Дослідження ефективності використання розподілених баз даних у системах IIoT
dc.citation.epage | 18 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Інфокомунікаційні технології та електронна інженерія | |
dc.citation.spage | 12 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Климаш, М. | |
dc.contributor.author | Гордійчук-Бублівська, О. | |
dc.contributor.author | Чайковський, І. | |
dc.contributor.author | Костів, О. | |
dc.contributor.author | Klymash, M. | |
dc.contributor.author | Hordiichuk-Bublivska, O. | |
dc.contributor.author | Tchaikovskyi, I. | |
dc.contributor.author | Kostiv, O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-08-17T08:58:11Z | |
dc.date.available | 2023-08-17T08:58:11Z | |
dc.date.created | 2022-03-01 | |
dc.date.issued | 2022-03-01 | |
dc.description.abstract | роаналізовано основні особливості роботи систем промислового Інтернету речей. Визначено необхідність використання розподіленої архітектури та хмарних ресурсів для гнучкого організування роботи промислових систем. Досліджено роботу реляційних баз даних та визначено їх перевагу над нереляційними, зокрема, швидкість оброблення великих обсягів інформації та надійність обслуговування користувацьких запитів. Запропоновано використання розподіленої архітектури баз даних для підвищення ефективності обчислень. Визначено переваги залучення хмарних та розподілених технологій у системи IIoT, а також можливість вибирати найоптимальніші параметри залежно від вимог до роботи промислового виробництва. | |
dc.description.abstract | The Industrial Internet of Things (IIoT) determines the transformation of centralized systems into decentralized, more flexible, and efficient ones. Cloud technologies allow much more optimal use of IIoT resources. In the paper, the main features of the Industrial Internet of Things systems were investigated and the problems of smart manufacturing were analyzed. The necessity of using distributed architecture and cloud resources for flexible industrial systems organization was determined. In addition, the advantages of distributed computing for big data processing were established. The preference for relational databases over non-relational ones for data processing and the reliability of user requests service were defined. As well, the peculiarity of the relational database’s operation was considered. For improving computational efficiency the use of a distributed database architecture was investigated. The benefits of involving cloud and distributed technologies in IIoT systems were determined. In this way, the possibility of choosing the most optimal parameters depending on the requirements for the industrial system productivity was defined. The opportunities for improving the quality of services in the Industrial Internet of Things by choosing the optimally distributed database architecture were determined. | |
dc.format.extent | 12-18 | |
dc.format.pages | 7 | |
dc.identifier.citation | Дослідження ефективності використання розподілених баз даних у системах IIoT / М. Климаш, О. Гордійчук-Бублівська, І. Чайковський, О. Костів // Інфокомунікаційні технології та електронна інженерія. — Львів : Видавництво Львівської політехніки, 2022. — Том 2. — № 1. — С. 12–18. | |
dc.identifier.citationen | Investigation on efficiency of using of distributed databases efficiency in IIoT systems / M. Klymash, O. Hordiichuk-Bublivska, I. Tchaikovskyi, O. Kostiv // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 2. — No 1. — P. 12–18. | |
dc.identifier.doi | doi.org/10.23939/ictee2022.01.012 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59671 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Інфокомунікаційні технології та електронна інженерія, 1 (2), 2022 | |
dc.relation.ispartof | Infocommunication Technologies and Electronic Engineering, 1 (2), 2022 | |
dc.relation.references | [1] Hou X., Ren Z., Yang K., Chen C., Zhang H. and Xiao Y., “IIoT-MEC: A Novel Mobile Edge Computing Framework for 5G-enabled IIoT”, 2019 IEEE Wireless Communications and Networking Conference (WCNC), 2019, pp. 1–7. DOI: 10.1109/WCNC.2019.8885703. | |
dc.relation.references | [2] Koroniotis N., Moustafa N., Schiliro F., Gauravaram P. and Janicke H., “The SAir-IIoT Cyber Testbed as a Service: A Novel Cybertwins Architecture in IIoT-Based Smart Airports”, in IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2021.3106378. | |
dc.relation.references | [3] Al-Hawawreh M. and Sitnikova E. (2021), “Developing a Security Testbed for Industrial Internet of Things”, in IEEE Internet of Things Journal, Vol. 8, No. 7, pp. 5558–5573, 1 April1, 2021. DOI: 10.1109/JIOT.2020.3032093. | |
dc.relation.references | [4] Nastase L. (2017), “Security in the Internet of Things: A Survey on Application Layer Protocols”, 2017 21st International Conference on Control Systems and Computer Science (CSCS), pp. 659–666. DOI: 10.1109/CSCS.2017.101. | |
dc.relation.references | [5] Klymash M., Kyryk M., Demydov I., Hordiichuk-Bublivska O., Kopets H. and Pleskanka N., " (2021). Research on Distributed Machine Learning Methods in Databases," 2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT), pp. 128–131, DOI: 10.1109/AICT52120.2021.9628949. | |
dc.relation.references | [6] Sahu A. K., Sharma S., Tripathi S. S. and Singh K. N. (2019), “A Study of Authentication Protocols in Internet of Things”, 2019 International Conference on Information Technology (ICIT), pp. 217–221. DOI: 10.1109/ICIT48102.2019.00045. | |
dc.relation.references | [7] Mateev V. and Marinova I. (2021), “Distributed Internet of Things System for CO2 Monitoring with LoRaWAN”, 2021 12th National Conference with International Participation (ELECTRONICA), pp. 1–5. DOI: 10.1109/ELECTRONICA52725.2021.9513682. | |
dc.relation.references | [8] Ikpehai A. et al. (2019), “Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review”, in IEEE Internet of Things Journal, Vol. 6, No. 2, pp. 2225–2240, April 2019. DOI: 10.1109/JIOT.2018.2883728. | |
dc.relation.references | [9] Mahmood A. and Zafar S. (2019), “Performance Analysis of Narrowband Internet of Things (NB-IoT) Deployment Modes”, 22nd International Multitopic Conference (INMIC), pp. 1–8. DOI: 10.1109/INMIC48123.2019.9022748. | |
dc.relation.references | [10] Ikpehai A. et al. (2019), “Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review”, in IEEE Internet of Things Journal, Vol. 6, No. 2, pp. 2225–2240, April 2019. DOI: 10.1109/JIOT.2018.2883728. | |
dc.relation.references | [11] L. Ren, Y. Liu, X. Wang, J. Lü and M. J. Deen, “Cloud-Edge-Based Lightweight Temporal Convolutional Networks for Remaining Useful Life Prediction in IIoT”, in IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12578–12587, 15 Aug. 15, 2021. DOI: 10.1109/JIOT.2020.3008170. | |
dc.relation.references | [12] Cui G. and Yi S. (2021), “Multi-mode Big Data Mining and Analysis Based on Internet of Things on Power”, 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), pp. 365–370. DOI: 10.1109/ACPEE51499.2021.9437093. | |
dc.relation.references | [13] Palaniswami M., Rao A. S., Kumar D., Rathore P. and Rajasegarar S. (2020), “The Role of Visual Assessment of Clusters for Big Data Analysis: From Real-World Internet of Things”, in IEEE Systems, Man, and Cybernetics Magazine, Vol. 6, No. 4, pp. 45–53, Oct. 2020. DOI: 10.1109/MSMC.2019.2961160. | |
dc.relation.references | [14] Lv Z., Lou R., Li J., Singh A. K. and Song H. (2021), “Big Data Analytics for 6G-Enabled Massive Internet of Things”, in IEEE Internet of Things Journal, Vol. 8, No. 7, pp. 5350–5359, 1 April1, 2021. DOI: 10.1109/JIOT.2021.3056128. | |
dc.relation.references | [15] Wang C.-H., Kuo J.-J., Yang D.-N. and Chen W.-T. (2018), “Green Software-Defined Internet of Things for Big Data Processing in Mobile Edge Networks”, 2018 IEEE International Conference on Communications (ICC), pp. 1–7. DOI: 10.1109/ICC.2018.8422236. | |
dc.relation.references | [16] Zannou A., Boulaalam A. and Nfaoui E. H. (2020), “Path Length Optimization in Heterogeneous Network for Internet of Things”, 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), pp. 1–4. DOI: 10.1109/ICECOCS50124.2020.9314437. | |
dc.relation.referencesen | [1] Hou X., Ren Z., Yang K., Chen C., Zhang H. and Xiao Y., "IIoT-MEC: A Novel Mobile Edge Computing Framework for 5G-enabled IIoT", 2019 IEEE Wireless Communications and Networking Conference (WCNC), 2019, pp. 1–7. DOI: 10.1109/WCNC.2019.8885703. | |
dc.relation.referencesen | [2] Koroniotis N., Moustafa N., Schiliro F., Gauravaram P. and Janicke H., "The SAir-IIoT Cyber Testbed as a Service: A Novel Cybertwins Architecture in IIoT-Based Smart Airports", in IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2021.3106378. | |
dc.relation.referencesen | [3] Al-Hawawreh M. and Sitnikova E. (2021), "Developing a Security Testbed for Industrial Internet of Things", in IEEE Internet of Things Journal, Vol. 8, No. 7, pp. 5558–5573, 1 April1, 2021. DOI: 10.1109/JIOT.2020.3032093. | |
dc.relation.referencesen | [4] Nastase L. (2017), "Security in the Internet of Things: A Survey on Application Layer Protocols", 2017 21st International Conference on Control Systems and Computer Science (CSCS), pp. 659–666. DOI: 10.1109/CSCS.2017.101. | |
dc.relation.referencesen | [5] Klymash M., Kyryk M., Demydov I., Hordiichuk-Bublivska O., Kopets H. and Pleskanka N., " (2021). Research on Distributed Machine Learning Methods in Databases," 2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT), pp. 128–131, DOI: 10.1109/AICT52120.2021.9628949. | |
dc.relation.referencesen | [6] Sahu A. K., Sharma S., Tripathi S. S. and Singh K. N. (2019), "A Study of Authentication Protocols in Internet of Things", 2019 International Conference on Information Technology (ICIT), pp. 217–221. DOI: 10.1109/ICIT48102.2019.00045. | |
dc.relation.referencesen | [7] Mateev V. and Marinova I. (2021), "Distributed Internet of Things System for CO2 Monitoring with LoRaWAN", 2021 12th National Conference with International Participation (ELECTRONICA), pp. 1–5. DOI: 10.1109/ELECTRONICA52725.2021.9513682. | |
dc.relation.referencesen | [8] Ikpehai A. et al. (2019), "Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review", in IEEE Internet of Things Journal, Vol. 6, No. 2, pp. 2225–2240, April 2019. DOI: 10.1109/JIOT.2018.2883728. | |
dc.relation.referencesen | [9] Mahmood A. and Zafar S. (2019), "Performance Analysis of Narrowband Internet of Things (NB-IoT) Deployment Modes", 22nd International Multitopic Conference (INMIC), pp. 1–8. DOI: 10.1109/INMIC48123.2019.9022748. | |
dc.relation.referencesen | [10] Ikpehai A. et al. (2019), "Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review", in IEEE Internet of Things Journal, Vol. 6, No. 2, pp. 2225–2240, April 2019. DOI: 10.1109/JIOT.2018.2883728. | |
dc.relation.referencesen | [11] L. Ren, Y. Liu, X. Wang, J. Lü and M. J. Deen, "Cloud-Edge-Based Lightweight Temporal Convolutional Networks for Remaining Useful Life Prediction in IIoT", in IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12578–12587, 15 Aug. 15, 2021. DOI: 10.1109/JIOT.2020.3008170. | |
dc.relation.referencesen | [12] Cui G. and Yi S. (2021), "Multi-mode Big Data Mining and Analysis Based on Internet of Things on Power", 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), pp. 365–370. DOI: 10.1109/ACPEE51499.2021.9437093. | |
dc.relation.referencesen | [13] Palaniswami M., Rao A. S., Kumar D., Rathore P. and Rajasegarar S. (2020), "The Role of Visual Assessment of Clusters for Big Data Analysis: From Real-World Internet of Things", in IEEE Systems, Man, and Cybernetics Magazine, Vol. 6, No. 4, pp. 45–53, Oct. 2020. DOI: 10.1109/MSMC.2019.2961160. | |
dc.relation.referencesen | [14] Lv Z., Lou R., Li J., Singh A. K. and Song H. (2021), "Big Data Analytics for 6G-Enabled Massive Internet of Things", in IEEE Internet of Things Journal, Vol. 8, No. 7, pp. 5350–5359, 1 April1, 2021. DOI: 10.1109/JIOT.2021.3056128. | |
dc.relation.referencesen | [15] Wang C.-H., Kuo J.-J., Yang D.-N. and Chen W.-T. (2018), "Green Software-Defined Internet of Things for Big Data Processing in Mobile Edge Networks", 2018 IEEE International Conference on Communications (ICC), pp. 1–7. DOI: 10.1109/ICC.2018.8422236. | |
dc.relation.referencesen | [16] Zannou A., Boulaalam A. and Nfaoui E. H. (2020), "Path Length Optimization in Heterogeneous Network for Internet of Things", 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), pp. 1–4. DOI: 10.1109/ICECOCS50124.2020.9314437. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | бази даних | |
dc.subject | SQL | |
dc.subject | розподілені обчислення | |
dc.subject | databases | |
dc.subject | SQL | |
dc.subject | distributed computing | |
dc.subject.udc | 621.391 | |
dc.title | Дослідження ефективності використання розподілених баз даних у системах IIoT | |
dc.title.alternative | Investigation on efficiency of using of distributed databases efficiency in IIoT systems | |
dc.type | Article |
Files
License bundle
1 - 1 of 1