Дослідження структури нанокомпозитів на основі сумішей поліпропілену та модифікованого поліаміду сканувальною електронною мікроскопією
dc.citation.epage | 144 | |
dc.citation.issue | 1 | |
dc.citation.spage | 138 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Красінський, В. В. | |
dc.contributor.author | Суберляк, О. В. | |
dc.contributor.author | Чекайло, М. В. | |
dc.contributor.author | Дулебова, Л. | |
dc.contributor.author | Krasinskyi, V. V. | |
dc.contributor.author | Suberlyak, O. V. | |
dc.contributor.author | Chekailo, M. V. | |
dc.contributor.author | Dulebova, L. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-28T13:09:31Z | |
dc.date.available | 2020-02-28T13:09:31Z | |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.description.abstract | Подано результати електронного мікроскопічного аналізу структури суміші поліпропілену з нанокомпозитом на основі поліаміду ПА-6 з монтморилонітом, інтеркальованим полівінілпіролідоном, та досліджено вплив вмісту нанокомпозиту на характер його розподілу в полімерній матриці. Показано, що вміст модифікованого ПА-6 суттєво впливає на характер розподілу та структуру композитів, одержаних у розтопі. Встановлено, що найодноріднішою структурою характеризуються композити з вмістом модифікованого ПА-6 від 15 до 30% мас., які мають пластинчасту структуру і незначну кількість включень з агломератів модифікованого ПА-6 найменших розмірів. | |
dc.description.abstract | The paper presents the results of a microscopic analysis of the structure of a polypropylene mixture with nanocomposite based on polyamide PA-6 with montmorillonite, which is intercalated with polyvinylpyrrolidone, and it is investigated how the content of nanocomposite effects on the nature of its distribution in the polymer matrix. It was shown that the content of modified PA-6 significantly influences on the distribution and structure of the composites obtained in the mold. It was established that composites with a content of modified PA-6 from 15 to 30 % by weight, having a lamellar structure and some inclusions of agglomerates of modified PA-6 of the smallest sizes, are characterized by the most homogeneous structure. | |
dc.format.extent | 138-144 | |
dc.format.pages | 7 | |
dc.identifier.citation | Дослідження структури нанокомпозитів на основі сумішей поліпропілену та модифікованого поліаміду сканувальною електронною мікроскопією / В. В. Красінський, О. В. Суберляк, М. В. Чекайло, Л. Дулебова // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 138–144. | |
dc.identifier.citationen | Investigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy / V. V. Krasinskyi, O. V. Suberlyak, M. V. Chekailo, L. Dulebova // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 138–144. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46371 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (2), 2019 | |
dc.relation.references | 1. Olejnik, M. (2008). Nanokompozyty polimerowe – rola nanododatków. Techniczne Wyroby Włókiennicze, 16(3/4), 25–31. | |
dc.relation.references | 2. Abdullayev, E., & Lvov, Y. (2013). Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. Journal of Materials Chemistry B, 1(23), 2894. doi:10.1039/c3tb20059k | |
dc.relation.references | 3. Kacperski, M. (2003). Polymer nanocomposites. Part II. Nanocomposites based on thermoplastic polymers and layered silicates. Polimery,48(02), 85–90. doi:10.14314/polimery.2003.085 | |
dc.relation.references | 4. Pawlikowska, D. (2017). Elektrycznie i termicznie przewodzące nanokompozyty polimerowe na bazie polietylenu o małej gęstości z dodatkiem nanopłytek grafenowych. Przemysł Chemiczny, 1(9), 167–172. doi:10.15199/62.2017.9.34 | |
dc.relation.references | 5. Stix, G. (2001). Małe jest wielkie. Świat Nauki, 11, 24. | |
dc.relation.references | 6. Wierzbicka, E., Legocka, I., Wardzinska- Jarmulska1, E., Szczepaniak, B., & Krzyzewski, M. (2016). Functionalized nanofiller for polymers – preparation, properties and application. Polimery, 61(10), 670–676. doi:10.14314/polimery.2016.670 | |
dc.relation.references | 7. Liu, M., Guo, B., Du, M., Cai, X., & Jia, D. (2007). Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology, 18(45), 455703. doi:10.1088/0957-4484/18/45/455703 | |
dc.relation.references | 8. Vahedi, V., & Pasbakhsh, P. (2014). Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polymer Testing, 39, 101–114. doi:10.1016/j. polymertesting.2014.07.017 | |
dc.relation.references | 9. Zaini, M., Majid, R. A., & Nikbakht, H. (2014). Modification of Montmorillonite with Diamine Surfactants. Applied Mechanics and Materials, 695, 224–227. doi:10.4028/www. scientific. net/amm.695.224 | |
dc.relation.references | 10. Li, C., Liu, J., Qu, X., & Yang, Z. (2009). A general synthesis approach toward halloysite-based composite nanotube. Journal of Applied Polymer Science, 112(5), 2647–2655. doi:10.1002/app.29652 | |
dc.relation.references | 11. Ye, Y., Chen, H., Wu, J., & Ye, L. (2007). High impact strength epoxy nanocomposites with natural nanotubes. Polymer, 48(21), 6426–6433. doi:10.1016/j. polymer.2007.08.035 | |
dc.relation.references | 12. Meng, Ri Liang, Wu, Yu Jiao, He, Hui, Yang, Dao Yi (2010). Research on Mechanical Properties and Crystallization Performance of PP/PA6/OMMT Composite. Plastics Science and Technology, 3, 65–69. | |
dc.relation.references | 13. Huang, G., Peng, X. (2008). Research Progress of Preparation and Properties of Organic Montmorillonite Filled Polypropylene/PA6 Nanocomposites. Plastics Science and Technology, 11, 94–97. | |
dc.relation.references | 14. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies,4(12 (88)), 44–50. doi:10.15587/1729-4061.2017.108465 | |
dc.relation.references | 15. Krasinskyi, V., Suberlyak, O., Kochubei, V., Klym, Y., Zemke, V., & Jachowicz, T. (2018). Effect Of Small Additives Of Polyamide Modified By Polyvinylpyrrolidone And Montmorillonite On Polypropylene Technological Properties And Heat Resistance. Advances in Science and Technology Research Journal, 12(2), 83–88. doi:10.12913/22998624/90924 | |
dc.relation.references | 16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ, & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi:10.4028/www. scientific. net/kem.756.3 | |
dc.relation.references | 17. Krasinskyi, V., Suberlyak, O., Zemke, V., Klym, Yu., Gaidos, I. (2019). The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chemistry & Chemical Technology, 13 (1), 59–63. | |
dc.relation.references | 18. Chen, Y., Geever, L., Higginbotham, C., Killion, J., Lyons, S., Devine, D. (2016). Reinforced polylactic acid for use in high-strength biodegradable medical implants. ANTEC 2016 - Indianapolis, Indiana, USA May 23–25, 2016. [On-line]. | |
dc.relation.references | 19. Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubespolymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525. doi:10.1016/j. progpolymsci.2014.04.004 | |
dc.relation.references | 20. Deng, S., Zhang, J., & Ye, L. (2009). Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Composites Science and Technology, 69(14), 2497–2505. | |
dc.relation.referencesen | 1. Olejnik, M. (2008). Nanokompozyty polimerowe – rola nanododatków. Techniczne Wyroby Włókiennicze, 16(3/4), 25–31. | |
dc.relation.referencesen | 2. Abdullayev, E., & Lvov, Y. (2013). Halloysite clay nanotubes as a ceramic "skeleton" for functional biopolymer composites with sustained drug release. Journal of Materials Chemistry B, 1(23), 2894. doi:10.1039/P.3tb20059k | |
dc.relation.referencesen | 3. Kacperski, M. (2003). Polymer nanocomposites. Part II. Nanocomposites based on thermoplastic polymers and layered silicates. Polimery,48(02), 85–90. doi:10.14314/polimery.2003.085 | |
dc.relation.referencesen | 4. Pawlikowska, D. (2017). Elektrycznie i termicznie przewodzące nanokompozyty polimerowe na bazie polietylenu o małej gęstości z dodatkiem nanopłytek grafenowych. Przemysł Chemiczny, 1(9), 167–172. doi:10.15199/62.2017.9.34 | |
dc.relation.referencesen | 5. Stix, G. (2001). Małe jest wielkie. Świat Nauki, 11, 24. | |
dc.relation.referencesen | 6. Wierzbicka, E., Legocka, I., Wardzinska- Jarmulska1, E., Szczepaniak, B., & Krzyzewski, M. (2016). Functionalized nanofiller for polymers – preparation, properties and application. Polimery, 61(10), 670–676. doi:10.14314/polimery.2016.670 | |
dc.relation.referencesen | 7. Liu, M., Guo, B., Du, M., Cai, X., & Jia, D. (2007). Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology, 18(45), 455703. doi:10.1088/0957-4484/18/45/455703 | |
dc.relation.referencesen | 8. Vahedi, V., & Pasbakhsh, P. (2014). Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polymer Testing, 39, 101–114. doi:10.1016/j. polymertesting.2014.07.017 | |
dc.relation.referencesen | 9. Zaini, M., Majid, R. A., & Nikbakht, H. (2014). Modification of Montmorillonite with Diamine Surfactants. Applied Mechanics and Materials, 695, 224–227. doi:10.4028/www. scientific. net/amm.695.224 | |
dc.relation.referencesen | 10. Li, C., Liu, J., Qu, X., & Yang, Z. (2009). A general synthesis approach toward halloysite-based composite nanotube. Journal of Applied Polymer Science, 112(5), 2647–2655. doi:10.1002/app.29652 | |
dc.relation.referencesen | 11. Ye, Y., Chen, H., Wu, J., & Ye, L. (2007). High impact strength epoxy nanocomposites with natural nanotubes. Polymer, 48(21), 6426–6433. doi:10.1016/j. polymer.2007.08.035 | |
dc.relation.referencesen | 12. Meng, Ri Liang, Wu, Yu Jiao, He, Hui, Yang, Dao Yi (2010). Research on Mechanical Properties and Crystallization Performance of PP/PA6/OMMT Composite. Plastics Science and Technology, 3, 65–69. | |
dc.relation.referencesen | 13. Huang, G., Peng, X. (2008). Research Progress of Preparation and Properties of Organic Montmorillonite Filled Polypropylene/PA6 Nanocomposites. Plastics Science and Technology, 11, 94–97. | |
dc.relation.referencesen | 14. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies,4(12 (88)), 44–50. doi:10.15587/1729-4061.2017.108465 | |
dc.relation.referencesen | 15. Krasinskyi, V., Suberlyak, O., Kochubei, V., Klym, Y., Zemke, V., & Jachowicz, T. (2018). Effect Of Small Additives Of Polyamide Modified By Polyvinylpyrrolidone And Montmorillonite On Polypropylene Technological Properties And Heat Resistance. Advances in Science and Technology Research Journal, 12(2), 83–88. doi:10.12913/22998624/90924 | |
dc.relation.referencesen | 16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ, & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi:10.4028/www. scientific. net/kem.756.3 | |
dc.relation.referencesen | 17. Krasinskyi, V., Suberlyak, O., Zemke, V., Klym, Yu., Gaidos, I. (2019). The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chemistry & Chemical Technology, 13 (1), 59–63. | |
dc.relation.referencesen | 18. Chen, Y., Geever, L., Higginbotham, C., Killion, J., Lyons, S., Devine, D. (2016). Reinforced polylactic acid for use in high-strength biodegradable medical implants. ANTEC 2016 - Indianapolis, Indiana, USA May 23–25, 2016. [On-line]. | |
dc.relation.referencesen | 19. Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubespolymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525. doi:10.1016/j. progpolymsci.2014.04.004 | |
dc.relation.referencesen | 20. Deng, S., Zhang, J., & Ye, L. (2009). Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Composites Science and Technology, 69(14), 2497–2505. | |
dc.subject | поліпропілен | |
dc.subject | поліамід | |
dc.subject | монтморилоніт | |
dc.subject | полівінілпіролідон | |
dc.subject | суміш | |
dc.subject | нанокомпозит | |
dc.subject | структура | |
dc.subject | сканувальна електронна мікроскопія | |
dc.subject | polypropylene | |
dc.subject | polyamide | |
dc.subject | montmorillonite | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | mixture | |
dc.subject | nanocomposite | |
dc.subject | structure | |
dc.subject | scanning electronic microscopy | |
dc.title | Дослідження структури нанокомпозитів на основі сумішей поліпропілену та модифікованого поліаміду сканувальною електронною мікроскопією | |
dc.title.alternative | Investigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy | |
dc.type | Article |
Files
License bundle
1 - 1 of 1