Zealots’ effect on opinion dynamics in complex networks
dc.citation.epage | 214 | |
dc.citation.issue | 2 | |
dc.citation.spage | 203 | |
dc.contributor.affiliation | Університет Анкари | |
dc.contributor.affiliation | Ankara University | |
dc.contributor.author | Моейніфар, В. | |
dc.contributor.author | Гюндюк, С. | |
dc.contributor.author | Moeinifar, V. | |
dc.contributor.author | Gündüç, S. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-10-24T07:21:54Z | |
dc.date.available | 2023-10-24T07:21:54Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | У цій статті вивчається вплив фанатиків на соціальні мережі. Розглядувана соціальна мережа заснована на безмасштабних мережах із використанням методу Барабаші– Альберта та випадкових мереж із використанням методу Ердос–Рені. Використовувалася попередньо вивчена модифікована модель виборця, яка включає фанатиків —людей, які ніколи не змінюють своєї думки. Вибрано видатних особистостей (тобто хабів) як фанатиків. Таким чином, спочатку вибрано за фанатиків важливих людей із високим ступенем (хабів); пізніше — людей із високим ступенем близькості. А потім проаналізовано час досягнення консенсусу у випадку, коли фанатики вибираються як неважливі особистості та порівняно результати усіх випадків. Виявлено, що час для досягнення консенсусу в соціальних мережах однаковий для різної кількості фанатиків, але з однаковим ступенем зараженості фанатизмом. Наприклад, ефект одного фанатика зі ступенем 64 збігається з ефектом 8 фанатиків зі ступенем 8. | |
dc.description.abstract | In this paper, we study zealots’ effects on social networks. Our social network is based on scale-free networks using Barabasi–Albert method and random networks using Erd'os–R'enyi method. We used a pre-studied modified Voter model that includes zealots, individuals who never change their opinions. We chose prominent individuals (i.e. hubs) as zealots. In this way we first chose important individuals with high degree (hubs); second, individuals with high closeness. And then examined the consensus time compared with that zealots are chosen as non-important individuals. We found that the time to get to the consensus state in social networks is the same for different numbers of zealots but with the same degrees of contamination with zealotry. For example, one zealot’s effect with a degree of 64 is same to 8 zealots’ effects with a degree of 8. | |
dc.format.extent | 203-214 | |
dc.format.pages | 12 | |
dc.identifier.citation | Moeinifar V. Zealots’ effect on opinion dynamics in complex networks / V. Moeinifar, S. Gündüç // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 203–214. | |
dc.identifier.citationen | Moeinifar V. Zealots’ effect on opinion dynamics in complex networks / V. Moeinifar, S. Gündüç // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 203–214. | |
dc.identifier.doi | doi.org/10.23939/mmc2021.02.203 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60394 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (8), 2021 | |
dc.relation.references | [1] Krapivsky P. L. A Kinetic View of Statistical Physics. Cambridge University Press (2010). | |
dc.relation.references | [2] Liggett T. M. Interacting Particle Systems. Springer (1985). | |
dc.relation.references | [3] Clifford P., Sudbury A. A model for spatial conflict. Biometrika. 60 (3), 581–588 (1973). | |
dc.relation.references | [4] Mobilia M. Commitment Versus Persuasion in the Three-Party Constrained Voter Model. Journal of Statistical Physics. 151, 69–91 (2013). | |
dc.relation.references | [5] Gunton J. D., San Miguel M., Sahni P. Phase Transitions and Critical Phenomena. Vol. 8. London, Academic Press (1983). | |
dc.relation.references | [6] Suchecki K., Egu´ıluz V. M., San Miguel M. Conservation laws for the voter model in complex networks. Europhysics Letters. 69 (2), 228–234 (2005). | |
dc.relation.references | [7] Mobilia M., Petersen A., Redner S. On the role of zealotry in the voter model. Journal of Statistical Mechanics: Theory and Experiment. 8, P08029–P08029 (2007). | |
dc.relation.references | [8] Mobilia M. Does a Single Zealot Affect an Infinite Group of Voters? Physical Review Letters. 91 (2), 028701 (2003). | |
dc.relation.references | [9] Masuda N. Opinion control in complex networks. New Journal of Physics. 17 (3), 033031 (2015). | |
dc.relation.references | [10] Khalil N., San Miguel M., Toral R. Zealots in the mean-field noisy voter model. Phys. Rev. E. 97 (1), 012310 (2018). | |
dc.relation.references | [11] Barab´asi A.-L., Albert R. Emergence of Scaling in Random Networks. Science. 286 (5439), 509–512 (1999). | |
dc.relation.references | [12] Barab´asi A.-L. Network Science. Vol. 1. Cambridge University Press (2016). | |
dc.relation.references | [13] Albert R., Jeong H., Barab´asi A.-L. Error and attack tolerance of complex networks. Nature. 406, 378–382 (2000). | |
dc.relation.references | [14] Albert R., Barab´asi A.-L. Statistical mechanics of complex networks. Reviews of Modern Physics. 74 (1), 47–97 (2002). | |
dc.relation.references | [15] Bavelas A. Communication Patterns in Task-Oriented Groups. The Journal of the Acoustical Society of America. 22, 725–730 (1950). | |
dc.relation.references | [16] Freeman L. C. Centrality in social networks conceptual clarification. Social Networks. 1 (3), 215–239 (1978). | |
dc.relation.references | [17] G¨und¨u¸c S., Eryi˘git R. The role of persuasion power on the consensus formation. Physica A: Statistical Mechanics and its Applications. 426, 16–24 (2015). | |
dc.relation.references | [18] G¨und¨u¸c S. The role of fanatics in consensus formation. International Journal of Modern Physics C. 26 (3), 1–18 (2014). | |
dc.relation.references | [19] Suchecki K., Egu´ıluz V. M., Miguel M. S. Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Physical Review E. 72 (3), 036132 (2005). | |
dc.relation.references | [20] Sabidussi G. The centrality index of a graph. Psychometrika. 31, 581–603 (1966). | |
dc.relation.references | [21] Gilbert E. N. Random Graphs. Ann. Math. Statist. 30 (4), 1141–1144 (1959). | |
dc.relation.references | [22] Blagus B. M. The network of collaboration: Informatica and Uporabna Informatika. Uporabna Informatika (2005). | |
dc.relation.references | [23] Porter M., Gleeson J. Dynamical Systems on Networks. Springer (2016). | |
dc.relation.references | [24] Czepiel J. A. Word-of-Mouth Processes in the Diffusion of a Major Technological Innovation. Journal Of Marketing Research. 11 (2), 172–180 (1974). | |
dc.relation.references | [25] Beauchamp M. A. An improved index of centrality. Behavioral Science. 10, 161–165 (1965). | |
dc.relation.references | [26] Mobilia M., Georgiev T. Voting and catalytic processes with inhomogeneities. Physical Review E. 71 (4), 046102 (2005). | |
dc.relation.references | [27] Cohn B., Marriott M. Networks and Centers in the Integration of Indian Civilization. Journal of Social Research (Ranchi). 1, 1–9 (1958). | |
dc.relation.referencesen | [1] Krapivsky P. L. A Kinetic View of Statistical Physics. Cambridge University Press (2010). | |
dc.relation.referencesen | [2] Liggett T. M. Interacting Particle Systems. Springer (1985). | |
dc.relation.referencesen | [3] Clifford P., Sudbury A. A model for spatial conflict. Biometrika. 60 (3), 581–588 (1973). | |
dc.relation.referencesen | [4] Mobilia M. Commitment Versus Persuasion in the Three-Party Constrained Voter Model. Journal of Statistical Physics. 151, 69–91 (2013). | |
dc.relation.referencesen | [5] Gunton J. D., San Miguel M., Sahni P. Phase Transitions and Critical Phenomena. Vol. 8. London, Academic Press (1983). | |
dc.relation.referencesen | [6] Suchecki K., Egu´ıluz V. M., San Miguel M. Conservation laws for the voter model in complex networks. Europhysics Letters. 69 (2), 228–234 (2005). | |
dc.relation.referencesen | [7] Mobilia M., Petersen A., Redner S. On the role of zealotry in the voter model. Journal of Statistical Mechanics: Theory and Experiment. 8, P08029–P08029 (2007). | |
dc.relation.referencesen | [8] Mobilia M. Does a Single Zealot Affect an Infinite Group of Voters? Physical Review Letters. 91 (2), 028701 (2003). | |
dc.relation.referencesen | [9] Masuda N. Opinion control in complex networks. New Journal of Physics. 17 (3), 033031 (2015). | |
dc.relation.referencesen | [10] Khalil N., San Miguel M., Toral R. Zealots in the mean-field noisy voter model. Phys. Rev. E. 97 (1), 012310 (2018). | |
dc.relation.referencesen | [11] Barab´asi A.-L., Albert R. Emergence of Scaling in Random Networks. Science. 286 (5439), 509–512 (1999). | |
dc.relation.referencesen | [12] Barab´asi A.-L. Network Science. Vol. 1. Cambridge University Press (2016). | |
dc.relation.referencesen | [13] Albert R., Jeong H., Barab´asi A.-L. Error and attack tolerance of complex networks. Nature. 406, 378–382 (2000). | |
dc.relation.referencesen | [14] Albert R., Barab´asi A.-L. Statistical mechanics of complex networks. Reviews of Modern Physics. 74 (1), 47–97 (2002). | |
dc.relation.referencesen | [15] Bavelas A. Communication Patterns in Task-Oriented Groups. The Journal of the Acoustical Society of America. 22, 725–730 (1950). | |
dc.relation.referencesen | [16] Freeman L. C. Centrality in social networks conceptual clarification. Social Networks. 1 (3), 215–239 (1978). | |
dc.relation.referencesen | [17] G¨und¨u¸c S., Eryi˘git R. The role of persuasion power on the consensus formation. Physica A: Statistical Mechanics and its Applications. 426, 16–24 (2015). | |
dc.relation.referencesen | [18] G¨und¨u¸c S. The role of fanatics in consensus formation. International Journal of Modern Physics P. 26 (3), 1–18 (2014). | |
dc.relation.referencesen | [19] Suchecki K., Egu´ıluz V. M., Miguel M. S. Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Physical Review E. 72 (3), 036132 (2005). | |
dc.relation.referencesen | [20] Sabidussi G. The centrality index of a graph. Psychometrika. 31, 581–603 (1966). | |
dc.relation.referencesen | [21] Gilbert E. N. Random Graphs. Ann. Math. Statist. 30 (4), 1141–1144 (1959). | |
dc.relation.referencesen | [22] Blagus B. M. The network of collaboration: Informatica and Uporabna Informatika. Uporabna Informatika (2005). | |
dc.relation.referencesen | [23] Porter M., Gleeson J. Dynamical Systems on Networks. Springer (2016). | |
dc.relation.referencesen | [24] Czepiel J. A. Word-of-Mouth Processes in the Diffusion of a Major Technological Innovation. Journal Of Marketing Research. 11 (2), 172–180 (1974). | |
dc.relation.referencesen | [25] Beauchamp M. A. An improved index of centrality. Behavioral Science. 10, 161–165 (1965). | |
dc.relation.referencesen | [26] Mobilia M., Georgiev T. Voting and catalytic processes with inhomogeneities. Physical Review E. 71 (4), 046102 (2005). | |
dc.relation.referencesen | [27] Cohn B., Marriott M. Networks and Centers in the Integration of Indian Civilization. Journal of Social Research (Ranchi). 1, 1–9 (1958). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | модель виборця | |
dc.subject | фанатик | |
dc.subject | випадковий | |
dc.subject | без масштабу | |
dc.subject | мережі | |
dc.subject | Ердос–Рені | |
dc.subject | Барабаші–Альберт | |
dc.subject | центр | |
dc.subject | близькість | |
dc.subject | центральність | |
dc.subject | voter model | |
dc.subject | zealot | |
dc.subject | random | |
dc.subject | scale-free | |
dc.subject | networks | |
dc.subject | Erd'os–R'enyi | |
dc.subject | Barabasi–Albert | |
dc.subject | hub | |
dc.subject | closeness | |
dc.subject | centrality | |
dc.title | Zealots’ effect on opinion dynamics in complex networks | |
dc.title.alternative | Вплив фанатиків на динаміку думок у складних мережах | |
dc.type | Article |
Files
License bundle
1 - 1 of 1