A new algorithm for solving Toeplitz linear systems

dc.citation.epage815
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage807
dc.contributor.affiliationУніверситет Абдельмалек Ессааді
dc.contributor.affiliationAbdelmalek Essaadi University
dc.contributor.authorАулад, О. Ф.
dc.contributor.authorТаяні, Ч.
dc.contributor.authorAoulad, O. F.
dc.contributor.authorTajani, C.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T12:17:26Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій статті нас цікавить розв’язання лінійних систем Тепліца. Використовуючи спеціальну структуру Тепліца, даємо нову форму розкладання матриці коефіцієнтів. Базуючись на цій матричній формі декомпозиції та в поєднанні з формулою Шермана–Морісона, запропоновано ефективний алгоритм для розв’язання розглянутої проблеми. Наведено типовий приклад для ілюстрації різних кроків запропонованого алгоритму. Крім того, наведені чисельні тести, що демонструють ефективність нашого алгоритму.
dc.description.abstractIn this paper, we are interested in solving the Toeplitz linear systems. By exploiting the special Toeplitz structure, we give a new decomposition form of the coefficient matrix. Based on this matrix decomposition form and combined with the Sherman–Morrison formula, we propose an efficient algorithm for solving the considered problem. A typical example is presented to illustrate the different steps of the proposed algorithm. In addition, numerical tests are given showing the efficiency of our algorithm.
dc.format.extent807-815
dc.format.pages9
dc.identifier.citationAoulad O. F. A new algorithm for solving Toeplitz linear systems / O. F. Aoulad, C. Tajani // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 807–815.
dc.identifier.citationenAoulad O. F. A new algorithm for solving Toeplitz linear systems / O. F. Aoulad, C. Tajani // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 807–815.
dc.identifier.doidoi.org/10.23939/mmc2023.03.807
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63516
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 3 (10), 2023
dc.relation.references[1] Bunchy J. R. Stability of methods for solving Toeplitz systems of equations. SIAM Journal on Scientific Computing. 6 (2), 349–364 (1985).
dc.relation.references[2] Chesnakov A., Van Barel M. A direct method to solve block banded block Toeplitz systems with nonbanded Toeplitz block. Journal of Computational and Applied Mathematics. 234 (5), 1485–1491 (2010).
dc.relation.references[3] Bini D. Parallel solution of certain Toeplitz linear systems. SIAM Journal on Computing. 13 (2), 268–276 (1984).
dc.relation.references[4] Lin F.-R., Ching W.-K., Ng M. K. Fast inversion of triangular Toeplitz matrices. Theoretical Computer Science. 315 (2–3), 511–523 (2004).
dc.relation.references[5] Dongarra J. J., Moler C. B., Bunch J. R., Stewart G. W. LINPACK user’s guide. SIAM Press (1979).
dc.relation.references[6] Hockney R. W. A fast direct solution of Poisson’s equation using Fourier analysis. Journal of the ACM. 12 (1), 95–113 (1965).
dc.relation.references[7] Widlund O. B. On the use of fast methods for separable finite difference equations for the solution of general elliptic problems. In: Sparse matrices and their applications, Rose D. J., Willoughby R. A. (eds)). The IBM Research Symposia Series. Springer, Boston, MA. 121–131 (1972).
dc.relation.references[8] Malcolm M. A., Palmer J. A fast method for solving a class of tridiagonal linear systems. Communications of the ACM. 17 (1), 14–17 (1974).
dc.relation.references[9] Fischer D., Golub G., Hald O., Levia C., Widlund O. On Fourier–Toeplitz methods for separable elliptic problems. Mathematics of Computation. 28 (126), 349–368 (1974).
dc.relation.references[10] Rojo O. A new method for solving symmetric circulant tridiagonal systems of linear equations. Computers & Mathematics with Applications. 20 (12), 61–67 (1990).
dc.relation.references[11] Chen M. On the solution of circulant linear systems. SIAM Journal on Numerical Analysis. 24 (3), 668–683 (1987).
dc.relation.references[12] Belhaj S., Dridi M., Salam A. A fast algorithm for solving banded Toeplitz systems. Computers & Mathematics with Application. 70 (12), 2958–2967 (2015).
dc.relation.referencesen[1] Bunchy J. R. Stability of methods for solving Toeplitz systems of equations. SIAM Journal on Scientific Computing. 6 (2), 349–364 (1985).
dc.relation.referencesen[2] Chesnakov A., Van Barel M. A direct method to solve block banded block Toeplitz systems with nonbanded Toeplitz block. Journal of Computational and Applied Mathematics. 234 (5), 1485–1491 (2010).
dc.relation.referencesen[3] Bini D. Parallel solution of certain Toeplitz linear systems. SIAM Journal on Computing. 13 (2), 268–276 (1984).
dc.relation.referencesen[4] Lin F.-R., Ching W.-K., Ng M. K. Fast inversion of triangular Toeplitz matrices. Theoretical Computer Science. 315 (2–3), 511–523 (2004).
dc.relation.referencesen[5] Dongarra J. J., Moler C. B., Bunch J. R., Stewart G. W. LINPACK user’s guide. SIAM Press (1979).
dc.relation.referencesen[6] Hockney R. W. A fast direct solution of Poisson’s equation using Fourier analysis. Journal of the ACM. 12 (1), 95–113 (1965).
dc.relation.referencesen[7] Widlund O. B. On the use of fast methods for separable finite difference equations for the solution of general elliptic problems. In: Sparse matrices and their applications, Rose D. J., Willoughby R. A. (eds)). The IBM Research Symposia Series. Springer, Boston, MA. 121–131 (1972).
dc.relation.referencesen[8] Malcolm M. A., Palmer J. A fast method for solving a class of tridiagonal linear systems. Communications of the ACM. 17 (1), 14–17 (1974).
dc.relation.referencesen[9] Fischer D., Golub G., Hald O., Levia C., Widlund O. On Fourier–Toeplitz methods for separable elliptic problems. Mathematics of Computation. 28 (126), 349–368 (1974).
dc.relation.referencesen[10] Rojo O. A new method for solving symmetric circulant tridiagonal systems of linear equations. Computers & Mathematics with Applications. 20 (12), 61–67 (1990).
dc.relation.referencesen[11] Chen M. On the solution of circulant linear systems. SIAM Journal on Numerical Analysis. 24 (3), 668–683 (1987).
dc.relation.referencesen[12] Belhaj S., Dridi M., Salam A. A fast algorithm for solving banded Toeplitz systems. Computers & Mathematics with Application. 70 (12), 2958–2967 (2015).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectматриця Тепліца
dc.subjectформула Шермана–Морісона
dc.subjectметод декомпозиціції
dc.subjectToeplitz matrix
dc.subjectSherman–Morrison formula
dc.subjectdecomposition method
dc.titleA new algorithm for solving Toeplitz linear systems
dc.title.alternativeНовий алгоритм розв’язування лінійних систем Тепліца
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n3_Aoulad_O_F-A_new_algorithm_for_solving_807-815.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n3_Aoulad_O_F-A_new_algorithm_for_solving_807-815__COVER.png
Size:
337.99 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: