Environmental risk assessment of explosive residues toxicological impact on humans on the former combat area

dc.citation.epage17
dc.citation.issue1
dc.citation.spage14
dc.contributor.affiliationHetman Petro Sahaydachnyi National Army Academy
dc.contributor.authorOrel, Serhiy
dc.contributor.authorDurach, Vadim
dc.contributor.authorNaumko, Mykhaylo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T08:06:34Z
dc.date.available2023-05-04T08:06:34Z
dc.date.created2022-06-01
dc.date.issued2022-06-01
dc.description.abstractThis article evaluates the impact of explosives residues left after the explosion of low-detonation munitions on the health of population (children and adults) living on the former battlefield. To determine the toxicological impact of explosives on humans, we used data from artillery shelling near the village of Stepanivka, Donetsk region, during the fighting in 2014. By the number of craters formed on the battlefield and their size, the calibre of the shells and, accordingly, the mass of the explosives were determined. When calculating the mass of unexploded explosives, it was assumed that the number of munitions with low detonation was 2.5 %, while the mass of “unburned” explosives in them was 37 % from the total. The types of explosives were mixtures of 2, 4, 6-trinitrotoluene (TNT) – 40 % and 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane (RDX) – 60 %. To assess the toxicological effects of explosives on humans, this study used the EPA's assessment model of health risk. Noncarcinogenic and carcinogenic risks associated with the influence of explosives on people were evaluated. The results of the risk assessment suggest that the residual amount of explosives in the soil does not lead to dangerous consequences for the health of people who are living on the territory of the former hostilities. However, the lack of data about the location of explosive objects (unexploded munitions, land mines etc.) into the soil of Donbas does not allow us fully assess their toxicological hazard to humans and the environment. The problem of the toxicological impact of explosive residues on residents and the environment of the Donbas region remains relevant.
dc.format.extent14-17
dc.format.pages4
dc.identifier.citationOrel S. Environmental risk assessment of explosive residues toxicological impact on humans on the former combat area / Serhiy Orel, Vadim Durach, Mykhaylo Naumko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 1. — P. 14–17.
dc.identifier.citationenOrel S. Environmental risk assessment of explosive residues toxicological impact on humans on the former combat area / Serhiy Orel, Vadim Durach, Mykhaylo Naumko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 1. — P. 14–17.
dc.identifier.doidoi.org/10.23939/ep2022.01.014
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59014
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 1 (7), 2022
dc.relation.referencesAdushkin, V., & Khristoforov B. (2004). Woronki nazemnyh
dc.relation.referenceskrupnomashtabnyh wzrywow. Fizika gorenia i wzrywa, 40, 71–75. Retrieved from https://www.sibran.ru/upload/iblock/bee/bee424ebef2576a299c622e808cfefef.pdf
dc.relation.referencesBroomandi, P. (2020). Soil Contamination in Areas Impacted
dc.relation.referencesby Military Activities: A Critical Review. Sustainability, 12, 9002. doi: https://doi.org/10.3390/su12219002
dc.relation.referencesCRREL-TR-04-14 (2004). Sampling Strategies Near a LowOrder Detonation and a Target at an Artillery Impact
dc.relation.referencesArea. Retrieved from https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/5375/1/CRREL-TR-04-14.pdf
dc.relation.referencesEnvironmental Health Risk Assessment (2012). Guidelines for
dc.relation.referencesAssessing Human Health Risks from Environmental
dc.relation.referencesHazards. Retrieved from https://www1.health.gov.au/internet/main/publishing.nsf/Content/A12B57E41EC9F326CA257BF0001F9E7D/$File/Environmental-health-RiskAssessment.pdfEPA/540/1-89/002 (1989). Risk assessment guidance for
dc.relation.referencesSuperfund. Vol 1. Human health evaluation manual, (Part A).
dc.relation.referencesRetrieved from https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdfEPA/600/R-09/052F (2011). Exposure factors handbook.
dc.relation.referencesRetrieved from http://www.epa.gov/ncea/efh.EPA-505-S-11-001 (2012). Site Characterization for Munitions
dc.relation.referencesConstituents. Retrieved from https://www.epa.gov/sites/default/files/documents/site_characterization_for_munitions_constituents.pdf
dc.relation.referencesFCSAP (2012). Federal Contaminated Sites Action Plan.
dc.relation.referencesEcological Risk Assessment Guidance. Retrieved from
dc.relation.referenceshttp://www.geoenvirologic.ca/Documents/20120631_ERGuidance_Final_En.pdf
dc.relation.referencesKravchenko, O. (2015). Voyenni diyi na skhodi Ukrayiny –
dc.relation.referencestsyvilizatsiyni vyklyky lyudstvu. Lviv, EPL. Retrieved from
dc.relation.referenceshttps://deis.menr.gov.ua/lib/files/EPL_Posibnuk_ATO_Ukrainian.pdf
dc.relation.referencesLima, D., Bezerra, M., Neves, E., & Moreira, F. (2011).
dc.relation.referencesImpact of ammunition and military explosives on human
dc.relation.referenceshealth and the environment. Rev. Environ. Health, 26, 101–110. doi:. https://doi.org/10.1515/reveh.2011.014
dc.relation.referencesLu, H., Axe, L., & Tyson, T. (2003). Development and
dc.relation.referencesapplication of computer simulation tools for ecological
dc.relation.referencesrisk assessment. Environ. Modeling and Assessment, 8, 311–322. doi: https://doi.org/10.1023/B%3AENMO.0000004585.85305.3D
dc.relation.referencesMacDonald, J. (2004). Unexploded ordnance: a critical review
dc.relation.referencesof risk assessment methods. RAND Corporation. Retrieved
dc.relation.referencesfrom https://www.rand.org/content/dam/rand/pubs/monograph_reports/2005/MR1674.pdf
dc.relation.referencesOh, S. Y., Yoon, H. S., Jeong, T. Y., & Kim, S. D. (2016).
dc.relation.referencesEvaluation of remediation processes for explosivecontaminated soils: Kinetics and Microtox bioassay. J.
dc.relation.referencesChem. Technol. Biotechnol, 91, 928–937. doi:
dc.relation.referenceshttps://doi.org/10.1002/jctb.4658
dc.relation.referencesPichtel, J. (2012). Fate of Distribution and Military Explosives
dc.relation.referencesand Propellants in Soil: A Review. Appl. Environ. Soil
dc.relation.referencesSci., 2012, 17236, 33 doi: https://doi.org/10.1155/2012/617236
dc.relation.referencesRyu, Н., Han., J. K., Jung J. W., Bae, B., & Nam, K. (2007).
dc.relation.referencesHuman health risk assessment of explosives and heavy
dc.relation.referencesmetals at a military gunnery range. Environ. Geochem.
dc.relation.referencesHealth, 29, 259–269; doi: https://doi.org/10.1007/s10653-007-9101-5
dc.relation.referencesSunahara, G., Lotufo, G., Kuperman, R.G., & Hawari, J.
dc.relation.references(2009). Ecotoxicology of explosives. Boca Raton, CRC
dc.relation.referencesPress. Retrieved from https://www.routledge.com/Ecotoxicology-of-Explosives/Sunahara-Lotufo-KupermanHawari/p/book/9780367385590
dc.relation.referencesToxicological Profile for RDX (2012). Retrieved from
dc.relation.referenceshttps://www.atsdr.cdc.gov/toxprofiles/tp78.pdf.
dc.relation.referencesToxicological Profile for TNT (1995). Retrieved from
dc.relation.referenceshttps://www.atsdr.cdc.gov/toxprofiles/tp81.pdf.
dc.relation.referencesWalsh, M. E., Taylor, S., Hewitt, A. D., Walsh, M. R.,
dc.relation.referencesRamsey, C. A., & Collins, C. M. (2010). Field
dc.relation.referencesоbservations of the persistence of Comp B explosives
dc.relation.referencesresidues in a salt marsh impact area. Chemosphere, 78, 467–473. doi: http://dx.doi.org/10.1016/j.chemosphere.2009.10.021
dc.relation.referencesWHO (2010). Human health risk assessment toolkit: chemical hazards. Retrieved from https://apps.who.int/iris/handle/10665/44458
dc.relation.referencesWilliams, M., Reddy, G., Quinn, M., & Johnson, M. (2015).
dc.relation.referencesWildlife Toxicity Assessments for Chemicals of Military
dc.relation.referencesConcern. Elsevier Inc. doi: https://doi.org/10.1016/C2013-0-13473-3
dc.relation.referencesenAdushkin, V., & Khristoforov B. (2004). Woronki nazemnyh
dc.relation.referencesenkrupnomashtabnyh wzrywow. Fizika gorenia i wzrywa, 40, 71–75. Retrieved from https://www.sibran.ru/upload/iblock/bee/bee424ebef2576a299c622e808cfefef.pdf
dc.relation.referencesenBroomandi, P. (2020). Soil Contamination in Areas Impacted
dc.relation.referencesenby Military Activities: A Critical Review. Sustainability, 12, 9002. doi: https://doi.org/10.3390/su12219002
dc.relation.referencesenCRREL-TR-04-14 (2004). Sampling Strategies Near a LowOrder Detonation and a Target at an Artillery Impact
dc.relation.referencesenArea. Retrieved from https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/5375/1/CRREL-TR-04-14.pdf
dc.relation.referencesenEnvironmental Health Risk Assessment (2012). Guidelines for
dc.relation.referencesenAssessing Human Health Risks from Environmental
dc.relation.referencesenHazards. Retrieved from https://www1.health.gov.au/internet/main/publishing.nsf/Content/A12B57E41EC9F326CA257BF0001F9E7D/$File/Environmental-health-RiskAssessment.pdfEPA/540/1-89/002 (1989). Risk assessment guidance for
dc.relation.referencesenSuperfund. Vol 1. Human health evaluation manual, (Part A).
dc.relation.referencesenRetrieved from https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdfEPA/600/R-09/052F (2011). Exposure factors handbook.
dc.relation.referencesenRetrieved from http://www.epa.gov/ncea/efh.EPA-505-S-11-001 (2012). Site Characterization for Munitions
dc.relation.referencesenConstituents. Retrieved from https://www.epa.gov/sites/default/files/documents/site_characterization_for_munitions_constituents.pdf
dc.relation.referencesenFCSAP (2012). Federal Contaminated Sites Action Plan.
dc.relation.referencesenEcological Risk Assessment Guidance. Retrieved from
dc.relation.referencesenhttp://www.geoenvirologic.ca/Documents/20120631_ERGuidance_Final_En.pdf
dc.relation.referencesenKravchenko, O. (2015). Voyenni diyi na skhodi Ukrayiny –
dc.relation.referencesentsyvilizatsiyni vyklyky lyudstvu. Lviv, EPL. Retrieved from
dc.relation.referencesenhttps://deis.menr.gov.ua/lib/files/EPL_Posibnuk_ATO_Ukrainian.pdf
dc.relation.referencesenLima, D., Bezerra, M., Neves, E., & Moreira, F. (2011).
dc.relation.referencesenImpact of ammunition and military explosives on human
dc.relation.referencesenhealth and the environment. Rev. Environ. Health, 26, 101–110. doi:. https://doi.org/10.1515/reveh.2011.014
dc.relation.referencesenLu, H., Axe, L., & Tyson, T. (2003). Development and
dc.relation.referencesenapplication of computer simulation tools for ecological
dc.relation.referencesenrisk assessment. Environ. Modeling and Assessment, 8, 311–322. doi: https://doi.org/10.1023/B%3AENMO.0000004585.85305.3D
dc.relation.referencesenMacDonald, J. (2004). Unexploded ordnance: a critical review
dc.relation.referencesenof risk assessment methods. RAND Corporation. Retrieved
dc.relation.referencesenfrom https://www.rand.org/content/dam/rand/pubs/monograph_reports/2005/MR1674.pdf
dc.relation.referencesenOh, S. Y., Yoon, H. S., Jeong, T. Y., & Kim, S. D. (2016).
dc.relation.referencesenEvaluation of remediation processes for explosivecontaminated soils: Kinetics and Microtox bioassay. J.
dc.relation.referencesenChem. Technol. Biotechnol, 91, 928–937. doi:
dc.relation.referencesenhttps://doi.org/10.1002/jctb.4658
dc.relation.referencesenPichtel, J. (2012). Fate of Distribution and Military Explosives
dc.relation.referencesenand Propellants in Soil: A Review. Appl. Environ. Soil
dc.relation.referencesenSci., 2012, 17236, 33 doi: https://doi.org/10.1155/2012/617236
dc.relation.referencesenRyu, N., Han., J. K., Jung J. W., Bae, B., & Nam, K. (2007).
dc.relation.referencesenHuman health risk assessment of explosives and heavy
dc.relation.referencesenmetals at a military gunnery range. Environ. Geochem.
dc.relation.referencesenHealth, 29, 259–269; doi: https://doi.org/10.1007/s10653-007-9101-5
dc.relation.referencesenSunahara, G., Lotufo, G., Kuperman, R.G., & Hawari, J.
dc.relation.referencesen(2009). Ecotoxicology of explosives. Boca Raton, CRC
dc.relation.referencesenPress. Retrieved from https://www.routledge.com/Ecotoxicology-of-Explosives/Sunahara-Lotufo-KupermanHawari/p/book/9780367385590
dc.relation.referencesenToxicological Profile for RDX (2012). Retrieved from
dc.relation.referencesenhttps://www.atsdr.cdc.gov/toxprofiles/tp78.pdf.
dc.relation.referencesenToxicological Profile for TNT (1995). Retrieved from
dc.relation.referencesenhttps://www.atsdr.cdc.gov/toxprofiles/tp81.pdf.
dc.relation.referencesenWalsh, M. E., Taylor, S., Hewitt, A. D., Walsh, M. R.,
dc.relation.referencesenRamsey, C. A., & Collins, C. M. (2010). Field
dc.relation.referencesenobservations of the persistence of Comp B explosives
dc.relation.referencesenresidues in a salt marsh impact area. Chemosphere, 78, 467–473. doi: http://dx.doi.org/10.1016/j.chemosphere.2009.10.021
dc.relation.referencesenWHO (2010). Human health risk assessment toolkit: chemical hazards. Retrieved from https://apps.who.int/iris/handle/10665/44458
dc.relation.referencesenWilliams, M., Reddy, G., Quinn, M., & Johnson, M. (2015).
dc.relation.referencesenWildlife Toxicity Assessments for Chemicals of Military
dc.relation.referencesenConcern. Elsevier Inc. doi: https://doi.org/10.1016/P.2013-0-13473-3
dc.relation.urihttps://www.sibran.ru/upload/iblock/bee/bee424ebef2576a299c622e808cfefef.pdf
dc.relation.urihttps://doi.org/10.3390/su12219002
dc.relation.urihttps://erdc-library.erdc.dren.mil/jspui/bitstream/11681/5375/1/CRREL-TR-04-14.pdf
dc.relation.urihttps://www1.health.gov.au/internet/main/publishing.nsf/Content/A12B57E41EC9F326CA257BF0001F9E7D/$File/Environmental-health-RiskAssessment.pdfEPA/540/1-89/002
dc.relation.urihttps://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdfEPA/600/R-09/052F
dc.relation.urihttp://www.epa.gov/ncea/efh.EPA-505-S-11-001
dc.relation.urihttps://www.epa.gov/sites/default/files/documents/site_characterization_for_munitions_constituents.pdf
dc.relation.urihttp://www.geoenvirologic.ca/Documents/20120631_ERGuidance_Final_En.pdf
dc.relation.urihttps://deis.menr.gov.ua/lib/files/EPL_Posibnuk_ATO_Ukrainian.pdf
dc.relation.urihttps://doi.org/10.1515/reveh.2011.014
dc.relation.urihttps://doi.org/10.1023/B%3AENMO.0000004585.85305.3D
dc.relation.urihttps://www.rand.org/content/dam/rand/pubs/monograph_reports/2005/MR1674.pdf
dc.relation.urihttps://doi.org/10.1002/jctb.4658
dc.relation.urihttps://doi.org/10.1155/2012/617236
dc.relation.urihttps://doi.org/10.1007/s10653-007-9101-5
dc.relation.urihttps://www.routledge.com/Ecotoxicology-of-Explosives/Sunahara-Lotufo-KupermanHawari/p/book/9780367385590
dc.relation.urihttps://www.atsdr.cdc.gov/toxprofiles/tp78.pdf
dc.relation.urihttps://www.atsdr.cdc.gov/toxprofiles/tp81.pdf
dc.relation.urihttp://dx.doi.org/10.1016/j.chemosphere.2009.10.021
dc.relation.urihttps://apps.who.int/iris/handle/10665/44458
dc.relation.urihttps://doi.org/10.1016/C2013-0-13473-3
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Orel S., Durach V., Naumko M., 2022
dc.subjectrisk assessment
dc.subjecttoxicological impact
dc.subjectexplosives
dc.subjectlow detonation
dc.titleEnvironmental risk assessment of explosive residues toxicological impact on humans on the former combat area
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v7n1_Orel_S-Environmental_risk_assessment_14-17.pdf
Size:
134.06 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v7n1_Orel_S-Environmental_risk_assessment_14-17__COVER.png
Size:
1.07 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: