y.-C.; Chang, S.-W.; Chen, D.-H. Magnetic Chitosan Nanoparticles: Studies on Chitosan Binding and Adsorption of Co(II) Ions. React. Funct. Polym. 2006, 66, 335-341. https://doi.org/10.1016/j.reactfunctpolym.2005.08.006
dc.relation.references[14] Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M.L. Metal Supported on Dendronized Magnetic Nanoparticles:  Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 2006, 128, 5279-5282. https://doi.org/10.1021/ja060140u
dc.relation.references[15] Zhang, D.-H.; Li, G.-D.; Li, J.-H.; Chen, J.-S. One-Pot Synthesis of Ag-Fe3O4 Nanocomposite: A Magnetically Recyclable and Efficient Catalyst for Epoxidation of Styrene. ChemComm 2008, 29, 3414-3416. https://doi.org/10.1039/B805737K
dc.relation.references[16] Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371-3393. https://doi.org/10.1039/C3CS35480F
dc.relation.references[17] Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically Sepa-rable Nanocatalysts: Bridges between Homogeneous and Heteroge-neous Catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428-3459. https://doi.org/10.1002/anie.200905684
dc.relation.references[18] Shokouhimehr, M.; Piao, Y.; Kim J.; Jang, Y.; Hyeon, T. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxi-dation. Angew. Chem. Int. Ed. 2007, 46, 7039-7043. https://doi.org/10.1002/anie.200702386
dc.relation.references[19] Lu, A.-H.; Salabas, E.L.; Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244. https://doi.org/10.1002/anie.200602866
dc.relation.references[20] Jacobsen, E.; Pfaltz, A.; Yamamoto, H. Comprehensive Asym-metric Catalysis; SpringerVerlag: Berlin Heidelberg, 1999.
dc.relation.references[21] Yudin, A. Aziridines and Epoxides in Organic Synthesis; Wi-ley-VCH: Weinheim, 2006.
dc.relation.references[22] Ramesh, P.; Niranjan Reddy, V.L.; Venugopal, D.; Subrahmanyam, M.; Venkateswarlu, Y. Zeolite Catalyzed RIng Opening of Epoxides to Acetylated Diols with Acetic Anhydride. Synth. Commun. 2001, 31, 2599-2604. https://doi.org/10.1081/SCC-100105384
dc.relation.references[23] Azizi, N.; Mirmashhori, B.; Saidi, M.R. Lithium Perchlorate Promoted Highly Regioselective Ring Opening of Epoxides under Solvent-Free Conditions. Catal. Commun. 2007, 8, 2198-2203. https://doi.org/10.1016/j.catcom.2007.04.032
dc.relation.references[24] Gilanizadeh, M.; Zeynizadeh, B. 4Å Molecular Sieves Catalyzed Ring-Opening of Epoxides to 1,2-Diacetates with Acetic Anhydride. Curr. Chem. Lett. 2015, 4, 153-158.
dc.relation.references[25] Gilanizadeh, M.; Zeynizadeh, B. Heterogeneous Acidic and Eco-Friendly Reagents for Mild and Convenient Conversion of Epoxides to 1,2-Diacetates. J. Chem. Res. 2016, 40, 296-298. https://doi.org/10.3184/174751916X14604770409296
dc.relation.references[26] Zeynizadeh, B.; Gilanizadeh, M.; Mohammad Aminzadeh, F. A highly Efficient Protocol for Regioselective Ring-Opening of Epoxides with Alcohols, Water, Acetic Acid, and Acetic Anhydride Catalyzed by SbF3. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 1051-1056. https://doi.org/10.1080/10426507.2015.1135439
dc.relation.references[27] Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Shariati, L.; Babaghanbari, M.; Zarea, M. Zirconyl Triflate, [ZrO(OTf)2], as a New and Highly Efficient Catalyst for Ring-Opening of Epoxides. J. Iran. Chem. Soc. 2009, 6, 789-799. https://doi.org/10.1007/BF03246171
dc.relation.references[28] Gilanizadeh, M.; Zeynizadeh, B. Direct Transformation of Epoxides to 1,2-Diacetates with Ac2O/B(OH)3 System. J. Chem. Soc. Pak. 2015, 37, 1234-1238.
dc.relation.references[29] Das, B.; Saidi Reddy, V.; Tehseen, F. A Mild, Rapid and Highly Regioselective Ring-Opening of Epoxides and Aziridines with Acetic Anhydride under Solvent-Free Conditions Using Ammonium-12-molybdophosphate. Tetrahedron Lett. 2006, 47, 6865-6868. https://doi.org/10.1016/j.tetlet.2006.07.055
dc.relation.references[30] Gilanizadeh, M.; Zeynizadeh, B. Facile Conversion of Epox-ides to 1,2-Diacetates with NAOAC 3H2O/AC2O System. Iran. J. Chem. Chem. Eng. 2016, 35, 25-29.
dc.relation.references[31] Fogassy, G.; Pinel, C.; Gelbard, G. Solvent-Free Ring Opening Reaction of Epoxides Using Quaternary Ammonium Salts as Catalyst. Catal. Commun. 2009, 10, 557-560. https://doi.org/10.1016/j.catcom.2008.10.039
dc.relation.references[32] Fan, R.-H.; Hou, X.-L. Tributylphosphine-Catalyzed Ring-Opening Reaction of Epoxides and Aziridines with Acetic Anhydride. Tetrahedron Lett. 2003, 44, 4411-4413. https://doi.org/10.1016/S0040-4039(03)00943-2
dc.relation.references[33] Dalpozzo, R.; De Nino, A.; Nardi, M.; Russo, B.; Procopio, A. 1,2-Diacetates by Epoxide Ring Opening Promoted by Erbium(III) Triflate. ARKIVOC 2006, vi, 67-73.
dc.relation.references[34] Yadollahi, B.; Kabiri Esfahani, F. Efficient Preparation of vic-Diacetates from Epoxides and Acetic Anhydride in the Presence of Iron(III)-substituted Polyoxometalate as Catalyst. Chem. Lett. 2007, 36, 676-677. https://doi.org/10.1246/cl.2007.676
dc.relation.references[35] Taghavi, S.A.; Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Khosropour, A.R.; Ahmadi, V. Investigation of the Catalytic Activity of an Electron-Deficient Va-nadium(IV) Tetraphenylporphyrin: A New, Highly Efficient and Reusable Catalyst for Ring-Opening of Epoxides. Polyhedron 2011, 30, 2244-2252. https://doi.org/10.1016/j.poly.2011.06.008
dc.relation.references[36] Gilanizadeh, M.; Zeynizadeh, B. Synthesis of Magnetic Fe3O4@SiO2@Cu–Ni–Fe–Cr LDH: An Efficient and Reusable Mesoporous Catalyst for Reduction and One-Pot Reductive-Acetylation of Nitroarenes. J. Iran Chem. Soc. 2018, 15, 2821-2837. https://doi.org/10.1007/s13738-018-1469-x
dc.relation.references[37] Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and Characteriza-tion of Amino–Silane Modified Superparamagnetic Silica Nanos-pheres. J. Magn. Magn. Mater. 2004, 270, 1-6. https://doi.org/10.1016/j.jmmm.2003.07.006
dc.relation.references[38] Zhang, Y.; Zeng, G.-M.; Tang, L.; Huang, D.-L.; Jiang, X.-Y.; Chen, Y.-N. A Hydroquinone Biosensor Using Modified Core–Shell Magnetic Nanoparticles Supported on Carbon Paste Electrode. Biosens. Bioelectron. 2007, 22, 2121-2126. https://doi.org/10.1016/j.bios.2006.09.030
dc.relation.references[39] Busetto, C.; Del Piero, G.; Manara, G.; Trifirò, F.; Vaccari A. Catalysts for Low-Temperature Methanol Synthesis. Preparation of Cu-Zn-Al Mixed Oxides via Hydrotalcite-Like Precursors. J. Catal. 1984, 85, 260-266. https://doi.org/10.1016/0021-9517(84)90130-1
dc.relation.references[40] Li, G.-Y.; Jiang, Y.-R.; Huang, K.-L.; Ding, P.; Yao, L.-L. Kinetics of Adsorption of Saccharomyces Cerevisiae Mandelated Dehydrogenase on Magnetic Fe3O4–Chitosan Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 11-18. https://doi.org/10.1016/j.colsurfa.2008.01.017
dc.relation.references[41] Lopez, J.A.; González, F.; Bonilla, F.A.; Zambrano, G.; Gómez, M.E. Synthesis and Characterization of Fe3O4 Magnetic Nanofluid. Rev. Latinoam. Metal. Mater. 2010, 30, 60-66.
dc.relation.referencesen[1] Zeynizadeh, B.; Gilanizadeh, M. Green and Highly Efficient Approach for the Reductive Coupling of Nitroarenes to Azoxya-renes Using the New Mesoporous Fe3O4@SiO2@Co–Zr–Sb Cata-lyst. Res. Chem. Intermed. 2020, 46, 2969-2984. https://doi.org/10.1007/s11164-020-04126-7
dc.relation.referencesen[2] Zeynizadeh, B.; Gilanizadeh, M. Synthesis and Characterization of a Magnetic Graphene Oxide/Zn–Ni–Fe Layered Double Hydrox-ide Nanocomposite: An Efficient Mesoporous Catalyst for the Green Preparation of Biscoumarins. New J. Chem. 2019, 43, 18794-18804. https://doi.org/10.1039/P.9NJ04718B
dc.relation.referencesen[3] Gilanizadeh, M.; Zeynizadeh, B. Synthesis and Characterization of the Immobilized Ni–Zn–Fe Layered Double Hydroxide (LDH) on Silica-Coated Magnetite as a Mesoporous and Magnetically Reusable Catalyst for the Preparation of Benzylidenemalononitriles and Bisdimedones (Tetraketones) under Green Conditions. New J. Chem. 2018, 42, 8553-8566. https://doi.org/10.1039/P.8NJ00788H
dc.relation.referencesen[4] Gilanizadeh, M.; Zeynizadeh, B. Binary Copper and Iron Oxides Immobilized on Silica-Layered Magnetite as a New Reusable Heterogeneous Nanostructure Catalyst for the Knoevenagel Condensation in Water. Res. Chem. Intermed. 2018, 44, 6053-6070. https://doi.org/10.1007/s11164-018-3475-0
dc.relation.referencesen[5] Gilanizadeh, M.; Zeynizadeh, B.; Gholamiyan E. Green Formy-lation of Alcohols Catalyzed by Magnetic Nanoparticles of the Core–Shell Fe3O4@SiO2-SO3H. Iran. J. Sci. Technol. T. A Sci. 2019, 43, 819-827. https://doi.org/10.1007/s40995-018-0594-9
dc.relation.referencesen[6] Zeynizadeh, B.; Gholamiyan, E.; Gilanizadeh, M. Magnetically Recoverable CuFe2O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Green Formylation of Alcohols. Curr. Chem. Lett. 2018, 7, 121-130.
dc.relation.referencesen[7] Gilanizadeh, M.; Zeynizadeh, B. Cascade Synthesis of Fused Polycyclic Dihydropyridines by Ni–Zn–Fe Hydrotalcite (HT) Im-mobilized on Silica-coated Magnetite as Magnetically Reusable Nanocatalyst. Res. Chem. Intermed. 2019, 45, 2811-2825. https://doi.org/10.1007/s11164-019-03764-w
dc.relation.referencesen[8] Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Publishers: New York, 2001.
dc.relation.referencesen[9] Mandal, S.; Mayadevi, S. Adsorption of Fluoride Ions by Zn–Al Layered Double Hydroxides. Appl. Clay Sci. 2008, 40, 54-62. https://doi.org/10.1016/j.clay.2007.07.004
dc.relation.referencesen[10] Goh, K.-H.; Lim, T.-T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42, 1343-1368. https://doi.org/10.1016/j.watres.2007.10.043
dc.relation.referencesen[11] Lee, W.F.; Chen, Y.-C. Effect of Hydrotalcite on the Physical Properties and Drug-release Behavior of Nanocomposite Hydrogels Based on Poly[acrylic Acid-co-poly(ethylene glycol) Methyl ETher Acrylate] Gels. J. Appl. Polym. Sci. 2004, 94, 692-699. https://doi.org/10.1002/app.20936
dc.relation.referencesen[12] Evans, D.G.; Duan, X. Preparation of Layered Double Hydroxides and their Applications as Additives in Polymers, as Precursors to Magnetic Materials and in Biology and Medicine. ChemComm 2006, 485-496 https://doi.org/10.1039/B510313B
dc.relation.referencesen[13] Chang, Y.-C.; Chang, S.-W.; Chen, D.-H. Magnetic Chitosan Nanoparticles: Studies on Chitosan Binding and Adsorption of Co(II) Ions. React. Funct. Polym. 2006, 66, 335-341. https://doi.org/10.1016/j.reactfunctpolym.2005.08.006
dc.relation.referencesen[14] Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M.L. Metal Supported on Dendronized Magnetic Nanoparticles:  Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 2006, 128, 5279-5282. https://doi.org/10.1021/ja060140u
dc.relation.referencesen[15] Zhang, D.-H.; Li, G.-D.; Li, J.-H.; Chen, J.-S. One-Pot Synthesis of Ag-Fe3O4 Nanocomposite: A Magnetically Recyclable and Efficient Catalyst for Epoxidation of Styrene. ChemComm 2008, 29, 3414-3416. https://doi.org/10.1039/B805737K
dc.relation.referencesen[16] Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371-3393. https://doi.org/10.1039/P.3CS35480F
dc.relation.referencesen[17] Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically Sepa-rable Nanocatalysts: Bridges between Homogeneous and Heteroge-neous Catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428-3459. https://doi.org/10.1002/anie.200905684
dc.relation.referencesen[18] Shokouhimehr, M.; Piao, Y.; Kim J.; Jang, Y.; Hyeon, T. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxi-dation. Angew. Chem. Int. Ed. 2007, 46, 7039-7043. https://doi.org/10.1002/anie.200702386
dc.relation.referencesen[19] Lu, A.-H.; Salabas, E.L.; Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244. https://doi.org/10.1002/anie.200602866
dc.relation.referencesen[20] Jacobsen, E.; Pfaltz, A.; Yamamoto, H. Comprehensive Asym-metric Catalysis; SpringerVerlag: Berlin Heidelberg, 1999.
dc.relation.referencesen[21] Yudin, A. Aziridines and Epoxides in Organic Synthesis; Wi-ley-VCH: Weinheim, 2006.
dc.relation.referencesen[22] Ramesh, P.; Niranjan Reddy, V.L.; Venugopal, D.; Subrahmanyam, M.; Venkateswarlu, Y. Zeolite Catalyzed RIng Opening of Epoxides to Acetylated Diols with Acetic Anhydride. Synth. Commun. 2001, 31, 2599-2604. https://doi.org/10.1081/SCC-100105384
dc.relation.referencesen[23] Azizi, N.; Mirmashhori, B.; Saidi, M.R. Lithium Perchlorate Promoted Highly Regioselective Ring Opening of Epoxides under Solvent-Free Conditions. Catal. Commun. 2007, 8, 2198-2203. https://doi.org/10.1016/j.catcom.2007.04.032
dc.relation.referencesen[24] Gilanizadeh, M.; Zeynizadeh, B. 4Å Molecular Sieves Catalyzed Ring-Opening of Epoxides to 1,2-Diacetates with Acetic Anhydride. Curr. Chem. Lett. 2015, 4, 153-158.
dc.relation.referencesen[25] Gilanizadeh, M.; Zeynizadeh, B. Heterogeneous Acidic and Eco-Friendly Reagents for Mild and Convenient Conversion of Epoxides to 1,2-Diacetates. J. Chem. Res. 2016, 40, 296-298. https://doi.org/10.3184/174751916X14604770409296
dc.relation.referencesen[26] Zeynizadeh, B.; Gilanizadeh, M.; Mohammad Aminzadeh, F. A highly Efficient Protocol for Regioselective Ring-Opening of Epoxides with Alcohols, Water, Acetic Acid, and Acetic Anhydride Catalyzed by SbF3. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 1051-1056. https://doi.org/10.1080/10426507.2015.1135439
dc.relation.referencesen[27] Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Shariati, L.; Babaghanbari, M.; Zarea, M. Zirconyl Triflate, [ZrO(OTf)2], as a New and Highly Efficient Catalyst for Ring-Opening of Epoxides. J. Iran. Chem. Soc. 2009, 6, 789-799. https://doi.org/10.1007/BF03246171
dc.relation.referencesen[28] Gilanizadeh, M.; Zeynizadeh, B. Direct Transformation of Epoxides to 1,2-Diacetates with Ac2O/B(OH)3 System. J. Chem. Soc. Pak. 2015, 37, 1234-1238.
dc.relation.referencesen[29] Das, B.; Saidi Reddy, V.; Tehseen, F. A Mild, Rapid and Highly Regioselective Ring-Opening of Epoxides and Aziridines with Acetic Anhydride under Solvent-Free Conditions Using Ammonium-12-molybdophosphate. Tetrahedron Lett. 2006, 47, 6865-6868. https://doi.org/10.1016/j.tetlet.2006.07.055
dc.relation.referencesen[30] Gilanizadeh, M.; Zeynizadeh, B. Facile Conversion of Epox-ides to 1,2-Diacetates with NAOAC 3H2O/AC2O System. Iran. J. Chem. Chem. Eng. 2016, 35, 25-29.
dc.relation.referencesen[31] Fogassy, G.; Pinel, C.; Gelbard, G. Solvent-Free Ring Opening Reaction of Epoxides Using Quaternary Ammonium Salts as Catalyst. Catal. Commun. 2009, 10, 557-560. https://doi.org/10.1016/j.catcom.2008.10.039
dc.relation.referencesen[32] Fan, R.-H.; Hou, X.-L. Tributylphosphine-Catalyzed Ring-Opening Reaction of Epoxides and Aziridines with Acetic Anhydride. Tetrahedron Lett. 2003, 44, 4411-4413. https://doi.org/10.1016/S0040-4039(03)00943-2
dc.relation.referencesen[33] Dalpozzo, R.; De Nino, A.; Nardi, M.; Russo, B.; Procopio, A. 1,2-Diacetates by Epoxide Ring Opening Promoted by Erbium(III) Triflate. ARKIVOC 2006, vi, 67-73.
dc.relation.referencesen[34] Yadollahi, B.; Kabiri Esfahani, F. Efficient Preparation of vic-Diacetates from Epoxides and Acetic Anhydride in the Presence of Iron(III)-substituted Polyoxometalate as Catalyst. Chem. Lett. 2007, 36, 676-677. https://doi.org/10.1246/cl.2007.676
dc.relation.referencesen[35] Taghavi, S.A.; Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Khosropour, A.R.; Ahmadi, V. Investigation of the Catalytic Activity of an Electron-Deficient Va-nadium(IV) Tetraphenylporphyrin: A New, Highly Efficient and Reusable Catalyst for Ring-Opening of Epoxides. Polyhedron 2011, 30, 2244-2252. https://doi.org/10.1016/j.poly.2011.06.008
dc.relation.referencesen[36] Gilanizadeh, M.; Zeynizadeh, B. Synthesis of Magnetic Fe3O4@SiO2@Cu–Ni–Fe–Cr LDH: An Efficient and Reusable Mesoporous Catalyst for Reduction and One-Pot Reductive-Acetylation of Nitroarenes. J. Iran Chem. Soc. 2018, 15, 2821-2837. https://doi.org/10.1007/s13738-018-1469-x
dc.relation.referencesen[37] Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and Characteriza-tion of Amino–Silane Modified Superparamagnetic Silica Nanos-pheres. J. Magn. Magn. Mater. 2004, 270, 1-6. https://doi.org/10.1016/j.jmmm.2003.07.006
dc.relation.referencesen[38] Zhang, Y.; Zeng, G.-M.; Tang, L.; Huang, D.-L.; Jiang, X.-Y.; Chen, Y.-N. A Hydroquinone Biosensor Using Modified Core–Shell Magnetic Nanoparticles Supported on Carbon Paste Electrode. Biosens. Bioelectron. 2007, 22, 2121-2126. https://doi.org/10.1016/j.bios.2006.09.030
dc.relation.referencesen[39] Busetto, C.; Del Piero, G.; Manara, G.; Trifirò, F.; Vaccari A. Catalysts for Low-Temperature Methanol Synthesis. Preparation of Cu-Zn-Al Mixed Oxides via Hydrotalcite-Like Precursors. J. Catal. 1984, 85, 260-266. https://doi.org/10.1016/0021-9517(84)90130-1
dc.relation.referencesen[40] Li, G.-Y.; Jiang, Y.-R.; Huang, K.-L.; Ding, P.; Yao, L.-L. Kinetics of Adsorption of Saccharomyces Cerevisiae Mandelated Dehydrogenase on Magnetic Fe3O4–Chitosan Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 11-18. https://doi.org/10.1016/j.colsurfa.2008.01.017
dc.relation.referencesen[41] Lopez, J.A.; González, F.; Bonilla, F.A.; Zambrano, G.; Gómez, M.E. Synthesis and Characterization of Fe3O4 Magnetic Nanofluid. Rev. Latinoam. Metal. Mater. 2010, 30, 60-66.
dc.relation.urihttps://doi.org/10.1007/s11164-020-04126-7
dc.relation.urihttps://doi.org/10.1039/C9NJ04718B
dc.relation.urihttps://doi.org/10.1039/C8NJ00788H
dc.relation.urihttps://doi.org/10.1007/s11164-018-3475-0
dc.relation.urihttps://doi.org/10.1007/s40995-018-0594-9
dc.relation.urihttps://doi.org/10.1007/s11164-019-03764-w
dc.relation.urihttps://doi.org/10.1016/j.clay.2007.07.004
dc.relation.urihttps://doi.org/10.1016/j.watres.2007.10.043
dc.relation.urihttps://doi.org/10.1002/app.20936
dc.relation.urihttps://doi.org/10.1039/B510313B
dc.relation.urihttps://doi.org/10.1016/j.reactfunctpolym.2005.08.006
dc.relation.urihttps://doi.org/10.1021/ja060140u
dc.relation.urihttps://doi.org/10.1039/B805737K
dc.relation.urihttps://doi.org/10.1039/C3CS35480F
dc.relation.urihttps://doi.org/10.1002/anie.200905684
dc.relation.urihttps://doi.org/10.1002/anie.200702386
dc.relation.urihttps://doi.org/10.1002/anie.200602866
dc.relation.urihttps://doi.org/10.1081/SCC-100105384
dc.relation.urihttps://doi.org/10.1016/j.catcom.2007.04.032
dc.relation.urihttps://doi.org/10.3184/174751916X14604770409296
dc.relation.urihttps://doi.org/10.1080/10426507.2015.1135439
dc.relation.urihttps://doi.org/10.1007/BF03246171
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2006.07.055
dc.relation.urihttps://doi.org/10.1016/j.catcom.2008.10.039
dc.relation.urihttps://doi.org/10.1016/S0040-4039(03)00943-2
dc.relation.urihttps://doi.org/10.1246/cl.2007.676
dc.relation.urihttps://doi.org/10.1016/j.poly.2011.06.008
dc.relation.urihttps://doi.org/10.1007/s13738-018-1469-x
dc.relation.urihttps://doi.org/10.1016/j.jmmm.2003.07.006
dc.relation.urihttps://doi.org/10.1016/j.bios.2006.09.030
dc.relation.urihttps://doi.org/10.1016/0021-9517(84)90130-1
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2008.01.017
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Zeynizadeh B., Gilanizadeh M., 2023
dc.subjectAc2O
dc.subject1
dc.subject2-діацетат
dc.subjectепоксид
dc.subjectFe3O4@SiO2@Cu-Ni-Fe-Cr LDH
dc.subjectрозкриття кільця
dc.subjectAc2O
dc.subject1
dc.subject2-diacetate
dc.subjectepoxide
dc.subjectFe3O4@SiO2@Cu-Ni-Fe-Cr LDH
dc.subjectring-opening
dc.titleThe Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates
dc.title.alternativeШаруватий подвійний гідроксид Cu-Ni-Fe-Cr, іммобілізований на магнетиті з шаром кремнію, як багаторазовий мезопористий каталізатор для практичного перетворення епоксидів в 1,2-діацетати
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Zeynizadeh_B-The_Immobilized_Cu_Ni_279-286.pdf
Size:
532.99 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Zeynizadeh_B-The_Immobilized_Cu_Ni_279-286__COVER.png
Size:
1.29 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: