Statistical analysis of three new measures of relevance redundancy and complementarity

dc.citation.epage659
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage651
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.authorЕль Мурджі, Б.
dc.contributor.authorЧамлал, Х.
dc.contributor.authorУадерман, Т.
dc.contributor.authorEl Mourtji, B.
dc.contributor.authorChamlal, H.
dc.contributor.authorOuaderhman, T.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T12:17:35Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДискримінантний аналіз є частиною статистичного навчання; його мета полягає в тому, щоб розділити класи, визначені апріорі в популяції, і передбачає прогнозування класу заданих точок даних. Дискримінантний аналіз застосовується в різних областях, таких як розпізнавання образів, мікрочипи ДНК тощо. В останні роки проблема дискримінації залишається складною задачею, якій приділяється все більше уваги, особливо для масивів даних великої вимірності. Дійсно, у такому разі необхідний вибір ознак, що передбачає використання критеріїв релевантності, надмірності та комплементарності пояснювальних змінних. Метою цієї статті є представити аналіз трьох нових критеріїв, запропонованих у цьому сенсі, точніше, на основі аналізу основних компонентів вдалося досягнути подвійної мети: вивчити гармонію цих трьох критеріїв, а також візуалізувати клас змінних–кандидатів для більш поглибленого вибору на додаток до усунення шумових змінних у дискримінантній моделі.
dc.description.abstractDiscriminant analysis is part of statistical learning; its goal is to separate classes defined a priori on a population and involves predicting the class of given data points. Discriminant analysis is applied in various fields such as pattern recognition, DNA microarray etc. In recent years, the discrimination problem remains a challenging task that has received increasing attention, especially for high-dimensional data sets. Indeed, in such a case, the feature selection is necessary, which implies the use of criteria of relevance, redundancy and complementarity of explanatory variables. The aim of this paper is to present an analysis of three new criteria proposed in this sense, more precisely based on the Principal Component Analysis we have been able to achieve a double objective: that of studying the harmony of these three criteria and also visualizing the class of candidate variables for a more in-depth selection in addition to eliminating the noise variables in a discriminant model.
dc.format.extent651-659
dc.format.pages9
dc.identifier.citationEl Mourtji B. Statistical analysis of three new measures of relevance redundancy and complementarity / B. El Mourtji, H. Chamlal, T. Ouaderhman // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 651–659.
dc.identifier.citationenEl Mourtji B. Statistical analysis of three new measures of relevance redundancy and complementarity / B. El Mourtji, H. Chamlal, T. Ouaderhman // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 651–659.
dc.identifier.doidoi.org/10.23939/mmc2023.03.651
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63537
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 3 (10), 2023
dc.relation.references[1] Chah Slaoui S., Chamlal H. Nouvelles approches pour la s´election de variables discriminantes. Revue de statistique appliqu´ee. 48 (4), 59–82 (2000).
dc.relation.references[2] Chamlal H., Ouaderhman T., Aaboub F. A graph based preordonnances theoretic supervised feature selection in high dimensional data. Knowledge-Based Systems. 257, 109899 (2022).
dc.relation.references[3] Chamlal H., Ouaderhman T., El Mourtji B. Feature selection in high dimensional data: A specific preordonnances-based memetic algorithm. Knowledge-Based Systems. 266, 110420 (2023).
dc.relation.references[4] Chamlal H., Ouaderhman T., El Mourtji B. Multicriteria approaches based on a new discrimination criterions for feature selection. In: 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS). 1–7 (2021).
dc.relation.references[5] Chamlal H., Ouaderhman T., Rebbah F. E. A hybrid feature selection approach for Microarray datasets using graph theoretic-based method. Information Sciences. 615, 449–474 (2022).
dc.relation.references[6] Chen Z., Chen Q., Zhang Y., Zhou L., Jiang J., Wu C., Huang Z. Clustering-based feature subset selection with analysis on the redundancy–complementarity dimension. Computer Communications. 168, 65–74 (2021).
dc.relation.references[7] Chen Z., Wu C., Zhang Y., Huang Z., Bin R., Ming Z., Nengchao L. Feature selection with redundancycomplementariness dispersion. Knowledge-Based Systems. 89, 203–217 (2015).
dc.relation.references[8] Ferreira A. J., Figueiredo M. A. T. Efficient feature selection filters for high-dimensional data. Pattern Recognition Letters. 33 (13), 1794–1804 (2012).
dc.relation.references[9] John G. H., Kohavi R., Pfleger K. Irrelevant Features and the Subset Selection Problem. In: Machine Learning Proceedings 1994. 121–129 (1994).
dc.relation.references[10] Kurita T. Principal Component Analysis (PCA). In: Computer Vision: A Reference Guide. 1–4 (2019).
dc.relation.references[11] Radovic M., Ghalwash M., Filipovic N., Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics. 18 (1), 9 (2017).
dc.relation.references[12] Singha S., Shenoy P. P. An adaptive heuristic for feature selection based on complementarity. Machine Learning. 107 (12), 2027–2071 (2018).
dc.relation.references[13] Souza F., Premebida C., Ara´ujo R. High-order conditional mutual information maximization for dealing with high-order dependencies in feature selection. Pattern Recognition. 131, 108895 (2022).
dc.relation.references[14] Zhou H., Zhang Y., Zhang Y., Liu H. Feature selection based on conditional mutual information: minimum conditional relevance and minimum conditional redundancy. Applied Intelligence. 49 (3), 883–896 (2019).
dc.relation.referencesen[1] Chah Slaoui S., Chamlal H. Nouvelles approches pour la s´election de variables discriminantes. Revue de statistique appliqu´ee. 48 (4), 59–82 (2000).
dc.relation.referencesen[2] Chamlal H., Ouaderhman T., Aaboub F. A graph based preordonnances theoretic supervised feature selection in high dimensional data. Knowledge-Based Systems. 257, 109899 (2022).
dc.relation.referencesen[3] Chamlal H., Ouaderhman T., El Mourtji B. Feature selection in high dimensional data: A specific preordonnances-based memetic algorithm. Knowledge-Based Systems. 266, 110420 (2023).
dc.relation.referencesen[4] Chamlal H., Ouaderhman T., El Mourtji B. Multicriteria approaches based on a new discrimination criterions for feature selection. In: 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS). 1–7 (2021).
dc.relation.referencesen[5] Chamlal H., Ouaderhman T., Rebbah F. E. A hybrid feature selection approach for Microarray datasets using graph theoretic-based method. Information Sciences. 615, 449–474 (2022).
dc.relation.referencesen[6] Chen Z., Chen Q., Zhang Y., Zhou L., Jiang J., Wu C., Huang Z. Clustering-based feature subset selection with analysis on the redundancy–complementarity dimension. Computer Communications. 168, 65–74 (2021).
dc.relation.referencesen[7] Chen Z., Wu C., Zhang Y., Huang Z., Bin R., Ming Z., Nengchao L. Feature selection with redundancycomplementariness dispersion. Knowledge-Based Systems. 89, 203–217 (2015).
dc.relation.referencesen[8] Ferreira A. J., Figueiredo M. A. T. Efficient feature selection filters for high-dimensional data. Pattern Recognition Letters. 33 (13), 1794–1804 (2012).
dc.relation.referencesen[9] John G. H., Kohavi R., Pfleger K. Irrelevant Features and the Subset Selection Problem. In: Machine Learning Proceedings 1994. 121–129 (1994).
dc.relation.referencesen[10] Kurita T. Principal Component Analysis (PCA). In: Computer Vision: A Reference Guide. 1–4 (2019).
dc.relation.referencesen[11] Radovic M., Ghalwash M., Filipovic N., Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics. 18 (1), 9 (2017).
dc.relation.referencesen[12] Singha S., Shenoy P. P. An adaptive heuristic for feature selection based on complementarity. Machine Learning. 107 (12), 2027–2071 (2018).
dc.relation.referencesen[13] Souza F., Premebida C., Ara´ujo R. High-order conditional mutual information maximization for dealing with high-order dependencies in feature selection. Pattern Recognition. 131, 108895 (2022).
dc.relation.referencesen[14] Zhou H., Zhang Y., Zhang Y., Liu H. Feature selection based on conditional mutual information: minimum conditional relevance and minimum conditional redundancy. Applied Intelligence. 49 (3), 883–896 (2019).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectактуальність
dc.subjectнадмірність
dc.subjectкомпліментарність
dc.subjectтеорія передпорядків
dc.subjectдискримінантний аналіз
dc.subjectаналіз головних компонент
dc.subjectrelevance
dc.subjectredundancy
dc.subjectcomplementarity
dc.subjectpreordonnances theory
dc.subjectdiscriminant analysis
dc.subjectprincipal component anal
dc.titleStatistical analysis of three new measures of relevance redundancy and complementarity
dc.title.alternativeСтатистичний аналіз трьох нових мір релевантності, надмірності та комплементарності
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n3_El_Mourtji_B-Statistical_analysis_651-659.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n3_El_Mourtji_B-Statistical_analysis_651-659__COVER.png
Size:
468.04 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: