Оптимізація параметрів світлопрозорих конструкцій

dc.citation.epage36
dc.citation.issue2
dc.citation.spage30
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМарущак, У. Д.
dc.contributor.authorПозняк, О. Р.
dc.contributor.authorСолтисік, Р. А.
dc.contributor.authorПроць, Є.
dc.contributor.authorMarushchak, Ulyana
dc.contributor.authorPoznyak, Oksana
dc.contributor.authorSoltisik, Roman
dc.contributor.authorProts, Evgen
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-05-07T09:58:22Z
dc.date.available2020-05-07T09:58:22Z
dc.date.created2019-03-23
dc.date.issued2019-03-23
dc.description.abstractПроаналізовано вплив конструктивних та теплотехнічних параметрів світлопрозорих огороджень на споживання енергії в будинку садибного типу з позицій забезпечення необхідного рівня природного освітлення та мінімізації трансмісійних втрат. Проведено оптимізацію теплотехнічних параметрів огороджувальних світлопрозорих конструкцій будинку для забезпечення енергетичних показників у напрямку створення енергоефективного будинку за параметрами опору теплопередачі та раціональної площі. Показано, що трансмісійні втрати можуть змінюватися в межах 1000–3800 кВт. год/рік за варіювання вибраних параметрів вікон. Здійснено перевірку вибраної моделі світлопрозорих конструкцій на відповідність вимогам теплової надійності. На основі аналізу енергетично-екологічних показників будинку методом математичного моделювання запропоновано систему оцінювання впливу будівельних об’єктів на довкілля.
dc.description.abstractThe influence of structural and thermal parameters of window structures on energy consumption in a house of a residential type is analyzed in this article from the standpoint of providing the required level of natural lighting and minimizing of transmission losses. It was shown, that modern buildings are characterized by a much larger proportion of the area of window structures, which requires a special analysis of the effect of translucent enclosures on the energy performance of buildings. The window structures should provide harmonious natural lighting of the rooms, while protecting them from external noise, temperature fluctuations, intense solar radiation and other negative factors. The classification of window blocks by the parameter of the thermal resistance was presented. Window structures with different levels of thermal resistance parameter in accordance to thermal reliability condition (τimin > tmin) were calculated. It was established that the window structures of class D1 (thermal resistance is 0.39 m2K/W) and above are characterized by an interior surface temperature higher than 6 °C, which meet the standard requirements. The thermal parameters of window structures have been optimized to provide energy performance in the direction of creating an energy-efficient building. The parameters of optimization such as thermal resistance of window structures (X1 = 0.39; 0.75; 1.11 m2. ·K/W) and geometric parameter corresponding to the ratio of the area of window to the floor area (X2 = 1:6, 1:7 1:8) were chosen. For a residential house with a minimum allowable area of window structures in terms of natural lighting and maximum thermal resistance, the minimum level of heat loss is reached 1026.40 kW·h/year, and CO2 emissions – 248 kg/year, heat losses and greenhouse gas emissions decrease by 3.7 times compared to the calculation model. It was established that the smallest heat losses occur through energy efficient windows (thermal resistance is 1.11 m2 ·K/W) with the ratio of the area of window structures to the floor area of the room, which equal 1:8
dc.format.extent30-36
dc.format.pages7
dc.identifier.citationОптимізація параметрів світлопрозорих конструкцій / У. Д. Марущак, О. Р. Позняк, Р. А. Солтисік, Є. Проць // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 30–36.
dc.identifier.citationenOptimization of parameters of illuminated structures / Ulyana Marushchak, Oksana Poznyak, Roman Soltisik, Evgen Prots // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 30–36.
dc.identifier.issn2707-1057
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49577
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (1), 2019
dc.relation.referencesFareniuk, G. G., & Tyshkovets, A. V. (2017). Global trends in energy efficiency of buildings. Science and
dc.relation.referencesconstruction, 4, 4–10 [in Ukranian].
dc.relation.referencesPidgorny, O. L., Shepetova, I. M., Sergeychuk, A. V., Zaytsev, O. M., & Protsyuk, V. P. (2006). Windows of
dc.relation.referencesbuildings. Kyiv : KNUBA [in Ukranian].
dc.relation.referencesKirankumar, G., Saboor, S., & Ashok Babu, T. P. (2016). Simulation of various wall and window glass
dc.relation.referencesmaterial buildings for energy efficient building design. Key Engineering Materials, 692, 9–16.
dc.relation.referencesYalçın Yaşar, & Sibel Maçka Kalfa. (2012). The effects of window alternatives on energy efficiency and
dc.relation.referencesbuilding economy in high-rise residential buildings in moderate to humid climates. Energy Conversion and
dc.relation.referencesManagement, 64, 170–81.
dc.relation.referencesVanhoutteghem, L., Skarning, G. C. J., Hviid, C. A., & Svendsen, S. (2015). Impact of façade window
dc.relation.referencesdesign on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy and Buildings, 102, 149–156.
dc.relation.referencesUrbikain, M. K., & Sala, J. M. (2009). Analysis of different models to estimate energy savings related to
dc.relation.referenceswindows in residential buildings. Energy and Buildings, 41, 687–695.
dc.relation.referencesFareniuk, E. G., & Kaliukh, Y. I. (2014). For the analysis of computational methods for determining the
dc.relation.referencesthermal characteristics of window structures. Architecture and pages in Azerbaijan, 3, 18–24.
dc.relation.referencesSanytsky, M. A., Marushchak, U. D., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic
dc.relation.referencesindicators of individual houses. Building structures, 80, 176–181 [in Ukranian].
dc.relation.referencesSanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving
dc.relation.referencesand passive houses. SSP-Journal of Civil Engineering, 7. 1, 71–78.
dc.relation.referencesSanytsky, M. A., Kotiv, M. V., & Marushchak, U. D. (2014). Mathematical modeling in research of energy
dc.relation.referencesefficiency of building objects. Energy efficiency in construction and architecture, 6, 254–259 [in Ukranian].
dc.relation.referencesenFareniuk, G. G., & Tyshkovets, A. V. (2017). Global trends in energy efficiency of buildings. Science and
dc.relation.referencesenconstruction, 4, 4–10 [in Ukranian].
dc.relation.referencesenPidgorny, O. L., Shepetova, I. M., Sergeychuk, A. V., Zaytsev, O. M., & Protsyuk, V. P. (2006). Windows of
dc.relation.referencesenbuildings. Kyiv : KNUBA [in Ukranian].
dc.relation.referencesenKirankumar, G., Saboor, S., & Ashok Babu, T. P. (2016). Simulation of various wall and window glass
dc.relation.referencesenmaterial buildings for energy efficient building design. Key Engineering Materials, 692, 9–16.
dc.relation.referencesenYalçın Yaşar, & Sibel Maçka Kalfa. (2012). The effects of window alternatives on energy efficiency and
dc.relation.referencesenbuilding economy in high-rise residential buildings in moderate to humid climates. Energy Conversion and
dc.relation.referencesenManagement, 64, 170–81.
dc.relation.referencesenVanhoutteghem, L., Skarning, G. C. J., Hviid, C. A., & Svendsen, S. (2015). Impact of façade window
dc.relation.referencesendesign on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy and Buildings, 102, 149–156.
dc.relation.referencesenUrbikain, M. K., & Sala, J. M. (2009). Analysis of different models to estimate energy savings related to
dc.relation.referencesenwindows in residential buildings. Energy and Buildings, 41, 687–695.
dc.relation.referencesenFareniuk, E. G., & Kaliukh, Y. I. (2014). For the analysis of computational methods for determining the
dc.relation.referencesenthermal characteristics of window structures. Architecture and pages in Azerbaijan, 3, 18–24.
dc.relation.referencesenSanytsky, M. A., Marushchak, U. D., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic
dc.relation.referencesenindicators of individual houses. Building structures, 80, 176–181 [in Ukranian].
dc.relation.referencesenSanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving
dc.relation.referencesenand passive houses. SSP-Journal of Civil Engineering, 7. 1, 71–78.
dc.relation.referencesenSanytsky, M. A., Kotiv, M. V., & Marushchak, U. D. (2014). Mathematical modeling in research of energy
dc.relation.referencesenefficiency of building objects. Energy efficiency in construction and architecture, 6, 254–259 [in Ukranian].
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Марущак У. Д., Позняк О. Р., Солтисік Р. А., Проць Є., 2019
dc.subjectсвітлопрозора конструкція
dc.subjectтепловтрати
dc.subjectопір теплопередачі
dc.subjectенергоефективність
dc.subjectheat loss
dc.subjectthermal resistance
dc.subjectenergy efficiency
dc.titleОптимізація параметрів світлопрозорих конструкцій
dc.title.alternativeOptimization of parameters of illuminated structures
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v1n2_Marushchak_U-Optimization_of_parameters_30-36.pdf
Size:
1002.37 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v1n2_Marushchak_U-Optimization_of_parameters_30-36__COVER.png
Size:
372.17 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.07 KB
Format:
Plain Text
Description: