Development methods of large-equipment installation in design position using electronic total stations
dc.citation.epage | 30 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.spage | 22 | |
dc.citation.volume | 95 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Віват, Анатолій | |
dc.contributor.author | Петров, Сергій | |
dc.contributor.author | Волкова, Валерія | |
dc.contributor.author | Vivat, Anatolii | |
dc.contributor.author | Petrov, Sergii | |
dc.contributor.author | Volkova, Valeria | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-06-07T08:41:44Z | |
dc.date.available | 2023-06-07T08:41:44Z | |
dc.date.created | 2022-02-22 | |
dc.date.issued | 2022-02-22 | |
dc.description.abstract | На сьогодні в Україні знаходяться в експлуатації десятки турбогенераторів (ТГ), значна частина яких в експлуатації понад 35÷50 років, що перевищує термін їх служби у відповідності до нормативної документації. Фактичний технічний стан ТГ визначається багатьма геометричними параметрами, серед яких вирішального значення є ті, що характеризують його як механічну систему (вісь агрегату та вісь статора). На даний час контроль положення осей повинна виконуватись з точністю 0,5 мм, та здійснюється в основному трьома способами (за допомогою струни, за допомогою оптичної авторефлексної системи (ППС-11), з використанням повірочного валу). Метою даних досліджень є розробка методики контролю геометричних параметрів статора ТГ при його заміні геодезичними методами з використанням високоточних електронних тахеометрів та її апробація на об’єкті. На основі попередніх досліджень, нами запропоновано вирішувати такі задачі просторовим методом електронної тахеометрії з використанням високоточного тахеометра Leica TCRP1201R300. Ми провели апріорну оцінку точності та ряд експериментів (дослідження з визначення похибки перефокусування, визначення похибки виміру віддалі на коротких довжинах з використанням сферичного відбивача, дослідження впливу неперпендикулярності вимірювального лазера до відбивача) з метою розробки методики підвищення точності вимірювання при умові використання електронного тахеометра. Ця методика апробована на об’єкті під час ремонту (заміни) статора генератора. В результаті проведених робіт визначено просторове положення осей агрегату та статора з точністю0,3 мм, які були зафіксовані в умовній системі координат чотирма марками. Методикою передбачено вибір оптимальних умов вимірювань електронним тахеометром, за яких компенсуються похибки вихідних даних, інструментальні, зовнішніх умов, візування, центрування та фіксування. Також методикою передбачено контроль кожного етапу робіт за стандартним відхиленням до 0,2 мм. Кількість прийомів вимірювань визначається досягненням точності кожного етапу 0,2 мм. | |
dc.description.abstract | Today in Ukraine there are dozens of turbogenerators (TG) in operation, a significant part of which have been in operation for over 35–50 years, which exceeds their service life in accordance with regulatory documents. The actual technical condition of the TG is determined by many geometrical parameters, among which the crucial ones are those that characterize it as a mechanical system (axis of the aggregate and the axis of the stator). Today, the control of the position of the axes must be performed with an accuracy of 0.5 mm, and is carried out in three ways (using a string, using an optical autoreflex system (PPS-11), using a test shaft). The purpose of these studies is to develop a method for monitoring the geometric parameters of the TG stator when replacing it with geodetic methods using high-precision electronic total stations and its testing on site. Based on previous research, we propose to solve the following problems by the spatial method of electronic total station using a high-precision total station Leica TCRP1201R300. We performed a priori estimation of accuracy and a number of experiments (research to determine refocusing error, determination of distance measurement error at short lengths using a spherical reflector, study of the effect of nonperpendicularity of the measuring laser to the reflector) to develop methods for improving measurement accuracy using electronic total station. This technique has been tested on site during the repair (replacement) of the generator stator. As a result of the work carried out, the spatial position of the axes of the aggregate and the stator was determined with an accuracy of 0.3 mm, which were fixed in the conditional coordinate system by four marks. The method provides for the selection of optimal conditions for electronic tacheometer measurements, which compensate for errors in the initial data, instrumental, external conditions, sighting, centering and fixing. Also, the method provides for the control of each stage of work on a standard deviation of up to 0.2 mm. The number of measurement methods is determined by achieving the accuracy of each stage of 0.2 mm. | |
dc.format.extent | 22-30 | |
dc.format.pages | 9 | |
dc.identifier.citation | Vivat A. Development methods of large-equipment installation in design position using electronic total stations / Anatolii Vivat, Sergii Petrov, Valeria Volkova // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 22–30. | |
dc.identifier.citationen | Vivat A. Development methods of large-equipment installation in design position using electronic total stations / Anatolii Vivat, Sergii Petrov, Valeria Volkova // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 22–30. | |
dc.identifier.doi | doi.org/10.23939/istcgcap2022.95.022 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59189 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки, | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання (95), 2022 | |
dc.relation.ispartof | Geodesy, Cartography and Aerial photography (95), 2022 | |
dc.relation.references | Baran, P. (2012). Engineering geodesy. Kyiv: PAT | |
dc.relation.references | “VIPOL”. P. 618. (in Ukrainian). | |
dc.relation.references | Burak, K. (2011). Technology of planning works and | |
dc.relation.references | executive surveys using TPS. Geodesy, cartography | |
dc.relation.references | and aerial photography, 75, 53–57. (in Ukrainian). | |
dc.relation.references | https://science.lpnu.ua/istcgcap/all-volumes-andissues/volume-75-2011/technology-lay-out-worksand-executive-survey-using. | |
dc.relation.references | Fys, M., Litynskyi, V., Vivat, A., & Litynskyi S. (2021). | |
dc.relation.references | Investigation of formulas determination of a point’s | |
dc.relation.references | plane coordinates by the inverslinear-angular resection. | |
dc.relation.references | Geodesy, Cartography and Aerial Photography, (94), 20–28. https://doi.org/10.23939/istcgcap2021.94.020. | |
dc.relation.references | Jiri, L., & Carell, R. (2012). Automated hydrostatic | |
dc.relation.references | system at Temelin nuclear power plant facilities. | |
dc.relation.references | Interaxpo Geo-Siberia, 168–175. (in Russian). | |
dc.relation.references | file:///C:/Users/%D0%93%D0%B0%D0%BB%D0%B8%D0%BD%D0%B0/Downloads/avtomatizirovannaya-gidrostaticheskaya-sistema-naobektah-atomnoy-elektrostantsii-temelin.pdf. | |
dc.relation.references | Khomenko, I., Plakhtiy O., Nerubatsky, V., & Stasyuk, I. | |
dc.relation.references | (2020). Power engineering of Ukraine. Structure, | |
dc.relation.references | governance, innovation. Monograph Kharkiv NTU | |
dc.relation.references | “HPI” 2020 131 p. (in Ukrainian). | |
dc.relation.references | Leica TS30 White Paper [Електронний ресурс]. URL: | |
dc.relation.references | https://www.gefosleica.cz/ftp/White_papers/Total_stations/Leica_TS30_White_Paper_0904_766425_en.pdf. | |
dc.relation.references | Litinsky. V., Kiselyk O, & Litynsky S. (2005). | |
dc.relation.references | Consideration of level refraction with the use of | |
dc.relation.references | CCD. Modern achievements of geodetic science | |
dc.relation.references | and industry. Lviv. pp. 71–75. (in Ukrainian). | |
dc.relation.references | http://science.lp.edu.ua/sites/default/files/Papers/gka_69_2007_14.pdf. | |
dc.relation.references | Lityns’kyy, V., Fys, M., Pokotylo, I., & Lityns’kyy, S. | |
dc.relation.references | (2014). Calculation of optimal values of measured | |
dc.relation.references | lenghts for accurate determination of small segments. | |
dc.relation.references | Geodesy, Cartography and Aerial Photography, | |
dc.relation.references | (79), 42–47. https://science.lpnu.ua/istcgcap/allvolumes-and-issues/volume-79-2014/calculationoptimal-values-measured-lenghts-accurate. | |
dc.relation.references | Litinsky, V., Vivat, A., Periy, S., & Litinsky, S., (2015). | |
dc.relation.references | Method of measuring of exemplary basis of second | |
dc.relation.references | category for verification of electronic total stations. | |
dc.relation.references | Geodesy, Cartography and Aerial Photography, 81, 59–65. https://doi.org/10.23939/istcgcap2015.01.059. | |
dc.relation.references | Petrakov, Y., & Shuplietsov, D. (2018). Accuracy control | |
dc.relation.references | of contour milling on CNC machines. (in Ukrainian). | |
dc.relation.references | https://doi.org/10.20535/2521-1943.2018.83.132223 | |
dc.relation.references | Sukhodolya, O., Sidorenko, A., Begun, S., & Bilukha, A. | |
dc.relation.references | (2014). Current state, problems and prospects of | |
dc.relation.references | Ukraine's hydropower development. Analysis report. | |
dc.relation.references | NISS, 54 p. (in Ukrainian). | |
dc.relation.references | Vivat, A., Tserklevych, A., & Smirnova, O. (2018). A | |
dc.relation.references | study of devices used for geometric parameter | |
dc.relation.references | measurement of engineering building construction. | |
dc.relation.references | Geodesy, cartography and aerial photography, (87), 21–29. https://doi.org/10.23939/istcgcap2018.01.021. | |
dc.relation.references | Vivat, A., & Nazarchuk, N. (2019). Research the | |
dc.relation.references | application of topcon is301 scanning total station for | |
dc.relation.references | the building of space models of architectural forms | |
dc.relation.references | Engineering geodesy, (67), 35–45. (in Ukrainian), | |
dc.relation.references | https://doi.org/10.32347/0130-6014.2019.67.35-45. | |
dc.relation.references | Zaitsev, Ie., & Panchyk, M. (2021). Thermometric | |
dc.relation.references | methods control of compression stator core state | |
dc.relation.references | of powerful turbogenerators. Works of the Institute | |
dc.relation.references | of Electrodynamics of the National Academy of | |
dc.relation.references | Sciences of Ukraine, (59), 086–086. https://doi.org/10.15407/publishing2021.59.086. | |
dc.relation.references | Zobrist, T. L., Burge, J. H., & Martin, H. M. (2009, | |
dc.relation.references | August). Laser tracker surface measurements of the 8.4 m GMT primary mirror segment. In Optical | |
dc.relation.references | Manufacturing and Testing VIII (Vol. 7426, p. 742613). | |
dc.relation.references | International Society for Optics and Photonics. | |
dc.relation.references | https://doi.org/10.1117/12.826706. | |
dc.relation.referencesen | Baran, P. (2012). Engineering geodesy. Kyiv: PAT | |
dc.relation.referencesen | "VIPOL". P. 618. (in Ukrainian). | |
dc.relation.referencesen | Burak, K. (2011). Technology of planning works and | |
dc.relation.referencesen | executive surveys using TPS. Geodesy, cartography | |
dc.relation.referencesen | and aerial photography, 75, 53–57. (in Ukrainian). | |
dc.relation.referencesen | https://science.lpnu.ua/istcgcap/all-volumes-andissues/volume-75-2011/technology-lay-out-worksand-executive-survey-using. | |
dc.relation.referencesen | Fys, M., Litynskyi, V., Vivat, A., & Litynskyi S. (2021). | |
dc.relation.referencesen | Investigation of formulas determination of a point’s | |
dc.relation.referencesen | plane coordinates by the inverslinear-angular resection. | |
dc.relation.referencesen | Geodesy, Cartography and Aerial Photography, (94), 20–28. https://doi.org/10.23939/istcgcap2021.94.020. | |
dc.relation.referencesen | Jiri, L., & Carell, R. (2012). Automated hydrostatic | |
dc.relation.referencesen | system at Temelin nuclear power plant facilities. | |
dc.relation.referencesen | Interaxpo Geo-Siberia, 168–175. (in Russian). | |
dc.relation.referencesen | file:///C:/Users/%D0%93%D0%B0%D0%BB%D0%B8%D0%BD%D0%B0/Downloads/avtomatizirovannaya-gidrostaticheskaya-sistema-naobektah-atomnoy-elektrostantsii-temelin.pdf. | |
dc.relation.referencesen | Khomenko, I., Plakhtiy O., Nerubatsky, V., & Stasyuk, I. | |
dc.relation.referencesen | (2020). Power engineering of Ukraine. Structure, | |
dc.relation.referencesen | governance, innovation. Monograph Kharkiv NTU | |
dc.relation.referencesen | "HPI" 2020 131 p. (in Ukrainian). | |
dc.relation.referencesen | Leica TS30 White Paper [Electronic resource]. URL: | |
dc.relation.referencesen | https://www.gefosleica.cz/ftp/White_papers/Total_stations/Leica_TS30_White_Paper_0904_766425_en.pdf. | |
dc.relation.referencesen | Litinsky. V., Kiselyk O, & Litynsky S. (2005). | |
dc.relation.referencesen | Consideration of level refraction with the use of | |
dc.relation.referencesen | CCD. Modern achievements of geodetic science | |
dc.relation.referencesen | and industry. Lviv. pp. 71–75. (in Ukrainian). | |
dc.relation.referencesen | http://science.lp.edu.ua/sites/default/files/Papers/gka_69_2007_14.pdf. | |
dc.relation.referencesen | Lityns’kyy, V., Fys, M., Pokotylo, I., & Lityns’kyy, S. | |
dc.relation.referencesen | (2014). Calculation of optimal values of measured | |
dc.relation.referencesen | lenghts for accurate determination of small segments. | |
dc.relation.referencesen | Geodesy, Cartography and Aerial Photography, | |
dc.relation.referencesen | (79), 42–47. https://science.lpnu.ua/istcgcap/allvolumes-and-issues/volume-79-2014/calculationoptimal-values-measured-lenghts-accurate. | |
dc.relation.referencesen | Litinsky, V., Vivat, A., Periy, S., & Litinsky, S., (2015). | |
dc.relation.referencesen | Method of measuring of exemplary basis of second | |
dc.relation.referencesen | category for verification of electronic total stations. | |
dc.relation.referencesen | Geodesy, Cartography and Aerial Photography, 81, 59–65. https://doi.org/10.23939/istcgcap2015.01.059. | |
dc.relation.referencesen | Petrakov, Y., & Shuplietsov, D. (2018). Accuracy control | |
dc.relation.referencesen | of contour milling on CNC machines. (in Ukrainian). | |
dc.relation.referencesen | https://doi.org/10.20535/2521-1943.2018.83.132223 | |
dc.relation.referencesen | Sukhodolya, O., Sidorenko, A., Begun, S., & Bilukha, A. | |
dc.relation.referencesen | (2014). Current state, problems and prospects of | |
dc.relation.referencesen | Ukraine's hydropower development. Analysis report. | |
dc.relation.referencesen | NISS, 54 p. (in Ukrainian). | |
dc.relation.referencesen | Vivat, A., Tserklevych, A., & Smirnova, O. (2018). A | |
dc.relation.referencesen | study of devices used for geometric parameter | |
dc.relation.referencesen | measurement of engineering building construction. | |
dc.relation.referencesen | Geodesy, cartography and aerial photography, (87), 21–29. https://doi.org/10.23939/istcgcap2018.01.021. | |
dc.relation.referencesen | Vivat, A., & Nazarchuk, N. (2019). Research the | |
dc.relation.referencesen | application of topcon is301 scanning total station for | |
dc.relation.referencesen | the building of space models of architectural forms | |
dc.relation.referencesen | Engineering geodesy, (67), 35–45. (in Ukrainian), | |
dc.relation.referencesen | https://doi.org/10.32347/0130-6014.2019.67.35-45. | |
dc.relation.referencesen | Zaitsev, Ie., & Panchyk, M. (2021). Thermometric | |
dc.relation.referencesen | methods control of compression stator core state | |
dc.relation.referencesen | of powerful turbogenerators. Works of the Institute | |
dc.relation.referencesen | of Electrodynamics of the National Academy of | |
dc.relation.referencesen | Sciences of Ukraine, (59), 086–086. https://doi.org/10.15407/publishing2021.59.086. | |
dc.relation.referencesen | Zobrist, T. L., Burge, J. H., & Martin, H. M. (2009, | |
dc.relation.referencesen | August). Laser tracker surface measurements of the 8.4 m GMT primary mirror segment. In Optical | |
dc.relation.referencesen | Manufacturing and Testing VIII (Vol. 7426, p. 742613). | |
dc.relation.referencesen | International Society for Optics and Photonics. | |
dc.relation.referencesen | https://doi.org/10.1117/12.826706. | |
dc.relation.uri | https://science.lpnu.ua/istcgcap/all-volumes-andissues/volume-75-2011/technology-lay-out-worksand-executive-survey-using | |
dc.relation.uri | https://doi.org/10.23939/istcgcap2021.94.020 | |
dc.relation.uri | file:///C:/Users/%D0%93%D0%B0%D0%BB%D0%B8%D0%BD%D0%B0/Downloads/avtomatizirovannaya-gidrostaticheskaya-sistema-naobektah-atomnoy-elektrostantsii-temelin.pdf | |
dc.relation.uri | https://www.gefosleica.cz/ftp/White_papers/Total_stations/Leica_TS30_White_Paper_0904_766425_en.pdf | |
dc.relation.uri | http://science.lp.edu.ua/sites/default/files/Papers/gka_69_2007_14.pdf | |
dc.relation.uri | https://science.lpnu.ua/istcgcap/allvolumes-and-issues/volume-79-2014/calculationoptimal-values-measured-lenghts-accurate | |
dc.relation.uri | https://doi.org/10.23939/istcgcap2015.01.059 | |
dc.relation.uri | https://doi.org/10.20535/2521-1943.2018.83.132223 | |
dc.relation.uri | https://doi.org/10.23939/istcgcap2018.01.021 | |
dc.relation.uri | https://doi.org/10.32347/0130-6014.2019.67.35-45 | |
dc.relation.uri | https://doi.org/10.15407/publishing2021.59.086 | |
dc.relation.uri | https://doi.org/10.1117/12.826706 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | вивірка великогабаритного обладнання | |
dc.subject | турбогенератор | |
dc.subject | просторовий методом електронної тахеометрії | |
dc.subject | вісь генератора та агрегату | |
dc.subject | підвищення точності вимірювань електронними тахеометрами | |
dc.subject | calibration of large equipment | |
dc.subject | turbogenerator | |
dc.subject | spatial method of electronic total station | |
dc.subject | axis of generator and aggregate | |
dc.subject | increase of accuracy of measurements by electronic total stations | |
dc.subject.udc | 528.4 | |
dc.title | Development methods of large-equipment installation in design position using electronic total stations | |
dc.title.alternative | Розробка методики встановлення великогабаритного обладнання у проектне положення з використанням електронних тахеометрів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1