Модель інтеграції федеративного навчання в мережі мобільного зв’язку п’ятого покоління

Abstract

У роботі досліджено основні переваги використання федеративного навчання (FL) для обміну досвідом між інтелектуальними пристроями в середовищі мереж мобільного зв’язку п’ятого покоління. Цей підхід дає змогу будувати ефективні алгоритми машинного навчання у випадку використання конфіденційних даних, втрата яких може бути небажаною або навіть небезпечною для користувачів. Отже, для завдань, у яких важлива конфіденційність даних, що необхідні для обробки та аналізу, пропонуємо використовувати підходи FL. У такому випадку вся особиста інформація користувачів буде оброблятися локально на їхніх пристроях. FL забезпечує безпеку конфіденційних даних для абонентів, дає операторам мобільних мереж змогу зменшити кількість надлишкової інформації в радіоканалі та оптимізувати функціонування мобільної мережі. В роботі наведено трирівневу модель інтеграції федеративного навчання в мережу мобільного зв’язку та описано основні особливості цього підходу. Висвітлено також експериментальні дослідження, які демонструють результати використання запропонованого підходу.
This paper investigates the main advantages of using Federated Learning (FL) for sharing experiences between intelligent devices in the environment of 5th generation mobile communication networks. This approach makes it possible to build effective machine learning algorithms using confidential data, the loss of which may be undesirable or even dangerous for users. Therefore, for the tasks where the confidentiality of the data is required for processing and analysis, we suggest using Federated Learning (FL) approaches. In this case, all users' personal information will be processed locally on their devices. FL ensures the security of confidential data for subscribers, allows mobile network operators to reduce the amount of redundant information in the radio channel, and also allows optimizing the functioning of the mobile network. The paper presents a threelevel model of integration of Federated Learning into the mobile network and describes the main features of this approach, as well as experimental studies that demonstrate the results of the proposed approach.

Description

Keywords

федеративне навчання, машинне навчання, штучний інтелект, 5G, Інтернет речей, Federated Learning, machine learning, artificial intelligence, 5G, Internet of things

Citation

Модель інтеграції федеративного навчання в мережі мобільного зв’язку п’ятого покоління / Б. Шубин, Т. Максимюк, О. Яремко, Л. Фабрі, Д. Мрозек // Інфокомунікаційні технології та електронна інженерія. — Львів : Видавництво Львівської політехніки, 2022. — Том 2. — № 1. — С. 26–35.

Endorsement

Review

Supplemented By

Referenced By