Математичні моделі керуючих пристроїв МЕМС

dc.citation.epage208
dc.citation.issue1
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage199
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorАндрійчук, Михайло
dc.contributor.authorКаркульовський, Богдан
dc.contributor.authorAndriychuk, Mykhaylo
dc.contributor.authorKarkulovskyi, Bohdan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-11T09:52:35Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractВ даній статті розглянуто МЕМС актюатори різних типів (електростатичні, магнітні, п’єзоелектричні, термоактюатори). Розглянуто особливості їх конструкцій. Проаналізовано способи побудови математичних моделей цих актюаторів та можливості їх застосування при проектуванні складних технічних систем із застосуванням таких актюаторів. Наведено приклад розрахунку характеристики індуктивності наносоленоїда, який є складовою частиною електромагнітного актюатора.
dc.description.abstractThis article discusses MEMS actuators of various types (electrostatic, magnetic, piezoelectric, thermal actuators). The features of their designs are considered. Methods for constructing mathematical models of these actuators and possibilities of their application in the design of complex technical systems using such actuators are analyzed. An example of calculating the characteristic of the inductance of a nano-solenoid, which is a component of an electromagnetic actuator, is provided.
dc.format.extent199-208
dc.format.pages10
dc.identifier.citationАндрійчук М. Математичні моделі керуючих пристроїв МЕМС / Михайло Андрійчук, Богдан Каркульовський // Комп’ютерні системи проектування. Теорія і практика. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 1. — С. 199–208.
dc.identifier.citationenAndriychuk M. Mathematical models of mems control devices / Mykhaylo Andriychuk, Bohdan Karkulovskyi // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 199–208.
dc.identifier.doidoi.org/10.23939/cds2024.01.199
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64111
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 1 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 1 (6), 2024
dc.relation.references[1] S.D. Senturia, Microsystem Design, Kluwer Academic, Boston, 2001. https://doi.org/10.1007/b117574
dc.relation.references[2] M. Gad-El-Hak, The MEMS Handbook, CRC Press, Boca Raton, 2001. https://doi.org/10.1201/9781420050905
dc.relation.references[3] S.E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures, CRC Press, Boca Raton, 2002.
dc.relation.references[4] J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, CRC Press, Boca Raton, 2002. https://doi.org/10.1201/9781420035292
dc.relation.references[5] J.-H. Fabian, L. Scandella, H. Fuhrmann, R. Berger, T. Mezzacasa, C. Musil, J. Gobrecht, E. Meyer, Finite element calculations and fabrication of cantilever sensors for nanoscale detection, Ultramicroscopy, vol. 82, 2000, pp. 69-77. https://doi.org/10.1016/S0304-3991(99)00121-7
dc.relation.references[6] Z. Djuric, I. Jokic, M. Frantlovic, O. Jaksic, Influence of adsorption-desorption process on resonant frequency and noise of micro- and nanocantilevers, Proceedings of the 23rd International Conference on Microelectronics (MIEL 2002), vol. 1, 2002, pp. 243-246.
dc.relation.references[7] R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal, Micromechanical cantilever-based bisensors, Sensors and Actuators A, vol. 79, 2001, pp. 115-126. https://doi.org/10.1016/S0925-4005(01)00856-5
dc.relation.references[8] J. Yang, T. Ono, M. Esashi, Mechanical behavior of ultrathin microcantilever, Sensors and Actuators A, vol. 82, 2000, pp. 102-107. https://doi.org/10.1016/S0924-4247(99)00319-2
dc.relation.references[9] B. Ilic, D. Czaplewski, M. Zalatudinov, H.G. Craighead, Single cell detection with micromechanical oscillators, Journal of Vacuum Science Technology B, vol. 19, 2001, pp. 2825-2828. https://doi.org/10.1116/1.1421572
dc.relation.references[10] N. Lobontiu, E. Garcia, Two microcantilever designs: modeling for static deflection and modal analysis’, Journal of Microelectromechanical Systems, 2004. https://doi.org/10.1109/JMEMS.2003.823239
dc.relation.references[11] Z. Zhang and X. Liao, Modeling on RF Circuit and Thermal Conduction of a MEMS Amplitude Demodulator, Journal of Microelectromechanical Systems, vol. 31, no. 5, pp. 777-783, Oct. 2022, https://doi.org/10.1109/JMEMS.2022.3186642
dc.relation.references[12] X. Cheng et al., A Bidirectional Deep Learning Approach for Designing MEMS Sensors, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 5, pp. 1610-1617, May 2023. https://doi.org/10.1109/TCAD.2022.3199965
dc.relation.references[13] K. Shibata et al., Simplified Analytical Damping Constant Model for Design of MEMS Capacitive Accelerometer With Gold Perforated Proof-Mass Structure, IEEE Sensors Journal, vol. 22, no. 15, pp. 14769-14778, 1 Aug.1, 2022, https://doi.org/10.1109/JSEN.2022.3184340
dc.relation.references[14] E. Martínez-Cisneros et al., Analytical Modeling of the Mechanical Behavior of MEMS/NEMS-Multilayered Resonators With Variable Cross-Sections for Sensors and Energy Harvesters, IEEE Access, vol. 9, pp. 81040-81056, 2021, https://doi.org/10.1109/ACCESS.2021.3084600
dc.relation.references[15] Z. Biolek, D. Biolek, V. Biolková and Z. Kolka, Predictive Modeling of MEMS via Generic Meminductors: The Multiport Inductor Approach, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 12, no. 4, pp. 785-792, Dec. 2022, https://doi.org/10.1109/JETCAS.2022.3207690
dc.relation.references[16] Modeling MEMS Devices with COMSOL Multiphysics®: https://www.comsol.com/video/modeling-mems-devices-comsol-multiphysics
dc.relation.references[17] A. Holovatyy, V. Teslyuk, R. Panchak, S. Koshyrets, Mathematical modelling and simulation of the mechanical component of the fully differential capacitive MEMS accelerometer using Matlab/Simulink environment Вісник Національного університету “Львівська політехніка”. Серія “Комп’ютерні системи проектування. Теорія і практика”, 2015, № 829, рр. 20-26.
dc.relation.references[18] https://www.hitechnectar.com/blogs/different-types-mems/
dc.relation.references[19] М.К. Філяшкін, Мікроелектромеханічні системи: Навчальний посібник. – К.: НАУ, 2019. – 276 с.
dc.relation.references[20] https://www.electricity-magnetism.org/electrostatic-actuators/
dc.relation.references[21] https://www.electricity-magnetism.org/magnetic-actuators/
dc.relation.references[22] https://resources.pcb.cadence.com/blog/2020-types-of-piezo-actuators-and-the-applications-of-the-piezoelectric-force
dc.relation.references[23] https://www.globalspec.com/learnmore/motion_controls/linear_actuators/thermal_actuators
dc.relation.references[24] П. Кособуцький, М. Лобур, В. Каркульовський, Мікро- і нано електромеханічні системи. Базові принципи проектування явищ, матеріалів та елементів. Львів: В-во Львівської політехніки, 2017. – 396 с.
dc.relation.referencesen[1] S.D. Senturia, Microsystem Design, Kluwer Academic, Boston, 2001. https://doi.org/10.1007/b117574
dc.relation.referencesen[2] M. Gad-El-Hak, The MEMS Handbook, CRC Press, Boca Raton, 2001. https://doi.org/10.1201/9781420050905
dc.relation.referencesen[3] S.E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures, CRC Press, Boca Raton, 2002.
dc.relation.referencesen[4] J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, CRC Press, Boca Raton, 2002. https://doi.org/10.1201/9781420035292
dc.relation.referencesen[5] J.-H. Fabian, L. Scandella, H. Fuhrmann, R. Berger, T. Mezzacasa, C. Musil, J. Gobrecht, E. Meyer, Finite element calculations and fabrication of cantilever sensors for nanoscale detection, Ultramicroscopy, vol. 82, 2000, pp. 69-77. https://doi.org/10.1016/S0304-3991(99)00121-7
dc.relation.referencesen[6] Z. Djuric, I. Jokic, M. Frantlovic, O. Jaksic, Influence of adsorption-desorption process on resonant frequency and noise of micro- and nanocantilevers, Proceedings of the 23rd International Conference on Microelectronics (MIEL 2002), vol. 1, 2002, pp. 243-246.
dc.relation.referencesen[7] R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal, Micromechanical cantilever-based bisensors, Sensors and Actuators A, vol. 79, 2001, pp. 115-126. https://doi.org/10.1016/S0925-4005(01)00856-5
dc.relation.referencesen[8] J. Yang, T. Ono, M. Esashi, Mechanical behavior of ultrathin microcantilever, Sensors and Actuators A, vol. 82, 2000, pp. 102-107. https://doi.org/10.1016/S0924-4247(99)00319-2
dc.relation.referencesen[9] B. Ilic, D. Czaplewski, M. Zalatudinov, H.G. Craighead, Single cell detection with micromechanical oscillators, Journal of Vacuum Science Technology B, vol. 19, 2001, pp. 2825-2828. https://doi.org/10.1116/1.1421572
dc.relation.referencesen[10] N. Lobontiu, E. Garcia, Two microcantilever designs: modeling for static deflection and modal analysis’, Journal of Microelectromechanical Systems, 2004. https://doi.org/10.1109/JMEMS.2003.823239
dc.relation.referencesen[11] Z. Zhang and X. Liao, Modeling on RF Circuit and Thermal Conduction of a MEMS Amplitude Demodulator, Journal of Microelectromechanical Systems, vol. 31, no. 5, pp. 777-783, Oct. 2022, https://doi.org/10.1109/JMEMS.2022.3186642
dc.relation.referencesen[12] X. Cheng et al., A Bidirectional Deep Learning Approach for Designing MEMS Sensors, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 5, pp. 1610-1617, May 2023. https://doi.org/10.1109/TCAD.2022.3199965
dc.relation.referencesen[13] K. Shibata et al., Simplified Analytical Damping Constant Model for Design of MEMS Capacitive Accelerometer With Gold Perforated Proof-Mass Structure, IEEE Sensors Journal, vol. 22, no. 15, pp. 14769-14778, 1 Aug.1, 2022, https://doi.org/10.1109/JSEN.2022.3184340
dc.relation.referencesen[14] E. Martínez-Cisneros et al., Analytical Modeling of the Mechanical Behavior of MEMS/NEMS-Multilayered Resonators With Variable Cross-Sections for Sensors and Energy Harvesters, IEEE Access, vol. 9, pp. 81040-81056, 2021, https://doi.org/10.1109/ACCESS.2021.3084600
dc.relation.referencesen[15] Z. Biolek, D. Biolek, V. Biolková and Z. Kolka, Predictive Modeling of MEMS via Generic Meminductors: The Multiport Inductor Approach, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 12, no. 4, pp. 785-792, Dec. 2022, https://doi.org/10.1109/JETCAS.2022.3207690
dc.relation.referencesen[16] Modeling MEMS Devices with COMSOL Multiphysics®: https://www.comsol.com/video/modeling-mems-devices-comsol-multiphysics
dc.relation.referencesen[17] A. Holovatyy, V. Teslyuk, R. Panchak, S. Koshyrets, Mathematical modelling and simulation of the mechanical component of the fully differential capacitive MEMS accelerometer using Matlab/Simulink environment Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Seriia "Kompiuterni systemy proektuvannia. Teoriia i praktyka", 2015, No 829, rr. 20-26.
dc.relation.referencesen[18] https://www.hitechnectar.com/blogs/different-types-mems/
dc.relation.referencesen[19] M.K. Filiashkin, Mikroelektromekhanichni systemy: Navchalnyi posibnyk, K., NAU, 2019, 276 p.
dc.relation.referencesen[20] https://www.electricity-magnetism.org/electrostatic-actuators/
dc.relation.referencesen[21] https://www.electricity-magnetism.org/magnetic-actuators/
dc.relation.referencesen[22] https://resources.pcb.cadence.com/blog/2020-types-of-piezo-actuators-and-the-applications-of-the-piezoelectric-force
dc.relation.referencesen[23] https://www.globalspec.com/learnmore/motion_controls/linear_actuators/thermal_actuators
dc.relation.referencesen[24] P. Kosobutskyi, M. Lobur, V. Karkulovskyi, Mikro- i nano elektromekhanichni systemy. Bazovi pryntsypy proektuvannia yavyshch, materialiv ta elementiv. Lviv: V-vo Lvivskoi politekhniky, 2017, 396 p.
dc.relation.urihttps://doi.org/10.1007/b117574
dc.relation.urihttps://doi.org/10.1201/9781420050905
dc.relation.urihttps://doi.org/10.1201/9781420035292
dc.relation.urihttps://doi.org/10.1016/S0304-3991(99)00121-7
dc.relation.urihttps://doi.org/10.1016/S0925-4005(01)00856-5
dc.relation.urihttps://doi.org/10.1016/S0924-4247(99)00319-2
dc.relation.urihttps://doi.org/10.1116/1.1421572
dc.relation.urihttps://doi.org/10.1109/JMEMS.2003.823239
dc.relation.urihttps://doi.org/10.1109/JMEMS.2022.3186642
dc.relation.urihttps://doi.org/10.1109/TCAD.2022.3199965
dc.relation.urihttps://doi.org/10.1109/JSEN.2022.3184340
dc.relation.urihttps://doi.org/10.1109/ACCESS.2021.3084600
dc.relation.urihttps://doi.org/10.1109/JETCAS.2022.3207690
dc.relation.urihttps://www.comsol.com/video/modeling-mems-devices-comsol-multiphysics
dc.relation.urihttps://www.hitechnectar.com/blogs/different-types-mems/
dc.relation.urihttps://www.electricity-magnetism.org/electrostatic-actuators/
dc.relation.urihttps://www.electricity-magnetism.org/magnetic-actuators/
dc.relation.urihttps://resources.pcb.cadence.com/blog/2020-types-of-piezo-actuators-and-the-applications-of-the-piezoelectric-force
dc.relation.urihttps://www.globalspec.com/learnmore/motion_controls/linear_actuators/thermal_actuators
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Андрійчук М., Каркульовський Б., 2024
dc.subjectМЕМС актюатори
dc.subjectелектростатичні актюатори
dc.subjectмагнітні актюатори
dc.subjectп’єзоелектричні актюатори
dc.subjectтермоактюатори
dc.subjectматематична модель
dc.subjectнаносоленоїд
dc.subjectMEMS actuators
dc.subjectelectrostatic actuators
dc.subjectmagnetic actuators
dc.subjectpiezoelectric actuators
dc.subjectthermal actuators
dc.subjectmathematical model
dc.subjectnano-solenoid
dc.titleМатематичні моделі керуючих пристроїв МЕМС
dc.title.alternativeMathematical models of mems control devices
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n1_Andriychuk_M-Mathematical_models_199-208.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n1_Andriychuk_M-Mathematical_models_199-208__COVER.png
Size:
457.88 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: