Time-fractional diffusion equation for signal and image smoothing

dc.citation.epage364
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage351
dc.contributor.affiliationУніверситет Каді Айяд
dc.contributor.affiliationUniversity of Cadi Ayyad
dc.contributor.authorБен-Логфірі, А.
dc.contributor.authorХакім, А.
dc.contributor.authorBen-Loghfyry, A.
dc.contributor.authorHakim, A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:14:23Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractУ цій статті використовується рівняння дифузії з дробовою часовою похідною для знешумлення зображення та згладжування сигналу. Подано дискретизацію запропонованої моделі. Числові результати показують деякі чудові результати з високою продуктивністю, як візуально, так і кількісно, порівняно з деякими добре відомими конкурентними моделями.
dc.description.abstractIn this paper, we utilize a time-fractional diffusion equation for image denoising and signal smoothing. A discretization of our model is provided. Numerical results show some remarkable results with a great performance, visually and quantitatively, compared to some well known competitive models.
dc.format.extent351-364
dc.format.pages14
dc.identifier.citationBen-Loghfyry A. Time-fractional diffusion equation for signal and image smoothing / A. Ben-Loghfyry, A. Hakim // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 351–364.
dc.identifier.citationenBen-Loghfyry A. Time-fractional diffusion equation for signal and image smoothing / A. Ben-Loghfyry, A. Hakim // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 351–364.
dc.identifier.doidoi.org/10.23939/mmc2022.02.351
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63436
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 2 (9), 2022
dc.relation.references[1] Ben-loghfyry A., Hakim A. Robust time-fractional diffusion filtering for noise removal. Mathematical Methods in the Applied Sciences. 1–17 (2022).
dc.relation.references[2] El Alaoui El Fels A., Ben-loghfyry A., El Ghorfi M. Performance of denoising algorithms in the improvement of lithological discrimination. Modeling Earth Systems and Environment. 1–8 (2022).
dc.relation.references[3] Hakim A., Ben-Loghfyry A. A total variable-order variation model for image denoising. AIMS Mathematics. 4 (5), 1320–1335 (2019).
dc.relation.references[4] Pan H., Wen Y. W., Zhu H. M. A regularization parameter selection model for total variation based image noise removal. Applied Mathematical Modelling. 68, 353–367 (2019).
dc.relation.references[5] Laghrib A., Ben-Loghfyry A., Hadri A., Hakim A. A nonconvex fractional order variational model for multiframe image super-resolution. Signal Processing: Image Communication. 67, 1–11 (2018).
dc.relation.references[6] Hakim M., Ghazdali A., Laghrib A. A multi-frame super-resolution based on new variational data fidelity term. Applied Mathematical Modelling. 87, 446–467 (2020).
dc.relation.references[7] Baloochian H., Ghaffary H. R., Balochian S. Enhancing fingerprint image recognition algorithm using fractional derivative filters. Open Computer Science. 7 (1), 9–16 (2017).
dc.relation.references[8] Ferrah I., Chaou A. K., Maadjoudj D., Teguar M. Novel colour image encoding system combined with ANN for discharges pattern recognition on polluted insulator model. IET Science, Measurement & Technology. 14, 718–725 (2020).
dc.relation.references[9] Nasreddine K., Benzinou A., Fablet R. Signal and image registration: Application to decrypt marine biological archives. Traitement du Signal. 26 (4), 255–268 (2009).
dc.relation.references[10] Frohn-Schauf C., Henn S., Witsch K. Multigrid based total variation image registration. Computing and Visualization in Science. 11 (2), 101–113 (2008).
dc.relation.references[11] Alaa H., Alaa N. E., Aqel F., Lefraich H. A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement. Mathematical Modeling and Computing. 9 (2), 187–202 (2022).
dc.relation.references[12] Alaa K., Atouni M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reactiondiffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021).
dc.relation.references[13] Guichard F., Moisan L., Morel J. M. A review of PDE models in image processing and image analysis. Journal de Physique IV. 12 (1), 137–154 (2002).
dc.relation.references[14] Chan T. F., Shen J., Vese L. Variational PDE models in image processing. Notices of the American Mathematical Society. 50 (1), 14–26 (2003).
dc.relation.references[15] Aubert G., Kornprobst P. Mathematical problems in image processing: partial differential equations and the calculus of variations. Vol. 147. Springer Science & Business Media (2006).
dc.relation.references[16] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence. 12 (7), 629–639 (1990).
dc.relation.references[17] Catt´e F., Lions P. L., Morel J. M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical analysis. 29 (1), 182–193 (1992).
dc.relation.references[18] Weickert J. Applications of nonlinear diffusion in image processing and computer vision. Acta Math. Univ. Comenianae. 70 (1), 33–50 (2001).
dc.relation.references[19] Sabatier J., Agrawal O. P., Machado J. T. Advances in fractional calculus. Vol. 4. Springer (2007).
dc.relation.references[20] Machado J. T., Kiryakova V. The chronicles of fractional calculus. Fractional Calculus and Applied Analysis. 20 (2), 307–336 (2017).
dc.relation.references[21] Yang Q., Chen D., Zhao T., Chen Y. Fractional calculus in image processing: a review. Fractional Calculus and Applied Analysis. 19 (5), 1222–1249 (2016).
dc.relation.references[22] Uchaikin V. V. On time-fractional representation of an open system response. Fractional Calculus and Applied Analysis. 19 (5), 1306 (2016).
dc.relation.references[23] Chang A., Sun H. Time-space fractional derivative models for CO2 transport in heterogeneous media. Fractional Calculus and Applied Analysis. 21 (1), 151–173 (2018).
dc.relation.references[24] Zhao X., Sun Z. Z. Time-fractional derivatives. Numerical Methods. 3, 23–48 (2019).
dc.relation.references[25] Oliveira D. S., de Oliveira E. C. On a Caputo-type fractional derivative. Advances in Pure and Applied Mathematics. 10 (2), 81–91 (2019).
dc.relation.references[26] Li C., Qian D., Chen Y. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society. 2011, 562494 (2011).
dc.relation.references[27] Weickert J. Anisotropic diffusion in image processing. Vol. 1. Teubner Stuttgart (1998).
dc.relation.references[28] Zhang J., Chen K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM Journal on Imaging Sciences. 8 (4), 2487–2518 (2015).
dc.relation.references[29] Rudin L. I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena. 60 (1–4), 259–268 (1992).
dc.relation.referencesen[1] Ben-loghfyry A., Hakim A. Robust time-fractional diffusion filtering for noise removal. Mathematical Methods in the Applied Sciences. 1–17 (2022).
dc.relation.referencesen[2] El Alaoui El Fels A., Ben-loghfyry A., El Ghorfi M. Performance of denoising algorithms in the improvement of lithological discrimination. Modeling Earth Systems and Environment. 1–8 (2022).
dc.relation.referencesen[3] Hakim A., Ben-Loghfyry A. A total variable-order variation model for image denoising. AIMS Mathematics. 4 (5), 1320–1335 (2019).
dc.relation.referencesen[4] Pan H., Wen Y. W., Zhu H. M. A regularization parameter selection model for total variation based image noise removal. Applied Mathematical Modelling. 68, 353–367 (2019).
dc.relation.referencesen[5] Laghrib A., Ben-Loghfyry A., Hadri A., Hakim A. A nonconvex fractional order variational model for multiframe image super-resolution. Signal Processing: Image Communication. 67, 1–11 (2018).
dc.relation.referencesen[6] Hakim M., Ghazdali A., Laghrib A. A multi-frame super-resolution based on new variational data fidelity term. Applied Mathematical Modelling. 87, 446–467 (2020).
dc.relation.referencesen[7] Baloochian H., Ghaffary H. R., Balochian S. Enhancing fingerprint image recognition algorithm using fractional derivative filters. Open Computer Science. 7 (1), 9–16 (2017).
dc.relation.referencesen[8] Ferrah I., Chaou A. K., Maadjoudj D., Teguar M. Novel colour image encoding system combined with ANN for discharges pattern recognition on polluted insulator model. IET Science, Measurement & Technology. 14, 718–725 (2020).
dc.relation.referencesen[9] Nasreddine K., Benzinou A., Fablet R. Signal and image registration: Application to decrypt marine biological archives. Traitement du Signal. 26 (4), 255–268 (2009).
dc.relation.referencesen[10] Frohn-Schauf C., Henn S., Witsch K. Multigrid based total variation image registration. Computing and Visualization in Science. 11 (2), 101–113 (2008).
dc.relation.referencesen[11] Alaa H., Alaa N. E., Aqel F., Lefraich H. A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement. Mathematical Modeling and Computing. 9 (2), 187–202 (2022).
dc.relation.referencesen[12] Alaa K., Atouni M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reactiondiffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021).
dc.relation.referencesen[13] Guichard F., Moisan L., Morel J. M. A review of PDE models in image processing and image analysis. Journal de Physique IV. 12 (1), 137–154 (2002).
dc.relation.referencesen[14] Chan T. F., Shen J., Vese L. Variational PDE models in image processing. Notices of the American Mathematical Society. 50 (1), 14–26 (2003).
dc.relation.referencesen[15] Aubert G., Kornprobst P. Mathematical problems in image processing: partial differential equations and the calculus of variations. Vol. 147. Springer Science & Business Media (2006).
dc.relation.referencesen[16] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence. 12 (7), 629–639 (1990).
dc.relation.referencesen[17] Catt´e F., Lions P. L., Morel J. M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical analysis. 29 (1), 182–193 (1992).
dc.relation.referencesen[18] Weickert J. Applications of nonlinear diffusion in image processing and computer vision. Acta Math. Univ. Comenianae. 70 (1), 33–50 (2001).
dc.relation.referencesen[19] Sabatier J., Agrawal O. P., Machado J. T. Advances in fractional calculus. Vol. 4. Springer (2007).
dc.relation.referencesen[20] Machado J. T., Kiryakova V. The chronicles of fractional calculus. Fractional Calculus and Applied Analysis. 20 (2), 307–336 (2017).
dc.relation.referencesen[21] Yang Q., Chen D., Zhao T., Chen Y. Fractional calculus in image processing: a review. Fractional Calculus and Applied Analysis. 19 (5), 1222–1249 (2016).
dc.relation.referencesen[22] Uchaikin V. V. On time-fractional representation of an open system response. Fractional Calculus and Applied Analysis. 19 (5), 1306 (2016).
dc.relation.referencesen[23] Chang A., Sun H. Time-space fractional derivative models for CO2 transport in heterogeneous media. Fractional Calculus and Applied Analysis. 21 (1), 151–173 (2018).
dc.relation.referencesen[24] Zhao X., Sun Z. Z. Time-fractional derivatives. Numerical Methods. 3, 23–48 (2019).
dc.relation.referencesen[25] Oliveira D. S., de Oliveira E. C. On a Caputo-type fractional derivative. Advances in Pure and Applied Mathematics. 10 (2), 81–91 (2019).
dc.relation.referencesen[26] Li C., Qian D., Chen Y. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society. 2011, 562494 (2011).
dc.relation.referencesen[27] Weickert J. Anisotropic diffusion in image processing. Vol. 1. Teubner Stuttgart (1998).
dc.relation.referencesen[28] Zhang J., Chen K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM Journal on Imaging Sciences. 8 (4), 2487–2518 (2015).
dc.relation.referencesen[29] Rudin L. I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena. 60 (1–4), 259–268 (1992).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectзнешумлення зображення
dc.subjectдробова похідна
dc.subjectпохідна дробового порядку за часом
dc.subjectтензор дифузії
dc.subjectimage denoising
dc.subjectfractional derivative
dc.subjecttime-fractional order derivative
dc.subjecttensor diffusion
dc.titleTime-fractional diffusion equation for signal and image smoothing
dc.title.alternativeРівняння дифузії з дробовою часовою похідною для згладжування сигналу та зображення
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n2_Ben-Loghfyry_A-Time_fractional_diffusion_351-364.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n2_Ben-Loghfyry_A-Time_fractional_diffusion_351-364__COVER.png
Size:
393.49 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: