Modern control strategies for unmanned aerial systems

dc.citation.epage38
dc.citation.issue1
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage25
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШепляков, Максим
dc.contributor.authorShepliakov, Maksym
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-08T08:58:11Z
dc.date.created2025-06-10
dc.date.issued2025-06-10
dc.description.abstractНаведено сучасні підходи до математичного моде- лювання та синтезу систем керування роторними безпілотними літальними апаратами та безпілотними апаратами з нерухомим крилом. Розглянуто кінема- тичні та динамічні моделі, що описують поступальний і обертальний рух зазначених типів БПЛА, з ураху- ванням аеродинамічних сил, моментів та гіроскопічних ефектів. Проаналізовано загальні принципи побудови математичних моделей, їх адаптацію для різних класів літальних апаратів та використання у процесі синтезу систем автоматичного керування. Особливу увагу зосереджено аналізу систем стабілізації й відпрацю- вання заданої траєкторії руху, зокрема, синтезованих із застосуванням ПІД-регуляторів, LQR-регуляторів, адаптивних методів, методу model predictive control, а також теорії інтелектуального керування. Проаналі- зовано залежність вибору стратегії керування від типу апарата, характеристик польоту та цільових задач.
dc.description.abstractThe article provides an overview of modern approaches to mathematical modelling and synthesis of control systems for rotary-wing unmanned aerial vehicles (UAVs) and fixed-wing UAVs. It considers kinematic and dynamic models describing the translational and rotational motion of the mentioned types of UAVs, taking into account aerodynamic forces, moments, and gyroscopic effects. The general principles of mathematical model development, their adaptation for various classes of aerial vehicles, and their application in the synthesis of automatic control systems are analyzed. Particular attention is given to the analysis of stabilization systems and trajectory tracking, including those synthesized using PID controllers, LQR controllers, adaptive methods, model predictive control, and intelligent control theory. The dependence of control strategy selection on the type of UAV, flight characteristics, and mission objectives is examined.
dc.format.extent25-38
dc.format.pages14
dc.identifier.citationShepliakov M. Modern control strategies for unmanned aerial systems / Maksym Shepliakov // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 15. — No 1. — P. 25–38.
dc.identifier.citation2015Shepliakov M. Modern control strategies for unmanned aerial systems // Computational Problems of Electrical Engineering, Lviv. 2025. Vol 15. No 1. P. 25–38.
dc.identifier.citationenAPAShepliakov, M. (2025). Modern control strategies for unmanned aerial systems. Computational Problems of Electrical Engineering, 15(1), 25-38. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOShepliakov M. (2025) Modern control strategies for unmanned aerial systems. Computational Problems of Electrical Engineering (Lviv), vol. 15, no 1, pp. 25-38.
dc.identifier.doihttps://doi.org/10.23939/jcpee2025.01.025
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/123795
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 1 (15), 2025
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (15), 2025
dc.relation.referencesen[1] F. Nex, C. Armenakis, M. Cramer, D. A.Cucci, M. Gerke, E. Honkavaara, A. Kukko, C. Persello, and J. Skaloud, “UAV in the advent of the twenties: Where we stand and what is next”, ISPRS Journal of Photogrammetry and Remote Sensing, 184, pp. 215–242,2022. https://doi.org/10.1016/j.isprsjprs.2021.12.006
dc.relation.referencesen[2] J. Liu, J. Xiang, Y. Jin, R. Liu, J.Yan, and L. Wang, “Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey”, Remote Sensing, vol. 13, No. 21, 4387, 2021. https://doi.org/10.3390/rs13214387
dc.relation.referencesen[3] R. Austin, “Unmanned Aircraft Systems: UAVS Design, Development and Deployment”, wiley onlinelibrary, 2011.
dc.relation.referencesen[4] T. Alladi, V. Chamola, N. Sahu, and M. Guizani, “Applications of blockchain in unmanned aerial vehicles: A review”, Vehicular Communications, p. 23, 100249, 2020. https://doi.org/10.1016/j.vehcom.2020.100249
dc.relation.referencesen[5] X. Chen, J. Tang, and S. Lao, “Review of Unmanned Aerial Vehicle Swarm Communication Architectures and Routing Protocols”, Applied Sciences, vol. 10, No. 10, 3661, 2020. https://doi.org/10.3390/app10103661.
dc.relation.referencesen[6] R. Alkadi, N. Alnuaimi, C. Y. Yeun, and A. Shoufan, “Blockchain Interoperability in Unmanned Aerial Vehicles Networks: State-of-the-Art and Open Issues”, IEEE Access, No. 10, 14463–14479, 2022.https://doi.org/10.1109/ACCESS.2022.3145199
dc.relation.referencesen[7] D. Cazzato, C. Cimarelli, J. L. Sanchez-Lopez, H. Voos, and M. Leo, “A Survey of Computer Vision Methods for 2D Object Detection from Unmanned Aerial Vehicles”, Journal of Imaging, vol. 6, No. 8, p. 78, 2020. https://doi.org/10.3390/jimaging6080078
dc.relation.referencesen[8] N. Ayoub and P. Schneider–Kamp, “Real-Time On- Board Deep Learning Fault Detection for Autonomous UAV Inspections”, Electronics, vol. 10, No. 9, p. 1091,2021. https://doi.org/10.3390/electronics10091091
dc.relation.referencesen[9] D. Hernández, J. M. Cecilia, J.-C. Cano, and C. T. Calafate, “Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform”, Remote Sensing, vol. 14, No. 1, p. 223, 2022. https://doi.org/10.3390/rs14010223
dc.relation.referencesen[10] W. Z. Khan, E.Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey. Future Generation Computer Systems”, vol. 97, pp. 219–235,2019. https://doi.org/10.1016/j.future.2019.02.050
dc.relation.referencesen[11] S. M. A. Huda and S. Moh, “Survey on computation offloading in UAV-Enabled mobile edge computing. Journal of Network and Computer Applications”, 201, 103341, 2022. https://doi.org/10.1016/j.jnca.2022.103341.
dc.relation.referencesen[12] K. Valavanis, & Vachtsevanos, G. J. (2015). Handbook of unmanned aerial vehicles. Springer Reference.
dc.relation.referencesen[13] K. Nonami, M. Kartidjo, K.-J. Yoon, and A. Budiyono, “Autonomous Control Systems and Vehicles”, Springer Science & Business Media, 2013.
dc.relation.referencesen[14] S. Khadraoui, R. Fareh, M. Baziyad M. Bakr Elbeltagy, and M. Bettayeb, “A Comprehensive Review and Applications of Active Disturbance Rejection Control for Unmanned Aerial Vehicles”, IEEE Access, 1–1, 2024. https://doi.org/10.1109/access.2024.3510557
dc.relation.referencesen[15] M. A. Tahir, I. Mir, and T. U. Islam, “A Review of UAV Platforms for Autonomous Applications: Comprehensive Analysis and Future Directions”, IEEE Access, 1–1, 2023. https://doi.org/10.1109/access.2023.3273780
dc.relation.referencesen[16] R. Louali, H. Gacem, A. Elouardi, and S. Bouaziz, “Implementation of an UAV Guidance, Navigation and Control System based on the CAN data bus: Validation using a Hardware In the Loop Simulation”, HAL (Le Centre Pour La Communication Scientifique Directe), 2017. https://doi.org/10.1109/aim.2017.8014217
dc.relation.referencesen[17] M. A. Tahir, I. Mir, and T. U. Islam, “Control Algorithms, Kalman Estimation and Near Actual Simulation for UAVs: State of Art Perspective”, Drones, vol. 7, No. 6, p. 339, 2023. https://doi.org/10.3390/drones7060339
dc.relation.referencesen[18] M. M. Ferdaus, M. Pratama, S. G. Anavatti, M. A. Garratt, and E. Lughofer, “PAC: A novel self-adaptive neuro-fuzzy controller for micro aerial vehicles”, Information Sciences, No. 512, pp. 481–505, 2020. https://doi.org/10.1016/j.ins.2019.10.001
dc.relation.referencesen[19] C. Bao, Y. Guo, L. Luo, and G. Su, “Design of a Fixed- Wing UAV Controller Based on Adaptive Backstepping Sliding Mode Control Method”, IEEE Access, No. 9, pp. 157825–157841 2021. https://doi.org/10.1109/access.2021.3130296
dc.relation.referencesen[20] R. W. Beard and T. W. “Mclain, Small unmanned aircraft: theory and practice”, Princeton, N. J: Princeton University Press. 2012.
dc.relation.referencesen[21] J. Yang, C. Liu, M. Coombes, Y. Yan, and W.-H. Chen, “Optimal Path Following for Small Fixed-Wing UAVs Under Wind Disturbances”, IEEE Transactions on Control Systems Technology, vol. 29, No. 3, 996–1008,2021. https://doi.org/10.1109/tcst.2020.2980727
dc.relation.referencesen[22] R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles: Modeling,” Estimation, and Control of Quadrotor. IEEE Robotics & Automation Magazine, vol. 19, No. 3, pp. 20–32, 2012. https://doi.org/10.1109/mra.2012.2206474
dc.relation.referencesen[23] S. I. Abdelmaksoud, M. Mailah, and A. M. Abdallah, “Control Strategies and Novel Techniques for Autonomous Rotorcraft Unmanned Aerial Vehicles: A Review”, IEEE Access, 8, 195142–195169. (2020) https://doi.org/10.1109/access.2020.3031326
dc.relation.referencesen[24] M. Sadiq, R. Hayat, K. Zeb, A. Al-Durra, and Z. Ullah, “Robust Feedback Linearization Based Disturbance Observer Control of Quadrotor UAV”, IEEE Access,12, 17966–17981, 2024. https://doi.org/10.1109/access.2024.3360333
dc.relation.referencesen[25] P. Castillo, R. Lozano, and A. Dzul, “Modelling and Control of Mini-Flying Machines”, London: Springer- Verlag, 2005. https://doi.org/10.1007/1-84628-179-2
dc.relation.referencesen[26] A. J. Keane, A. Sóbester, and J. P. Scanlan, “Small Unmanned Fixed-wing Aircraft Design”, John Wiley & Sons, 2017.
dc.relation.referencesen[27] M. M. Madebo, C. M. Abdissa, L. N. Lemma, and D. S. Negash, “Robust Tracking Control for Quadrotor UAV With External Disturbances and Uncertainties Using Neural Network Based MRAC”, IEEE Access,12, 36183–36201, 2024. https://doi.org/10.1109/access.2024.3374894
dc.relation.referencesen[28] E. Okyere, A. Bousbaine, G. T. Poyi, A. K. Joseph, and J. M. Andrade, “LQR controller design for quad-rotor helicopters”, The Journal of Engineering, 17, 4003–4007, 2019. https://doi.org/10.1049/joe.2018.8126
dc.relation.referencesen[29] I. J. Torres, R. P. Aguilera, and Q. P. Ha, “Design and Performance Evaluation of Nonlinear Model- Predictive Control for 3-D Ground Target Tracking With Fixed-Wing UAVs”, IEEE Open Journal of the Industrial Electronics Society, No. 6, pp. 76–94, 2025. https://doi.org/10.1109/ojies.2024.3519665
dc.relation.referencesen[30] Y. Chen, C. Wang, W. Zeng and Y.Wu, “Horizontal Nonlinear Path Following Guidance Law for a Small UAV with Parameter Optimized by NMPC”, IEEE Access, 1–1, 2021. https://doi.org/10.1109/access.2021.3111101
dc.relation.referencesen[31] W. Gai, Y. Zhou, M. Zhong, C. Sheng, and J. Zhang, “Simple Adaptive Control With an Adaptive Anti- Windup Compensator for the Unmanned Aerial Vehicle Attitude Control”, IEEE Access, 8, pp. 52323–52332,2020. https://doi.org/10.1109/access.2020.2979741
dc.relation.referencesen[32] I. H. Imran, Rustam Stolkin, and Allahyar Montazeri. “Adaptive Control of Quadrotor Unmanned Aerial Vehicle With Time-Varying Uncertainties”, IEEE Access, 11, pp. 19710–19724. 2023. https://doi.org/10.1109/access.2023.3243835
dc.relation.referencesen[33] N. W. Madebo, “Enhancing Intelligent Control Strategies for UAVs: A Comparative Analysis of Fuzzy Logic, Fuzzy PID, and GA-Optimized Fuzzy PID Controllers”, IEEE Access, 13, pp. 16548–16563, 2025. https://doi.org/10.1109/access.2025.3532743
dc.relation.referencesen[34] N. W. Madebo, C. M. Abdissa, and L. N. “Lemma, Enhanced Trajectory Control of Quadrotor UAV Using Fuzzy PID Based Recurrent Neural Network Controller”, IEEE Access, 12, pp. 190454–190469,2024. https://doi.org/10.1109/access.2024.3516494
dc.relation.referencesen[35] K. Jia, S. Lin, Y. Du, C. Zou, and M. Lu, “Research on Route Tracking Controller of Quadrotor UAV Based on Fuzzy Logic and RBF Neural Network”, IEEE Access, 11, 111433–111447, 2023. https://doi.org/10.1109/access.2023.3322944
dc.relation.referencesen[36] J. Zhang, Y. Guo, L. Zheng, Q. Yang, G. Shi, and Y. Wu, “Real-Time UAV Path Planning Based on LSTM Network”, Journal of Systems Engineering and Electronics, vol. 35, No. 2, pp. 374–385, 2024. https://doi.org/10.23919/jsee.2023.000157
dc.relation.referencesen[37] S. Sai, A. Garg, Jhawar Kartik, Chamola Vinay, and Sikdar Biplab, “A Comprehensive Survey on Artificial Intelligence for Unmanned Aerial Vehicles”, IEEE Open Journal of Vehicular Technology, No. 4, 713–738, 2023. https://doi.org/10.1109/ojvt.2023.3316181
dc.relation.referencesen[38] V. Shymanskyi, O, Ratinskiy, and N. Shakhovska, “Fractal Neural Network Approach for Analyzing Satellite Images”, Applied Artificial Intelligence, vol. 39, No. 1, 2024. https://doi.org/10.1080/08839514.2024.2440839
dc.relation.referencesen[39] P. Chen, G. Zhang, T. Guan, M. Yuan, and J. Shen, “The Motion Controller Based on Neural Network S-Plane Model for Fixed-Wing UAVs”, IEEE Access,No. 9, pp. 93927–93936, 2021. https://doi.org/10.1109/access.2021.3093768
dc.relation.referencesen[40] Z. Cheng, H. Pei, and S. Li, “Neural-Networks Control for Hover to High-Speed-Level-Flight Transition of Ducted Fan UAV With Provable Stability”, IEEE Access, No. 8, pp. 100135–100151, 2020. https://doi.org/10.1109/access.2020.2997877
dc.relation.referencesen[41] H. Zhang, C. Cao, L. Xu, and T. A. Gulliver, “A UAV Detection Algorithm Based on an Artificial Neural Network”, IEEE Access, No. 6, 24720–24728, 2018. https://doi.org/10.1109/ACCESS.2018.2831911
dc.relation.referencesen[42] Deviro. (n.d.). Ciconia VTOL. Retrieved May 26,2025, https://deviro.ua/ukr/ciconiavtol
dc.relation.referencesen[43] Ukrspecsystems. (n.d.). Mini Shark UAS. Retrieved May 26, 2025, https://ukrspecsystems.com/uk/drones/mini-shark-uas
dc.relation.referencesen[44] Vinnytsia Regional Military Administration, Photo of Vampire UAV delivery. Retrieved May 26, 2025, https://www.vin.gov.ua/images/all-news/07-2024/29/1/7.jpg
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2021.12.006
dc.relation.urihttps://doi.org/10.3390/rs13214387
dc.relation.urihttps://doi.org/10.1016/j.vehcom.2020.100249
dc.relation.urihttps://doi.org/10.3390/app10103661
dc.relation.urihttps://doi.org/10.1109/ACCESS.2022.3145199
dc.relation.urihttps://doi.org/10.3390/jimaging6080078
dc.relation.urihttps://doi.org/10.3390/electronics10091091
dc.relation.urihttps://doi.org/10.3390/rs14010223
dc.relation.urihttps://doi.org/10.1016/j.future.2019.02.050
dc.relation.urihttps://doi.org/10.1016/j.jnca.2022.103341
dc.relation.urihttps://doi.org/10.1109/access.2024.3510557
dc.relation.urihttps://doi.org/10.1109/access.2023.3273780
dc.relation.urihttps://doi.org/10.1109/aim.2017.8014217
dc.relation.urihttps://doi.org/10.3390/drones7060339
dc.relation.urihttps://doi.org/10.1016/j.ins.2019.10.001
dc.relation.urihttps://doi.org/10.1109/access.2021.3130296
dc.relation.urihttps://doi.org/10.1109/tcst.2020.2980727
dc.relation.urihttps://doi.org/10.1109/mra.2012.2206474
dc.relation.urihttps://doi.org/10.1109/access.2020.3031326
dc.relation.urihttps://doi.org/10.1109/access.2024.3360333
dc.relation.urihttps://doi.org/10.1007/1-84628-179-2
dc.relation.urihttps://doi.org/10.1109/access.2024.3374894
dc.relation.urihttps://doi.org/10.1049/joe.2018.8126
dc.relation.urihttps://doi.org/10.1109/ojies.2024.3519665
dc.relation.urihttps://doi.org/10.1109/access.2021.3111101
dc.relation.urihttps://doi.org/10.1109/access.2020.2979741
dc.relation.urihttps://doi.org/10.1109/access.2023.3243835
dc.relation.urihttps://doi.org/10.1109/access.2025.3532743
dc.relation.urihttps://doi.org/10.1109/access.2024.3516494
dc.relation.urihttps://doi.org/10.1109/access.2023.3322944
dc.relation.urihttps://doi.org/10.23919/jsee.2023.000157
dc.relation.urihttps://doi.org/10.1109/ojvt.2023.3316181
dc.relation.urihttps://doi.org/10.1080/08839514.2024.2440839
dc.relation.urihttps://doi.org/10.1109/access.2021.3093768
dc.relation.urihttps://doi.org/10.1109/access.2020.2997877
dc.relation.urihttps://doi.org/10.1109/ACCESS.2018.2831911
dc.relation.urihttps://deviro.ua/ukr/ciconiavtol
dc.relation.urihttps://ukrspecsystems.com/uk/drones/mini-shark-uas
dc.relation.urihttps://www.vin.gov.ua/images/all-news/07-2024/29/1/7.jpg
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectunmanned aerial vehicles
dc.subjectkinematic model
dc.subjectdynamic model
dc.subjectrotary-wing UAVs
dc.subjectfixed-wing UAVs
dc.subjectautomatic control systems
dc.subjectflight stabilization
dc.subjectnonlinear control
dc.titleModern control strategies for unmanned aerial systems
dc.title.alternativeСучасні стратегії керування безпілотними авіаційними системами
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v15n1_Shepliakov_M-Modern_control_strategies_25-38.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: