Математичні моделі керуючих пристроїв МЕМС
dc.citation.epage | 208 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 199 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Андрійчук, Михайло | |
dc.contributor.author | Каркульовський, Богдан | |
dc.contributor.author | Andriychuk, Mykhaylo | |
dc.contributor.author | Karkulovskyi, Bohdan | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-11T09:52:35Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | В даній статті розглянуто МЕМС актюатори різних типів (електростатичні, магнітні, п’єзоелектричні, термоактюатори). Розглянуто особливості їх конструкцій. Проаналізовано способи побудови математичних моделей цих актюаторів та можливості їх застосування при проектуванні складних технічних систем із застосуванням таких актюаторів. Наведено приклад розрахунку характеристики індуктивності наносоленоїда, який є складовою частиною електромагнітного актюатора. | |
dc.description.abstract | This article discusses MEMS actuators of various types (electrostatic, magnetic, piezoelectric, thermal actuators). The features of their designs are considered. Methods for constructing mathematical models of these actuators and possibilities of their application in the design of complex technical systems using such actuators are analyzed. An example of calculating the characteristic of the inductance of a nano-solenoid, which is a component of an electromagnetic actuator, is provided. | |
dc.format.extent | 199-208 | |
dc.format.pages | 10 | |
dc.identifier.citation | Андрійчук М. Математичні моделі керуючих пристроїв МЕМС / Михайло Андрійчук, Богдан Каркульовський // Комп’ютерні системи проектування. Теорія і практика. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 1. — С. 199–208. | |
dc.identifier.citationen | Andriychuk M. Mathematical models of mems control devices / Mykhaylo Andriychuk, Bohdan Karkulovskyi // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 199–208. | |
dc.identifier.doi | doi.org/10.23939/cds2024.01.199 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64111 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 1 (6), 2024 | |
dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 1 (6), 2024 | |
dc.relation.references | [1] S.D. Senturia, Microsystem Design, Kluwer Academic, Boston, 2001. https://doi.org/10.1007/b117574 | |
dc.relation.references | [2] M. Gad-El-Hak, The MEMS Handbook, CRC Press, Boca Raton, 2001. https://doi.org/10.1201/9781420050905 | |
dc.relation.references | [3] S.E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures, CRC Press, Boca Raton, 2002. | |
dc.relation.references | [4] J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, CRC Press, Boca Raton, 2002. https://doi.org/10.1201/9781420035292 | |
dc.relation.references | [5] J.-H. Fabian, L. Scandella, H. Fuhrmann, R. Berger, T. Mezzacasa, C. Musil, J. Gobrecht, E. Meyer, Finite element calculations and fabrication of cantilever sensors for nanoscale detection, Ultramicroscopy, vol. 82, 2000, pp. 69-77. https://doi.org/10.1016/S0304-3991(99)00121-7 | |
dc.relation.references | [6] Z. Djuric, I. Jokic, M. Frantlovic, O. Jaksic, Influence of adsorption-desorption process on resonant frequency and noise of micro- and nanocantilevers, Proceedings of the 23rd International Conference on Microelectronics (MIEL 2002), vol. 1, 2002, pp. 243-246. | |
dc.relation.references | [7] R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal, Micromechanical cantilever-based bisensors, Sensors and Actuators A, vol. 79, 2001, pp. 115-126. https://doi.org/10.1016/S0925-4005(01)00856-5 | |
dc.relation.references | [8] J. Yang, T. Ono, M. Esashi, Mechanical behavior of ultrathin microcantilever, Sensors and Actuators A, vol. 82, 2000, pp. 102-107. https://doi.org/10.1016/S0924-4247(99)00319-2 | |
dc.relation.references | [9] B. Ilic, D. Czaplewski, M. Zalatudinov, H.G. Craighead, Single cell detection with micromechanical oscillators, Journal of Vacuum Science Technology B, vol. 19, 2001, pp. 2825-2828. https://doi.org/10.1116/1.1421572 | |
dc.relation.references | [10] N. Lobontiu, E. Garcia, Two microcantilever designs: modeling for static deflection and modal analysis’, Journal of Microelectromechanical Systems, 2004. https://doi.org/10.1109/JMEMS.2003.823239 | |
dc.relation.references | [11] Z. Zhang and X. Liao, Modeling on RF Circuit and Thermal Conduction of a MEMS Amplitude Demodulator, Journal of Microelectromechanical Systems, vol. 31, no. 5, pp. 777-783, Oct. 2022, https://doi.org/10.1109/JMEMS.2022.3186642 | |
dc.relation.references | [12] X. Cheng et al., A Bidirectional Deep Learning Approach for Designing MEMS Sensors, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 5, pp. 1610-1617, May 2023. https://doi.org/10.1109/TCAD.2022.3199965 | |
dc.relation.references | [13] K. Shibata et al., Simplified Analytical Damping Constant Model for Design of MEMS Capacitive Accelerometer With Gold Perforated Proof-Mass Structure, IEEE Sensors Journal, vol. 22, no. 15, pp. 14769-14778, 1 Aug.1, 2022, https://doi.org/10.1109/JSEN.2022.3184340 | |
dc.relation.references | [14] E. Martínez-Cisneros et al., Analytical Modeling of the Mechanical Behavior of MEMS/NEMS-Multilayered Resonators With Variable Cross-Sections for Sensors and Energy Harvesters, IEEE Access, vol. 9, pp. 81040-81056, 2021, https://doi.org/10.1109/ACCESS.2021.3084600 | |
dc.relation.references | [15] Z. Biolek, D. Biolek, V. Biolková and Z. Kolka, Predictive Modeling of MEMS via Generic Meminductors: The Multiport Inductor Approach, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 12, no. 4, pp. 785-792, Dec. 2022, https://doi.org/10.1109/JETCAS.2022.3207690 | |
dc.relation.references | [16] Modeling MEMS Devices with COMSOL Multiphysics®: https://www.comsol.com/video/modeling-mems-devices-comsol-multiphysics | |
dc.relation.references | [17] A. Holovatyy, V. Teslyuk, R. Panchak, S. Koshyrets, Mathematical modelling and simulation of the mechanical component of the fully differential capacitive MEMS accelerometer using Matlab/Simulink environment Вісник Національного університету “Львівська політехніка”. Серія “Комп’ютерні системи проектування. Теорія і практика”, 2015, № 829, рр. 20-26. | |
dc.relation.references | [18] https://www.hitechnectar.com/blogs/different-types-mems/ | |
dc.relation.references | [19] М.К. Філяшкін, Мікроелектромеханічні системи: Навчальний посібник. – К.: НАУ, 2019. – 276 с. | |
dc.relation.references | [20] https://www.electricity-magnetism.org/electrostatic-actuators/ | |
dc.relation.references | [21] https://www.electricity-magnetism.org/magnetic-actuators/ | |
dc.relation.references | [22] https://resources.pcb.cadence.com/blog/2020-types-of-piezo-actuators-and-the-applications-of-the-piezoelectric-force | |
dc.relation.references | [23] https://www.globalspec.com/learnmore/motion_controls/linear_actuators/thermal_actuators | |
dc.relation.references | [24] П. Кособуцький, М. Лобур, В. Каркульовський, Мікро- і нано електромеханічні системи. Базові принципи проектування явищ, матеріалів та елементів. Львів: В-во Львівської політехніки, 2017. – 396 с. | |
dc.relation.referencesen | [1] S.D. Senturia, Microsystem Design, Kluwer Academic, Boston, 2001. https://doi.org/10.1007/b117574 | |
dc.relation.referencesen | [2] M. Gad-El-Hak, The MEMS Handbook, CRC Press, Boca Raton, 2001. https://doi.org/10.1201/9781420050905 | |
dc.relation.referencesen | [3] S.E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures, CRC Press, Boca Raton, 2002. | |
dc.relation.referencesen | [4] J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, CRC Press, Boca Raton, 2002. https://doi.org/10.1201/9781420035292 | |
dc.relation.referencesen | [5] J.-H. Fabian, L. Scandella, H. Fuhrmann, R. Berger, T. Mezzacasa, C. Musil, J. Gobrecht, E. Meyer, Finite element calculations and fabrication of cantilever sensors for nanoscale detection, Ultramicroscopy, vol. 82, 2000, pp. 69-77. https://doi.org/10.1016/S0304-3991(99)00121-7 | |
dc.relation.referencesen | [6] Z. Djuric, I. Jokic, M. Frantlovic, O. Jaksic, Influence of adsorption-desorption process on resonant frequency and noise of micro- and nanocantilevers, Proceedings of the 23rd International Conference on Microelectronics (MIEL 2002), vol. 1, 2002, pp. 243-246. | |
dc.relation.referencesen | [7] R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal, Micromechanical cantilever-based bisensors, Sensors and Actuators A, vol. 79, 2001, pp. 115-126. https://doi.org/10.1016/S0925-4005(01)00856-5 | |
dc.relation.referencesen | [8] J. Yang, T. Ono, M. Esashi, Mechanical behavior of ultrathin microcantilever, Sensors and Actuators A, vol. 82, 2000, pp. 102-107. https://doi.org/10.1016/S0924-4247(99)00319-2 | |
dc.relation.referencesen | [9] B. Ilic, D. Czaplewski, M. Zalatudinov, H.G. Craighead, Single cell detection with micromechanical oscillators, Journal of Vacuum Science Technology B, vol. 19, 2001, pp. 2825-2828. https://doi.org/10.1116/1.1421572 | |
dc.relation.referencesen | [10] N. Lobontiu, E. Garcia, Two microcantilever designs: modeling for static deflection and modal analysis’, Journal of Microelectromechanical Systems, 2004. https://doi.org/10.1109/JMEMS.2003.823239 | |
dc.relation.referencesen | [11] Z. Zhang and X. Liao, Modeling on RF Circuit and Thermal Conduction of a MEMS Amplitude Demodulator, Journal of Microelectromechanical Systems, vol. 31, no. 5, pp. 777-783, Oct. 2022, https://doi.org/10.1109/JMEMS.2022.3186642 | |
dc.relation.referencesen | [12] X. Cheng et al., A Bidirectional Deep Learning Approach for Designing MEMS Sensors, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 5, pp. 1610-1617, May 2023. https://doi.org/10.1109/TCAD.2022.3199965 | |
dc.relation.referencesen | [13] K. Shibata et al., Simplified Analytical Damping Constant Model for Design of MEMS Capacitive Accelerometer With Gold Perforated Proof-Mass Structure, IEEE Sensors Journal, vol. 22, no. 15, pp. 14769-14778, 1 Aug.1, 2022, https://doi.org/10.1109/JSEN.2022.3184340 | |
dc.relation.referencesen | [14] E. Martínez-Cisneros et al., Analytical Modeling of the Mechanical Behavior of MEMS/NEMS-Multilayered Resonators With Variable Cross-Sections for Sensors and Energy Harvesters, IEEE Access, vol. 9, pp. 81040-81056, 2021, https://doi.org/10.1109/ACCESS.2021.3084600 | |
dc.relation.referencesen | [15] Z. Biolek, D. Biolek, V. Biolková and Z. Kolka, Predictive Modeling of MEMS via Generic Meminductors: The Multiport Inductor Approach, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 12, no. 4, pp. 785-792, Dec. 2022, https://doi.org/10.1109/JETCAS.2022.3207690 | |
dc.relation.referencesen | [16] Modeling MEMS Devices with COMSOL Multiphysics®: https://www.comsol.com/video/modeling-mems-devices-comsol-multiphysics | |
dc.relation.referencesen | [17] A. Holovatyy, V. Teslyuk, R. Panchak, S. Koshyrets, Mathematical modelling and simulation of the mechanical component of the fully differential capacitive MEMS accelerometer using Matlab/Simulink environment Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Seriia "Kompiuterni systemy proektuvannia. Teoriia i praktyka", 2015, No 829, rr. 20-26. | |
dc.relation.referencesen | [18] https://www.hitechnectar.com/blogs/different-types-mems/ | |
dc.relation.referencesen | [19] M.K. Filiashkin, Mikroelektromekhanichni systemy: Navchalnyi posibnyk, K., NAU, 2019, 276 p. | |
dc.relation.referencesen | [20] https://www.electricity-magnetism.org/electrostatic-actuators/ | |
dc.relation.referencesen | [21] https://www.electricity-magnetism.org/magnetic-actuators/ | |
dc.relation.referencesen | [22] https://resources.pcb.cadence.com/blog/2020-types-of-piezo-actuators-and-the-applications-of-the-piezoelectric-force | |
dc.relation.referencesen | [23] https://www.globalspec.com/learnmore/motion_controls/linear_actuators/thermal_actuators | |
dc.relation.referencesen | [24] P. Kosobutskyi, M. Lobur, V. Karkulovskyi, Mikro- i nano elektromekhanichni systemy. Bazovi pryntsypy proektuvannia yavyshch, materialiv ta elementiv. Lviv: V-vo Lvivskoi politekhniky, 2017, 396 p. | |
dc.relation.uri | https://doi.org/10.1007/b117574 | |
dc.relation.uri | https://doi.org/10.1201/9781420050905 | |
dc.relation.uri | https://doi.org/10.1201/9781420035292 | |
dc.relation.uri | https://doi.org/10.1016/S0304-3991(99)00121-7 | |
dc.relation.uri | https://doi.org/10.1016/S0925-4005(01)00856-5 | |
dc.relation.uri | https://doi.org/10.1016/S0924-4247(99)00319-2 | |
dc.relation.uri | https://doi.org/10.1116/1.1421572 | |
dc.relation.uri | https://doi.org/10.1109/JMEMS.2003.823239 | |
dc.relation.uri | https://doi.org/10.1109/JMEMS.2022.3186642 | |
dc.relation.uri | https://doi.org/10.1109/TCAD.2022.3199965 | |
dc.relation.uri | https://doi.org/10.1109/JSEN.2022.3184340 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2021.3084600 | |
dc.relation.uri | https://doi.org/10.1109/JETCAS.2022.3207690 | |
dc.relation.uri | https://www.comsol.com/video/modeling-mems-devices-comsol-multiphysics | |
dc.relation.uri | https://www.hitechnectar.com/blogs/different-types-mems/ | |
dc.relation.uri | https://www.electricity-magnetism.org/electrostatic-actuators/ | |
dc.relation.uri | https://www.electricity-magnetism.org/magnetic-actuators/ | |
dc.relation.uri | https://resources.pcb.cadence.com/blog/2020-types-of-piezo-actuators-and-the-applications-of-the-piezoelectric-force | |
dc.relation.uri | https://www.globalspec.com/learnmore/motion_controls/linear_actuators/thermal_actuators | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Андрійчук М., Каркульовський Б., 2024 | |
dc.subject | МЕМС актюатори | |
dc.subject | електростатичні актюатори | |
dc.subject | магнітні актюатори | |
dc.subject | п’єзоелектричні актюатори | |
dc.subject | термоактюатори | |
dc.subject | математична модель | |
dc.subject | наносоленоїд | |
dc.subject | MEMS actuators | |
dc.subject | electrostatic actuators | |
dc.subject | magnetic actuators | |
dc.subject | piezoelectric actuators | |
dc.subject | thermal actuators | |
dc.subject | mathematical model | |
dc.subject | nano-solenoid | |
dc.title | Математичні моделі керуючих пристроїв МЕМС | |
dc.title.alternative | Mathematical models of mems control devices | |
dc.type | Article |
Files
License bundle
1 - 1 of 1