Physical and Mathematical Models of Target Component Extraction from Rectlinear Capillaries
dc.citation.epage | 117 | |
dc.citation.issue | 1 | |
dc.citation.spage | 112 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Gumnitsky, Jaroslav | |
dc.contributor.author | Venger, Lubov | |
dc.contributor.author | Sabadash, Vira | |
dc.contributor.author | Symak, Dmytro | |
dc.contributor.author | Hyvlud, Anna | |
dc.contributor.author | Gnativ, Zoriana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T10:41:28Z | |
dc.date.available | 2024-01-22T10:41:28Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Досліджено екстрагування твердого компонента з прямолінійного капіляра. Підтверджено наявність двох зон екстрагування: конвективної та молекулярно-дифузійної. Досліджено вплив вакуумування системи на швидкість екстрагування. Показано збільшення зони конвекції під час вакуумування внаслідок виникнення бульбашок пароподібної фази. Визначено коефіцієнти масовіддачі для конвективної зони. Наведено математичну модель молекулярно-дифузійної стадії з врахуванням нелінійної зміни концентрації компонента у рідині внаслідок переміщення границі екстрагування. Визначено коефіцієнти молекулярної дифузії у капілярі. | |
dc.description.abstract | The extraction of the solid component from the rectilinear capillary has been investigated. The presence of two extraction zones (convective and molecular diffusion) was confirmed. The effect of the system vacuumizing on the extraction rate has been studied. The convection zone during vacuumizing was found to be increased due to the appearance of the vapor phase bubbles. The mass transfer coefficients for the convective zone have been determined. A mathematical model of the molecular diffusion stage is given, taking into account the nonlinear change in the component concentration in the liquid due to the displacement of the extraction boundary. The molecular diffusion coefficients in the capillary have been determined. | |
dc.format.extent | 112-117 | |
dc.format.pages | 6 | |
dc.identifier.citation | Physical and Mathematical Models of Target Component Extraction from Rectlinear Capillaries / Jaroslav Gumnitsky, Lubov Venger, Vira Sabadash, Dmytro Symak, Anna Hyvlud, Zoriana Gnativ // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 112–117. | |
dc.identifier.citationen | Physical and Mathematical Models of Target Component Extraction from Rectlinear Capillaries / Jaroslav Gumnitsky, Lubov Venger, Vira Sabadash, Dmytro Symak, Anna Hyvlud, Zoriana Gnativ // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 112–117. | |
dc.identifier.doi | doi.org/10.23939/chcht16.01.112 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60947 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (16), 2022 | |
dc.relation.references | [1] Romankov, P.G.; Frolov, V.F.; Flisyuk, O.M. Massoobmennyie Processy Khimicheskoy Tekhnologii; Khimizdat: Sankt-Peterburg, 2020. | |
dc.relation.references | [2] Kurt, S.K.; Gürsel, I.V.; Hessel, V.; Nigam, K.D.P.; Kockmann, N. Liquid-Liquid Extraction System with Microstructured Coiled Flow Inverter and Other Capillary Setups for Single-Stage Extraction Applications. Chem. Eng. J. 2016, 284, 764-777. https://doi.org/10.1016/j.cej.2015.08.099 | |
dc.relation.references | [3] Vakinti, M.; Mela, S.-M.; Fernández, E.; Psillakis, E.; Psillakis, E. Room Temperature and Sensitive Determination of Haloanisoles in Wine Using Vacuum-Assisted Headspace Solid-Phase Microextraction. J. Chromatogr. 2019, 1602, 142-149. https://doi.org/10.1016/j.chroma.2019.03.047 | |
dc.relation.references | [4] Mascrez, S.; Psillakis, E.; Purcaro, G. A Multifaceted Investigation on the Effect of Vacuum on the Headspace Solid-Phase Microextraction of Extra-Virgin Olive Oil. Anal. Chim. Acta 2020, 1103, 106-114. https://doi.org/10.1016/j.aca.2019.12.053 | |
dc.relation.references | [5] Aksel'rud, G.A.; Gumnitskii, Y.M. Some Characteristics of the Kinetics of Ion Exchange in the Case of Pulsating Motion of a Liquid. J. Eng. Phys. 1970, 19, 1024-1026. https://doi.org/10.1007/BF00828782 | |
dc.relation.references | [6] Gumnitskii Y.M.; Sen'kiv V.N. Extraction of a Solid Substance from Linear Capillaries During Periodic Boiling under Vacuum. Theor. Found. Chem. Eng. 2006, 40, 253-258. https://doi.org/10.1134/S0040579506030055 | |
dc.relation.references | [7] Symak, D.; Atamanyuk, V.; Gumnitsky, J. Analysis of Dissolution Kinetics based on the Local Isotropic Turbulence Theory. Chem. Chem. Technol. 2015, 9, 493-496. https://doi.org/10.23939/chcht09.04.493 | |
dc.relation.references | [8] Symak, D.; Gumnitsky, J.; Atamaniuk, V.; Nagurskyy, O. Investigation of Physical Dissolution of Benzoic Acid Polydisperse Mixture. Chem. Chem. Technol. 2017, 11, 469. https://doi.org/10.23939/chcht11.04.469 | |
dc.relation.references | [9] Pavliuk, I.; Dyachok, V.; Novikov, V.; Ilkiv, N. Kinetics of Biologically Active Compound Extraction from Hops Strobiles Extraction Cake. Chem. Chem. Technol. 2017, 11, 487-491. https://doi.org/10.23939/chcht11.04.487 | |
dc.relation.references | [10] Dyachok, V.; Ilkiv, I. On the Mechanism of Extraction from Solid Bodies of Cellular Structure. Chem. Chem. Technol. 2013, 7, 27-30. https://doi.org/10.23939/chcht07.01.027 | |
dc.relation.references | [11] Sattari-Najafabadi, M.; Esfahany, M.N.; Wu, Z., Sunden, B. Mass Transfer between Phases in Microchannels: A Review. Chem. Eng. Process 2018, 127, 213-237. https://doi.org/10.1016/j.cep.2018.03.012 | |
dc.relation.references | [12] Vorobyova, V.I.; Skiba, M.I.; Trus, I.M. Apricot Pomaces Extract (Prunus Armeniaca L.) as a Highly Efficient Sustainable Corrosion Inhibitor for Mild Steel in Sodium Chloride Solution. Int. J. Corros. Scale Inhib. 2019, 8, 1060-1083. https://doi.org/10.17675/2305-6894-2019-8-4-15 | |
dc.relation.references | [13] Allaf, T.; Tomao, V.; Besombes, C.; Chemat, F. Thermal and Mechanical Intensification of Essential Oil Extraction from Orange Peel via Instant Autovaporization. Chem. Eng. Process. 2013, 72, 24-30. https://doi.org/10.1016/j.cep.2013.06.005 | |
dc.relation.references | [14] Beiranvand, M.; Ghiasvand, A. Simple, Low-Cost and Reliable Device for Vacuum-Assisted Headspace Solid-Phase Microextraction of Volatile and Semivolatile Compounds from Complex Solid Samples. Chromatographia 2017, 80, 1771-1780. https://doi.org/10.1007/s10337-017-3422-z | |
dc.relation.references | [15] Sabadash, V.; Mylanyk, O.; Matsuska, O.; Gumnitsky, J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462. https://doi.org/10.23939/chcht11.04.459 | |
dc.relation.referencesen | [1] Romankov, P.G.; Frolov, V.F.; Flisyuk, O.M. Massoobmennyie Processy Khimicheskoy Tekhnologii; Khimizdat: Sankt-Peterburg, 2020. | |
dc.relation.referencesen | [2] Kurt, S.K.; Gürsel, I.V.; Hessel, V.; Nigam, K.D.P.; Kockmann, N. Liquid-Liquid Extraction System with Microstructured Coiled Flow Inverter and Other Capillary Setups for Single-Stage Extraction Applications. Chem. Eng. J. 2016, 284, 764-777. https://doi.org/10.1016/j.cej.2015.08.099 | |
dc.relation.referencesen | [3] Vakinti, M.; Mela, S.-M.; Fernández, E.; Psillakis, E.; Psillakis, E. Room Temperature and Sensitive Determination of Haloanisoles in Wine Using Vacuum-Assisted Headspace Solid-Phase Microextraction. J. Chromatogr. 2019, 1602, 142-149. https://doi.org/10.1016/j.chroma.2019.03.047 | |
dc.relation.referencesen | [4] Mascrez, S.; Psillakis, E.; Purcaro, G. A Multifaceted Investigation on the Effect of Vacuum on the Headspace Solid-Phase Microextraction of Extra-Virgin Olive Oil. Anal. Chim. Acta 2020, 1103, 106-114. https://doi.org/10.1016/j.aca.2019.12.053 | |
dc.relation.referencesen | [5] Aksel'rud, G.A.; Gumnitskii, Y.M. Some Characteristics of the Kinetics of Ion Exchange in the Case of Pulsating Motion of a Liquid. J. Eng. Phys. 1970, 19, 1024-1026. https://doi.org/10.1007/BF00828782 | |
dc.relation.referencesen | [6] Gumnitskii Y.M.; Sen'kiv V.N. Extraction of a Solid Substance from Linear Capillaries During Periodic Boiling under Vacuum. Theor. Found. Chem. Eng. 2006, 40, 253-258. https://doi.org/10.1134/S0040579506030055 | |
dc.relation.referencesen | [7] Symak, D.; Atamanyuk, V.; Gumnitsky, J. Analysis of Dissolution Kinetics based on the Local Isotropic Turbulence Theory. Chem. Chem. Technol. 2015, 9, 493-496. https://doi.org/10.23939/chcht09.04.493 | |
dc.relation.referencesen | [8] Symak, D.; Gumnitsky, J.; Atamaniuk, V.; Nagurskyy, O. Investigation of Physical Dissolution of Benzoic Acid Polydisperse Mixture. Chem. Chem. Technol. 2017, 11, 469. https://doi.org/10.23939/chcht11.04.469 | |
dc.relation.referencesen | [9] Pavliuk, I.; Dyachok, V.; Novikov, V.; Ilkiv, N. Kinetics of Biologically Active Compound Extraction from Hops Strobiles Extraction Cake. Chem. Chem. Technol. 2017, 11, 487-491. https://doi.org/10.23939/chcht11.04.487 | |
dc.relation.referencesen | [10] Dyachok, V.; Ilkiv, I. On the Mechanism of Extraction from Solid Bodies of Cellular Structure. Chem. Chem. Technol. 2013, 7, 27-30. https://doi.org/10.23939/chcht07.01.027 | |
dc.relation.referencesen | [11] Sattari-Najafabadi, M.; Esfahany, M.N.; Wu, Z., Sunden, B. Mass Transfer between Phases in Microchannels: A Review. Chem. Eng. Process 2018, 127, 213-237. https://doi.org/10.1016/j.cep.2018.03.012 | |
dc.relation.referencesen | [12] Vorobyova, V.I.; Skiba, M.I.; Trus, I.M. Apricot Pomaces Extract (Prunus Armeniaca L.) as a Highly Efficient Sustainable Corrosion Inhibitor for Mild Steel in Sodium Chloride Solution. Int. J. Corros. Scale Inhib. 2019, 8, 1060-1083. https://doi.org/10.17675/2305-6894-2019-8-4-15 | |
dc.relation.referencesen | [13] Allaf, T.; Tomao, V.; Besombes, C.; Chemat, F. Thermal and Mechanical Intensification of Essential Oil Extraction from Orange Peel via Instant Autovaporization. Chem. Eng. Process. 2013, 72, 24-30. https://doi.org/10.1016/j.cep.2013.06.005 | |
dc.relation.referencesen | [14] Beiranvand, M.; Ghiasvand, A. Simple, Low-Cost and Reliable Device for Vacuum-Assisted Headspace Solid-Phase Microextraction of Volatile and Semivolatile Compounds from Complex Solid Samples. Chromatographia 2017, 80, 1771-1780. https://doi.org/10.1007/s10337-017-3422-z | |
dc.relation.referencesen | [15] Sabadash, V.; Mylanyk, O.; Matsuska, O.; Gumnitsky, J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462. https://doi.org/10.23939/chcht11.04.459 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2015.08.099 | |
dc.relation.uri | https://doi.org/10.1016/j.chroma.2019.03.047 | |
dc.relation.uri | https://doi.org/10.1016/j.aca.2019.12.053 | |
dc.relation.uri | https://doi.org/10.1007/BF00828782 | |
dc.relation.uri | https://doi.org/10.1134/S0040579506030055 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.04.493 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.04.469 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.04.487 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.01.027 | |
dc.relation.uri | https://doi.org/10.1016/j.cep.2018.03.012 | |
dc.relation.uri | https://doi.org/10.17675/2305-6894-2019-8-4-15 | |
dc.relation.uri | https://doi.org/10.1016/j.cep.2013.06.005 | |
dc.relation.uri | https://doi.org/10.1007/s10337-017-3422-z | |
dc.relation.uri | https://doi.org/10.23939/chcht11.04.459 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Gumnitsky J., Venger L., Sabadash V., Symak D., Hyvlud A., Hnativ Z., 2022 | |
dc.subject | екстрагування | |
dc.subject | капіляр | |
dc.subject | математична модель | |
dc.subject | коефіцієнт масовіддачі | |
dc.subject | коефіцієнт молекулярної дифузії | |
dc.subject | extraction | |
dc.subject | capillary | |
dc.subject | mathematical model | |
dc.subject | mass transfer coefficient | |
dc.subject | molecular diffusion coefficient | |
dc.title | Physical and Mathematical Models of Target Component Extraction from Rectlinear Capillaries | |
dc.title.alternative | Фізико-математична модель екстрагування цільового компонента з прямолінійних капілярів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1