Дослідження структури нанокомпозитів на основі сумішей поліпропілену та модифікованого поліаміду сканувальною електронною мікроскопією

dc.citation.epage144
dc.citation.issue1
dc.citation.spage138
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКрасінський, В. В.
dc.contributor.authorСуберляк, О. В.
dc.contributor.authorЧекайло, М. В.
dc.contributor.authorДулебова, Л.
dc.contributor.authorKrasinskyi, V. V.
dc.contributor.authorSuberlyak, O. V.
dc.contributor.authorChekailo, M. V.
dc.contributor.authorDulebova, L.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2020-02-28T13:09:31Z
dc.date.available2020-02-28T13:09:31Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractПодано результати електронного мікроскопічного аналізу структури суміші поліпропілену з нанокомпозитом на основі поліаміду ПА-6 з монтморилонітом, інтеркальованим полівінілпіролідоном, та досліджено вплив вмісту нанокомпозиту на характер його розподілу в полімерній матриці. Показано, що вміст модифікованого ПА-6 суттєво впливає на характер розподілу та структуру композитів, одержаних у розтопі. Встановлено, що найодноріднішою структурою характеризуються композити з вмістом модифікованого ПА-6 від 15 до 30% мас., які мають пластинчасту структуру і незначну кількість включень з агломератів модифікованого ПА-6 найменших розмірів.
dc.description.abstractThe paper presents the results of a microscopic analysis of the structure of a polypropylene mixture with nanocomposite based on polyamide PA-6 with montmorillonite, which is intercalated with polyvinylpyrrolidone, and it is investigated how the content of nanocomposite effects on the nature of its distribution in the polymer matrix. It was shown that the content of modified PA-6 significantly influences on the distribution and structure of the composites obtained in the mold. It was established that composites with a content of modified PA-6 from 15 to 30 % by weight, having a lamellar structure and some inclusions of agglomerates of modified PA-6 of the smallest sizes, are characterized by the most homogeneous structure.
dc.format.extent138-144
dc.format.pages7
dc.identifier.citationДослідження структури нанокомпозитів на основі сумішей поліпропілену та модифікованого поліаміду сканувальною електронною мікроскопією / В. В. Красінський, О. В. Суберляк, М. В. Чекайло, Л. Дулебова // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 138–144.
dc.identifier.citationenInvestigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy / V. V. Krasinskyi, O. V. Suberlyak, M. V. Chekailo, L. Dulebova // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 138–144.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46371
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (2), 2019
dc.relation.references1. Olejnik, M. (2008). Nanokompozyty polimerowe – rola nanododatków. Techniczne Wyroby Włókiennicze, 16(3/4), 25–31.
dc.relation.references2. Abdullayev, E., & Lvov, Y. (2013). Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. Journal of Materials Chemistry B, 1(23), 2894. doi:10.1039/c3tb20059k
dc.relation.references3. Kacperski, M. (2003). Polymer nanocomposites. Part II. Nanocomposites based on thermoplastic polymers and layered silicates. Polimery,48(02), 85–90. doi:10.14314/polimery.2003.085
dc.relation.references4. Pawlikowska, D. (2017). Elektrycznie i termicznie przewodzące nanokompozyty polimerowe na bazie polietylenu o małej gęstości z dodatkiem nanopłytek grafenowych. Przemysł Chemiczny, 1(9), 167–172. doi:10.15199/62.2017.9.34
dc.relation.references5. Stix, G. (2001). Małe jest wielkie. Świat Nauki, 11, 24.
dc.relation.references6. Wierzbicka, E., Legocka, I., Wardzinska- Jarmulska1, E., Szczepaniak, B., & Krzyzewski, M. (2016). Functionalized nanofiller for polymers – preparation, properties and application. Polimery, 61(10), 670–676. doi:10.14314/polimery.2016.670
dc.relation.references7. Liu, M., Guo, B., Du, M., Cai, X., & Jia, D. (2007). Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology, 18(45), 455703. doi:10.1088/0957-4484/18/45/455703
dc.relation.references8. Vahedi, V., & Pasbakhsh, P. (2014). Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polymer Testing, 39, 101–114. doi:10.1016/j. polymertesting.2014.07.017
dc.relation.references9. Zaini, M., Majid, R. A., & Nikbakht, H. (2014). Modification of Montmorillonite with Diamine Surfactants. Applied Mechanics and Materials, 695, 224–227. doi:10.4028/www. scientific. net/amm.695.224
dc.relation.references10. Li, C., Liu, J., Qu, X., & Yang, Z. (2009). A general synthesis approach toward halloysite-based composite nanotube. Journal of Applied Polymer Science, 112(5), 2647–2655. doi:10.1002/app.29652
dc.relation.references11. Ye, Y., Chen, H., Wu, J., & Ye, L. (2007). High impact strength epoxy nanocomposites with natural nanotubes. Polymer, 48(21), 6426–6433. doi:10.1016/j. polymer.2007.08.035
dc.relation.references12. Meng, Ri Liang, Wu, Yu Jiao, He, Hui, Yang, Dao Yi (2010). Research on Mechanical Properties and Crystallization Performance of PP/PA6/OMMT Composite. Plastics Science and Technology, 3, 65–69.
dc.relation.references13. Huang, G., Peng, X. (2008). Research Progress of Preparation and Properties of Organic Montmorillonite Filled Polypropylene/PA6 Nanocomposites. Plastics Science and Technology, 11, 94–97.
dc.relation.references14. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies,4(12 (88)), 44–50. doi:10.15587/1729-4061.2017.108465
dc.relation.references15. Krasinskyi, V., Suberlyak, O., Kochubei, V., Klym, Y., Zemke, V., & Jachowicz, T. (2018). Effect Of Small Additives Of Polyamide Modified By Polyvinylpyrrolidone And Montmorillonite On Polypropylene Technological Properties And Heat Resistance. Advances in Science and Technology Research Journal, 12(2), 83–88. doi:10.12913/22998624/90924
dc.relation.references16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ, & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi:10.4028/www. scientific. net/kem.756.3
dc.relation.references17. Krasinskyi, V., Suberlyak, O., Zemke, V., Klym, Yu., Gaidos, I. (2019). The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chemistry & Chemical Technology, 13 (1), 59–63.
dc.relation.references18. Chen, Y., Geever, L., Higginbotham, C., Killion, J., Lyons, S., Devine, D. (2016). Reinforced polylactic acid for use in high-strength biodegradable medical implants. ANTEC 2016 - Indianapolis, Indiana, USA May 23–25, 2016. [On-line].
dc.relation.references19. Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubespolymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525. doi:10.1016/j. progpolymsci.2014.04.004
dc.relation.references20. Deng, S., Zhang, J., & Ye, L. (2009). Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Composites Science and Technology, 69(14), 2497–2505.
dc.relation.referencesen1. Olejnik, M. (2008). Nanokompozyty polimerowe – rola nanododatków. Techniczne Wyroby Włókiennicze, 16(3/4), 25–31.
dc.relation.referencesen2. Abdullayev, E., & Lvov, Y. (2013). Halloysite clay nanotubes as a ceramic "skeleton" for functional biopolymer composites with sustained drug release. Journal of Materials Chemistry B, 1(23), 2894. doi:10.1039/P.3tb20059k
dc.relation.referencesen3. Kacperski, M. (2003). Polymer nanocomposites. Part II. Nanocomposites based on thermoplastic polymers and layered silicates. Polimery,48(02), 85–90. doi:10.14314/polimery.2003.085
dc.relation.referencesen4. Pawlikowska, D. (2017). Elektrycznie i termicznie przewodzące nanokompozyty polimerowe na bazie polietylenu o małej gęstości z dodatkiem nanopłytek grafenowych. Przemysł Chemiczny, 1(9), 167–172. doi:10.15199/62.2017.9.34
dc.relation.referencesen5. Stix, G. (2001). Małe jest wielkie. Świat Nauki, 11, 24.
dc.relation.referencesen6. Wierzbicka, E., Legocka, I., Wardzinska- Jarmulska1, E., Szczepaniak, B., & Krzyzewski, M. (2016). Functionalized nanofiller for polymers – preparation, properties and application. Polimery, 61(10), 670–676. doi:10.14314/polimery.2016.670
dc.relation.referencesen7. Liu, M., Guo, B., Du, M., Cai, X., & Jia, D. (2007). Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology, 18(45), 455703. doi:10.1088/0957-4484/18/45/455703
dc.relation.referencesen8. Vahedi, V., & Pasbakhsh, P. (2014). Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polymer Testing, 39, 101–114. doi:10.1016/j. polymertesting.2014.07.017
dc.relation.referencesen9. Zaini, M., Majid, R. A., & Nikbakht, H. (2014). Modification of Montmorillonite with Diamine Surfactants. Applied Mechanics and Materials, 695, 224–227. doi:10.4028/www. scientific. net/amm.695.224
dc.relation.referencesen10. Li, C., Liu, J., Qu, X., & Yang, Z. (2009). A general synthesis approach toward halloysite-based composite nanotube. Journal of Applied Polymer Science, 112(5), 2647–2655. doi:10.1002/app.29652
dc.relation.referencesen11. Ye, Y., Chen, H., Wu, J., & Ye, L. (2007). High impact strength epoxy nanocomposites with natural nanotubes. Polymer, 48(21), 6426–6433. doi:10.1016/j. polymer.2007.08.035
dc.relation.referencesen12. Meng, Ri Liang, Wu, Yu Jiao, He, Hui, Yang, Dao Yi (2010). Research on Mechanical Properties and Crystallization Performance of PP/PA6/OMMT Composite. Plastics Science and Technology, 3, 65–69.
dc.relation.referencesen13. Huang, G., Peng, X. (2008). Research Progress of Preparation and Properties of Organic Montmorillonite Filled Polypropylene/PA6 Nanocomposites. Plastics Science and Technology, 11, 94–97.
dc.relation.referencesen14. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies,4(12 (88)), 44–50. doi:10.15587/1729-4061.2017.108465
dc.relation.referencesen15. Krasinskyi, V., Suberlyak, O., Kochubei, V., Klym, Y., Zemke, V., & Jachowicz, T. (2018). Effect Of Small Additives Of Polyamide Modified By Polyvinylpyrrolidone And Montmorillonite On Polypropylene Technological Properties And Heat Resistance. Advances in Science and Technology Research Journal, 12(2), 83–88. doi:10.12913/22998624/90924
dc.relation.referencesen16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ, & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi:10.4028/www. scientific. net/kem.756.3
dc.relation.referencesen17. Krasinskyi, V., Suberlyak, O., Zemke, V., Klym, Yu., Gaidos, I. (2019). The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chemistry & Chemical Technology, 13 (1), 59–63.
dc.relation.referencesen18. Chen, Y., Geever, L., Higginbotham, C., Killion, J., Lyons, S., Devine, D. (2016). Reinforced polylactic acid for use in high-strength biodegradable medical implants. ANTEC 2016 - Indianapolis, Indiana, USA May 23–25, 2016. [On-line].
dc.relation.referencesen19. Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubespolymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525. doi:10.1016/j. progpolymsci.2014.04.004
dc.relation.referencesen20. Deng, S., Zhang, J., & Ye, L. (2009). Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Composites Science and Technology, 69(14), 2497–2505.
dc.subjectполіпропілен
dc.subjectполіамід
dc.subjectмонтморилоніт
dc.subjectполівінілпіролідон
dc.subjectсуміш
dc.subjectнанокомпозит
dc.subjectструктура
dc.subjectсканувальна електронна мікроскопія
dc.subjectpolypropylene
dc.subjectpolyamide
dc.subjectmontmorillonite
dc.subjectpolyvinylpyrrolidone
dc.subjectmixture
dc.subjectnanocomposite
dc.subjectstructure
dc.subjectscanning electronic microscopy
dc.titleДослідження структури нанокомпозитів на основі сумішей поліпропілену та модифікованого поліаміду сканувальною електронною мікроскопією
dc.title.alternativeInvestigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v2n1_Krasinskyi_V_V-Investigation_of_structure_138-144.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v2n1_Krasinskyi_V_V-Investigation_of_structure_138-144__COVER.png
Size:
413.55 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.09 KB
Format:
Plain Text
Description: