Processing of selected properties of extruded recycled plastics

dc.citation.epage202
dc.citation.issue1
dc.citation.spage196
dc.contributor.affiliationЛюблінська політехніка
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLublin University of Technology
dc.contributor.affiliationTechnical University of Kosice
dc.contributor.authorГарбач, Т.
dc.contributor.authorДулебова, Л.
dc.contributor.authorGarbacz, T.
dc.contributor.authorDulebova, L.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2021-01-28T11:24:11Z
dc.date.available2021-01-28T11:24:11Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractМетою дослідження є аналіз фізичних властивостей та морфології вторинної полімерної сировини. Досліджено фізико-механічні властивості зразків первинного та вторинного полівінілхлориду (ПВХ), зокрема міцності під час розтягування, відносного видовження, ударної міцності та твердості. Також досліджено усадку отриманих зразків та їх структуру. Зразки композицій з вторинної сировини одержували методами екструзії та пресування. Встановлено вплив вмісту пороутворювача на показник текучості розплаву та мікро- і макроструктуру одержаних матеріалів.
dc.description.abstractThe aim of the study is to analyze the physical processing properties and morphology of recycled plastics. The scope of work includes conducting the processing of primary PVC and recycled PVC and testing mechanical properties such as: tensile strength, stress, elongation and impact resistance, hardness. The scope of work also includes shrinkage testing of primary compacts and structural investigation of the morphology of materials. The technology for producing the recycled composition is based on the extrusion and compression technology of the compositions obtained. The research on the structure of manufactured materials, melt flow index MFI, and macroscopic structure are presented.
dc.format.extent196-202
dc.format.pages7
dc.identifier.citationGarbacz T. Processing of selected properties of extruded recycled plastics / T. Garbacz, L. Dulebova // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 196–202.
dc.identifier.citationenGarbacz T. Processing of selected properties of extruded recycled plastics / T. Garbacz, L. Dulebova // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 196–202.
dc.identifier.doidoi.org/10.23939/ctas2020.01.196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56084
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.relation.references1. Kelvin T. Okamoto (2003). Microcellular processing. Hanser Publishers, Munich, Germany.
dc.relation.references2. Gomes Estima M. M. (2004). A bone tissue engineering strategy based on starch scaffolds and bone marrow cells cultured In a flow perfusion bioreactor. Universidade do Minho, Grupo 3B.
dc.relation.references3. Garbacz T. (2004). Effect of selected auxiliary agents on the properties of the surface layer of extruded polyethylene. International Polymer Science and Technology pp. 31–36.
dc.relation.references4. Garbacz T., Tor A (2007). Effect of porophor content on the useful properties of external composites of compositess obtained by foaming extrusion. Polimery, 52, pp. 286–293.
dc.relation.references5. Guo M. C., Heuzey M. C., Carreau P. J. (2007). Cell structure and dynamic properties of injection molded polypropylene foams. Polymer Engineering and Science 47, pp. 1070–1081.
dc.relation.references6. Palutkiewicz P., Postawa P. (2016). The investigation of selected properties of the porous moulded parts from talc-filled PP composites. Journal of Cellular Plastics 52, 4, pp. 399–418.
dc.relation.references7. Garbacz T. (2011) Properties of triple-layered PVC composites synthesized in the micropore coextrusion method. Polimery, 56, pp. 129–134.
dc.relation.references8. Garbacz T., Dulebova L. (2013). Porophors during the extrusion process. Chemistry and Chemical Technology, 7, pp. 113–118.
dc.relation.references9. Garbacz T., Dulebova L., Krasinsky V. (2013). Effectiveness of cellular injection molding process. Advances in Science and Technology ,8, 18, pp. 74–80.
dc.relation.references10. Rachtanapun P., Selke S. E. M., Matuana L. M. (2003). Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. Journal of Applied Polymer Science, 88, pp. 2842–2850.
dc.relation.references11. Tejeda E. H., Sahagún C. Z., González-Núñez R., Rodrigue D. (2005). Morphology and mechanical properties of foamed polyethylene–polypropylene blends. Journal of Cellular Plastics, 41, pp. 417–435.
dc.relation.references12. Garbacz T., Krasinskyy V. (2012). Title evaluate the effectivesness of the extrusion process. Progresivne Strojarske Technologie a Materialy. PRO-TECHMA 2012, Košice, Slovakia, 25.06–27.06. 2012.
dc.relation.references13. Tor-Świątek A., Samujło B. (2013). Use of thermovision research to analyze the thermal stability of microcellular extrusion process of poly(vinyl chloride). Maintenance and Reliability, 15, pp. 58–61.
dc.relation.references14. Martial S., Jacques F., Audrey C., Clémence N., Rodier E. (2011). New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, 36, pp. 749–766.
dc.relation.references15. Urbanczyk L., Alexandre M., Detrembleur Ch. (2010). Extrusion foaming of poly(styrene-coacrylonitrile)/ Clay nanocomposites using supercritical CO2, Macromolecural Material Engenering, 295, pp. 915–922.
dc.relation.references16. Tor-Swiatek A. (2013). Evaluation of the efectiveness of the microcellular extrusion process of low density polyethylene. Maintenance and Reliability 15, 3, pp. 225–229.
dc.relation.referencesen1. Kelvin T. Okamoto (2003). Microcellular processing. Hanser Publishers, Munich, Germany.
dc.relation.referencesen2. Gomes Estima M. M. (2004). A bone tissue engineering strategy based on starch scaffolds and bone marrow cells cultured In a flow perfusion bioreactor. Universidade do Minho, Grupo 3B.
dc.relation.referencesen3. Garbacz T. (2004). Effect of selected auxiliary agents on the properties of the surface layer of extruded polyethylene. International Polymer Science and Technology pp. 31–36.
dc.relation.referencesen4. Garbacz T., Tor A (2007). Effect of porophor content on the useful properties of external composites of compositess obtained by foaming extrusion. Polimery, 52, pp. 286–293.
dc.relation.referencesen5. Guo M. C., Heuzey M. C., Carreau P. J. (2007). Cell structure and dynamic properties of injection molded polypropylene foams. Polymer Engineering and Science 47, pp. 1070–1081.
dc.relation.referencesen6. Palutkiewicz P., Postawa P. (2016). The investigation of selected properties of the porous moulded parts from talc-filled PP composites. Journal of Cellular Plastics 52, 4, pp. 399–418.
dc.relation.referencesen7. Garbacz T. (2011) Properties of triple-layered PVC composites synthesized in the micropore coextrusion method. Polimery, 56, pp. 129–134.
dc.relation.referencesen8. Garbacz T., Dulebova L. (2013). Porophors during the extrusion process. Chemistry and Chemical Technology, 7, pp. 113–118.
dc.relation.referencesen9. Garbacz T., Dulebova L., Krasinsky V. (2013). Effectiveness of cellular injection molding process. Advances in Science and Technology ,8, 18, pp. 74–80.
dc.relation.referencesen10. Rachtanapun P., Selke S. E. M., Matuana L. M. (2003). Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. Journal of Applied Polymer Science, 88, pp. 2842–2850.
dc.relation.referencesen11. Tejeda E. H., Sahagún C. Z., González-Núñez R., Rodrigue D. (2005). Morphology and mechanical properties of foamed polyethylene–polypropylene blends. Journal of Cellular Plastics, 41, pp. 417–435.
dc.relation.referencesen12. Garbacz T., Krasinskyy V. (2012). Title evaluate the effectivesness of the extrusion process. Progresivne Strojarske Technologie a Materialy. PRO-TECHMA 2012, Košice, Slovakia, 25.06–27.06. 2012.
dc.relation.referencesen13. Tor-Świątek A., Samujło B. (2013). Use of thermovision research to analyze the thermal stability of microcellular extrusion process of poly(vinyl chloride). Maintenance and Reliability, 15, pp. 58–61.
dc.relation.referencesen14. Martial S., Jacques F., Audrey C., Clémence N., Rodier E. (2011). New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, 36, pp. 749–766.
dc.relation.referencesen15. Urbanczyk L., Alexandre M., Detrembleur Ch. (2010). Extrusion foaming of poly(styrene-coacrylonitrile)/ Clay nanocomposites using supercritical CO2, Macromolecural Material Engenering, 295, pp. 915–922.
dc.relation.referencesen16. Tor-Swiatek A. (2013). Evaluation of the efectiveness of the microcellular extrusion process of low density polyethylene. Maintenance and Reliability 15, 3, pp. 225–229.
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectПВХ
dc.subjectпороутворювач
dc.subjectперероблення зі спінюванням
dc.subjectвторинна сировина
dc.subjectвластивості
dc.subjectструктура
dc.subjectPVC
dc.subjectblowing agent
dc.subjectcellular processing
dc.subjectrecykled
dc.subjectproperties
dc.subjectstructure
dc.titleProcessing of selected properties of extruded recycled plastics
dc.title.alternativeАналіз вибраних властивостей екструдованої вторинної сировини
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v3n1_Garbacz_T-Processing_of_selected_196-202.pdf
Size:
668.35 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v3n1_Garbacz_T-Processing_of_selected_196-202__COVER.png
Size:
486.16 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Plain Text
Description: