Preparation and Characterization of Red Mud-Based Geopolymer Composited with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution

dc.citation.epage869
dc.citation.issue4
dc.citation.spage857
dc.contributor.affiliationVan Lang University
dc.contributor.affiliationUniversiti Sains Malaysia
dc.contributor.authorNguyen, Khoa Dang
dc.contributor.authorTran, Anh Thi Hoang
dc.contributor.authorKaus, Noor Haida Mohd
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:11Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПромислові відходи на основі геополімерів у формі червоного шламу (ЧШ) були успішно отримані в присутності різної кількості золи рисового лушпиння (ЗРЛ). Під час приготування варіювали кількість доданої в геополімерну композицію ЗРЛ від 10 до 50 % за масового співвідношення розчину в'яжучої речовини (Na2SiO3) і активованого розчину лужного металу (NaOH 7 M) 2,5, а умови затвердіння фіксували за 333 К протягом 24 год. Для характеристики оцінювали морфологію поверхні за допомогою сканувального електронного мікроскопа (SEM), оснащеного енергодисперсійною рентгенівською камерою, яка виявляла розподіл елементів до і після геополімеризації. Для встановлення утворення геополімеру використовували інфрачервону спектроскопію з Фур'є-перетворенням (FT-IR). Вплив кількості ЗРЛ на величину питомої площі поверхні за методом Брунауера-Еммета-Теллера (БЕТ) і розмір пор за методом Барретта-Джойнера-Галенди (BJH) отриманих геополімерів визначали за допомогою приладу для адсорбції газоподібного азоту. В адсорбції бромкрезолового зеленого (БЗ), яку проводили за рН 2, вищий вміст ЗРЛ у складі геополімеру збільшував адсорбційну здатність протягом 180 хвилин. Крім того, поведінка адсорбції змішаного геополімеру щодо БЗ добре узгоджується з моделлю Ленгмюра, вказуючи на те, що адсорбція відбувається на однорідній моношаровій поверхні геополімеру. З цього дослідження випливає, що ЗРЛ може бути природним потенційним наповнювачем для покращення поглинання БЗ геополімером на основі ЧШ в очищенні стічних вод.
dc.description.abstractGeopolymer-based industrial waste as red mud (RM) was successfully obtained in the presence of different loadings of rice husk ash (RHA). During the preparation, the added amounts of RHA in the geopolymer composition were varied from 10 to 50 % when the mass ratio of binder solution (Na2SiO3) and activated alkali-metal solution (NaOH 7 M) were 2.5 and the curing condition was fixed at 333 K within 24 h. For characterization, the surface morphology was evaluated by scanning electron microscope (SEM) equipped with the energy-dispersive X-ray, which detected the distribution of elements before and after the geopolymerization. To indicate the formation of geopolymer, Fourier–transform infrared spectroscopy (FT-IR) was used. The effect of the loading amounts of RHA on the Brunauer–Emmett Teller (BET) surface area value and Barrett–Joyner–Halenda (BJH) pore size of the obtained geopolymers were determined using a nitrogen gas adsorption instrument. In the bromocresol-green (BG) adsorption performed at pH 2, the higher addition of RHA in the geopolymer composition enhanced the adsorption capacities within 180 minutes. In addition, the adsorption behavior of the mixed geopolymer to BG fits well the Langmuir model, indicating that the adsorption occurs on the homogeneous monolayer surface of geopolymer. From this study, the RHA could be a natural potential filler to improve the BG-uptake of RM-based geopolymer in wastewater treatment.
dc.format.extent857-869
dc.format.pages13
dc.identifier.citationNguyen K. D. Preparation and Characterization of Red Mud-Based Geopolymer Composited with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution / Khoa Dang Nguyen, Anh Thi Hoang Tran, Noor Haida Mohd Kaus // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 857–869.
dc.identifier.citationenNguyen K. D. Preparation and Characterization of Red Mud-Based Geopolymer Composited with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution / Khoa Dang Nguyen, Anh Thi Hoang Tran, Noor Haida Mohd Kaus // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 857–869.
dc.identifier.doidoi.org/10.23939/chcht17.04.857
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63696
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Gadhi, T.A.; Ali, I.; Mahar, R.B.; Maitlo, H.A.; Channa, N. Waste Heat and Wastewater Recovery in Textile Processing Industry: A Case Study of Adopted Practices. Mehran Univ. res. j. eng. technol. 2021, 40, 606–616. https://doi.org/10.22581/muet1982.2103.14
dc.relation.references[2] Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
dc.relation.references[3] Nguyen Thi Phuong, L. The Status and Environmental Problems of Textile Industry. In Environmental Governance in Asia: New State-Society Relations, NREF-AGITS Conference; Kunphoommarl, M.; Oosterveer, P.; Sonnenfeld D.A., Eds.; Chiang Mai, 2003; pp. 245–258.
dc.relation.references[4] Ellen MacArthur Foundation. A new Textiles Economy: Redesigning Fashion’s Future; 2017. https://library.unccd.int/Details/fullCatalogue/1356
dc.relation.references[5] Ito, T.; Adachi, Y.; Yamanashi, Y.; Shimada, Y. Long–Term Natural Remediation Process in Textile Dye–Polluted River Sediment Driven by Bacterial Community Changes. Water Res. 2016, 100, 458–465. https://doi.org/10.1016/j.watres.2016.05.050
dc.relation.references[6] Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile Finishing Dyes and their Impact on Aquatic Environs. Heliyon 2019, 5, e02711. https://doi.org/10.1016/j.heliyon.2019.e02711
dc.relation.references[7] Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
dc.relation.references[8] Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
dc.relation.references[9] Maleki, A.; Mohammad, M.; Emdadi, Z.; Asim, N.; Azizi, M.; Safaei, J. Adsorbent Materials Based on a Geopolymer Paste for Dye Removal from Aqueous Solutions. Arab. J. Chem. 2020, 13, 3017–3025. https://doi.org/10.1016/j.arabjc.2018.08.011
dc.relation.references[10] Onutai, S.; Jiemsirilers, S.; Thavorniti, P.; Kobayashi, T. Aluminium Hydroxide Waste Based Geopolymer Composed of Fly Ash for Sustainable Cement Materials. Constr. Build. 2015, 101, 298–308. https://doi.org/10.1016/j.conbuildmat.2015.10.097
dc.relation.references[11] Nguyen, K.; My, Q.N.V.; Kim, A.P.T.; Tran, P.T.; Huynh, D.; Le, O. Coal Fly Ash-Slag and Slag-Based Geopolymer as an Absorbent for the Removal of Methylene Blue in Wastewater. Science & Technology Development Journal 2022, 25, 2215–2223. https://doi.org/10.32508/stdj.v25i1.3421
dc.relation.references[12] Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. https://doi.org/10.3390/ma15196852.
dc.relation.references[13] Onutai, S.; Jiemsirilers, S.; Wada, S.; Thavorniti, P. Effect of Sodium Hydroxide Solution on the Properties of Geopolymer Based on Fly Ash and Aluminium Waste Blend. Warasan Technol Suranaree 2014, 21, 9–14.
dc.relation.references[14] Tuyan, M.; Andiç-Çakir, Ö.; Ramyar, K. Effect of Alkali Activator Concentration and Curing Condition on Strength and Microstructure of Waste Clay Brick Powder-Based Geopolymer. Compos. B. Eng. 2018, 135, 242–252. https://doi.org/10.1016/j.compositesb.2017.10.013
dc.relation.references[15] Pimraksa, K.; Chindaprasirt, P.; Rungchet, A.; Sagoe-Crentsil, K.; Sato, T. Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios. Mater. Sci. Eng. A 2011, 528, 6616–6623. https://doi.org/10.1016/j.msea.2011.04.044
dc.relation.references[16] Görhan, G.; Kürklü, G. The Influence of the NaOH Solution on the Properties of the Fly Ash-Based Geopolymer Mortar Cured at Different Temperatures. Compos. B. Eng. 2014, 58, 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082
dc.relation.references[17] Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization Process of Alkali–Metakaolinite Characterized by Isothermal Calorimetry. Thermochim Acta 2009, 493, 49–54. https://doi.org/10.1016/j.tca.2009.04.002
dc.relation.references[18] Nazari, A.; Bagheri, A.; Riahi, S. Properties of Geopolymer with Seeded Fly Ash and Rice Husk Bark Ash. Mater. Sci. Eng. A 2011, 528, 7395–7401. https://doi.org/10.1016/j.msea.2011.06.027
dc.relation.references[19] Onutai, S.; Jiemsirilers, S.; Thavorniti, P.; Kobayashi, T. Fast Microwave Syntheses of Fly Ash Based Porous Geopolymers in the Presence of High Alkali Concentration. Ceram. Int. 2016, 42, 9866–9874. https://doi.org/10.1016/j.ceramint.2016.03.086
dc.relation.references[20] Yu, H.; Xu, M.X.; Chen, C.; He, Y.; Cui, X.M. A Review on the Porous Geopolymer Preparation for Structural and Functional Materials Applications. Int. J. Appl. Ceram 2022, 19, 1793–1813. https://doi.org/10.1111/ijac.14028
dc.relation.references[21] Joseph, C.G.; Taufiq-Yap, Y.H.; Krishnan, V.; Puma, G.L. Application of Modified Red Mud in Environmentally-Benign Applications: A Review. Environ. Eng. Res. 2020, 25, 795–806. https://doi.org/10.4491/eer.2019.374
dc.relation.references[22] Fuad, M.Y.A.; Ismail, Z.; Ishak, Z.A.M.; Omar, A.K.M. Rice Husk Ash. In Plastics Additives: An A-Z reference; Pritchard, G., Ed.; Springer Netherlands: Dordrecht, 1998; pp 561–566. 10.1007/978-94-011-5862-6_62
dc.relation.references[23] Costa, J.A.S.; Paranhos, C.M. Evaluation of Rice Husk Ash in Adsorption of Remazol Red Dye from Aqueous Media. SN Appl. Sci. 2019, 1, 397. https://doi.org/10.1007/s42452-019-0436-1
dc.relation.references[24] Shokrollahi, A.; Alizadeh, A.; Malekhosseini, Z.; Ranjbar, M. Removal of Bromocresol Green from Aqueous Solution via Adsorption on Ziziphus nummularia as a New, Natural, and Low-Cost Adsorbent: Kinetic and Thermodynamic Study of Removal Process. J. Chem. Eng. Data 2011, 56, 3738–3746. https://doi.org/10.1021/je200311y
dc.relation.references[25] Elijah, O.; Collins, O.; Okonkwo, C.; Jessica, N.-B. Application of Modified Agricultural Waste in the Adsorption of Bromocresol Green Dye. Asian J. Chem. Sci. 2020, 7, 15–24. https://doi.org/10.9734/ajocs/2020/v7i119011
dc.relation.references[26] Perná, I.; Hanzlíček, T.; Šupová, M. The Identification of Geopolymer Affinity in Specific Cases of Clay Materials. Appl. Clay Sci. 2014, 102, 213–219. https://doi.org/10.1016/j.clay.2014.09.042
dc.relation.references[27] Singh, S.; Aswath, M.U.; Das Biswas, R.; Ranganath, R.V.; Choudhary, H.K.; Kumar, R.; Sahoo, B. Role of Iron in the Enhanced Reactivity of Pulverized Red Mud: Analysis by Mössbauer Spectroscopy and FTIR Spectroscopy. Case Stud. Constr. Mater. 2019, 11, e00266. https://doi.org/10.1016/j.cscm.2019.e00266
dc.relation.references[28] Adams, F.V.; Ikotun, B.D.; Patrick, D.O.; Mulaba-Bafubiandi, A.F. Characterization of Rice Hull Ash and Its Performance in Turbidity Removal from Water. Part. Sci. Technol. 2014, 32, 329–333. https://doi.org/10.1080/02726351.2013.867001
dc.relation.references[29] Rahman, M.M.; Muttakin, M.; Pal, A.; Shafiullah, A.Z.; Saha, B.B. A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies 2019, 12, 4565. https://doi.org/10.3390/en12234565.
dc.relation.references[30] Donohue, M.D.; Aranovich, G.L. Classification of Gibbs Adsorption Isotherms. Adv. Colloid Interface Sci. 1998, 76-77, 137–152. https://doi.org/10.1016/S0001-8686(98)00044-X
dc.relation.references[31] Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.L.; Rodriguez-Reinoso, F. Characterization of the Adsorption Site Energies and Heterogeneous Surfaces of Porous Materials. J. Mater. Chem. A 2019, 7, 10104–10137. https://doi.org/10.1039/C9TA00287A
dc.relation.references[32] Liou, T.-H.; Liou, Y.H. Utilization of Rice Husk Ash in the Preparation of Graphene-Oxide-Based Mesoporous Nanocomposites with Excellent Adsorption Performance. Materials 2021, 14, 1214. https://doi.org/10.3390/ma14051214.
dc.relation.referencesen[1] Gadhi, T.A.; Ali, I.; Mahar, R.B.; Maitlo, H.A.; Channa, N. Waste Heat and Wastewater Recovery in Textile Processing Industry: A Case Study of Adopted Practices. Mehran Univ. res. j. eng. technol. 2021, 40, 606–616. https://doi.org/10.22581/muet1982.2103.14
dc.relation.referencesen[2] Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
dc.relation.referencesen[3] Nguyen Thi Phuong, L. The Status and Environmental Problems of Textile Industry. In Environmental Governance in Asia: New State-Society Relations, NREF-AGITS Conference; Kunphoommarl, M.; Oosterveer, P.; Sonnenfeld D.A., Eds.; Chiang Mai, 2003; pp. 245–258.
dc.relation.referencesen[4] Ellen MacArthur Foundation. A new Textiles Economy: Redesigning Fashion’s Future; 2017. https://library.unccd.int/Details/fullCatalogue/1356
dc.relation.referencesen[5] Ito, T.; Adachi, Y.; Yamanashi, Y.; Shimada, Y. Long–Term Natural Remediation Process in Textile Dye–Polluted River Sediment Driven by Bacterial Community Changes. Water Res. 2016, 100, 458–465. https://doi.org/10.1016/j.watres.2016.05.050
dc.relation.referencesen[6] Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile Finishing Dyes and their Impact on Aquatic Environs. Heliyon 2019, 5, e02711. https://doi.org/10.1016/j.heliyon.2019.e02711
dc.relation.referencesen[7] Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
dc.relation.referencesen[8] Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
dc.relation.referencesen[9] Maleki, A.; Mohammad, M.; Emdadi, Z.; Asim, N.; Azizi, M.; Safaei, J. Adsorbent Materials Based on a Geopolymer Paste for Dye Removal from Aqueous Solutions. Arab. J. Chem. 2020, 13, 3017–3025. https://doi.org/10.1016/j.arabjc.2018.08.011
dc.relation.referencesen[10] Onutai, S.; Jiemsirilers, S.; Thavorniti, P.; Kobayashi, T. Aluminium Hydroxide Waste Based Geopolymer Composed of Fly Ash for Sustainable Cement Materials. Constr. Build. 2015, 101, 298–308. https://doi.org/10.1016/j.conbuildmat.2015.10.097
dc.relation.referencesen[11] Nguyen, K.; My, Q.N.V.; Kim, A.P.T.; Tran, P.T.; Huynh, D.; Le, O. Coal Fly Ash-Slag and Slag-Based Geopolymer as an Absorbent for the Removal of Methylene Blue in Wastewater. Science & Technology Development Journal 2022, 25, 2215–2223. https://doi.org/10.32508/stdj.v25i1.3421
dc.relation.referencesen[12] Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. https://doi.org/10.3390/ma15196852.
dc.relation.referencesen[13] Onutai, S.; Jiemsirilers, S.; Wada, S.; Thavorniti, P. Effect of Sodium Hydroxide Solution on the Properties of Geopolymer Based on Fly Ash and Aluminium Waste Blend. Warasan Technol Suranaree 2014, 21, 9–14.
dc.relation.referencesen[14] Tuyan, M.; Andiç-Çakir, Ö.; Ramyar, K. Effect of Alkali Activator Concentration and Curing Condition on Strength and Microstructure of Waste Clay Brick Powder-Based Geopolymer. Compos. B. Eng. 2018, 135, 242–252. https://doi.org/10.1016/j.compositesb.2017.10.013
dc.relation.referencesen[15] Pimraksa, K.; Chindaprasirt, P.; Rungchet, A.; Sagoe-Crentsil, K.; Sato, T. Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios. Mater. Sci. Eng. A 2011, 528, 6616–6623. https://doi.org/10.1016/j.msea.2011.04.044
dc.relation.referencesen[16] Görhan, G.; Kürklü, G. The Influence of the NaOH Solution on the Properties of the Fly Ash-Based Geopolymer Mortar Cured at Different Temperatures. Compos. B. Eng. 2014, 58, 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082
dc.relation.referencesen[17] Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization Process of Alkali–Metakaolinite Characterized by Isothermal Calorimetry. Thermochim Acta 2009, 493, 49–54. https://doi.org/10.1016/j.tca.2009.04.002
dc.relation.referencesen[18] Nazari, A.; Bagheri, A.; Riahi, S. Properties of Geopolymer with Seeded Fly Ash and Rice Husk Bark Ash. Mater. Sci. Eng. A 2011, 528, 7395–7401. https://doi.org/10.1016/j.msea.2011.06.027
dc.relation.referencesen[19] Onutai, S.; Jiemsirilers, S.; Thavorniti, P.; Kobayashi, T. Fast Microwave Syntheses of Fly Ash Based Porous Geopolymers in the Presence of High Alkali Concentration. Ceram. Int. 2016, 42, 9866–9874. https://doi.org/10.1016/j.ceramint.2016.03.086
dc.relation.referencesen[20] Yu, H.; Xu, M.X.; Chen, C.; He, Y.; Cui, X.M. A Review on the Porous Geopolymer Preparation for Structural and Functional Materials Applications. Int. J. Appl. Ceram 2022, 19, 1793–1813. https://doi.org/10.1111/ijac.14028
dc.relation.referencesen[21] Joseph, C.G.; Taufiq-Yap, Y.H.; Krishnan, V.; Puma, G.L. Application of Modified Red Mud in Environmentally-Benign Applications: A Review. Environ. Eng. Res. 2020, 25, 795–806. https://doi.org/10.4491/eer.2019.374
dc.relation.referencesen[22] Fuad, M.Y.A.; Ismail, Z.; Ishak, Z.A.M.; Omar, A.K.M. Rice Husk Ash. In Plastics Additives: An A-Z reference; Pritchard, G., Ed.; Springer Netherlands: Dordrecht, 1998; pp 561–566. 10.1007/978-94-011-5862-6_62
dc.relation.referencesen[23] Costa, J.A.S.; Paranhos, C.M. Evaluation of Rice Husk Ash in Adsorption of Remazol Red Dye from Aqueous Media. SN Appl. Sci. 2019, 1, 397. https://doi.org/10.1007/s42452-019-0436-1
dc.relation.referencesen[24] Shokrollahi, A.; Alizadeh, A.; Malekhosseini, Z.; Ranjbar, M. Removal of Bromocresol Green from Aqueous Solution via Adsorption on Ziziphus nummularia as a New, Natural, and Low-Cost Adsorbent: Kinetic and Thermodynamic Study of Removal Process. J. Chem. Eng. Data 2011, 56, 3738–3746. https://doi.org/10.1021/je200311y
dc.relation.referencesen[25] Elijah, O.; Collins, O.; Okonkwo, C.; Jessica, N.-B. Application of Modified Agricultural Waste in the Adsorption of Bromocresol Green Dye. Asian J. Chem. Sci. 2020, 7, 15–24. https://doi.org/10.9734/ajocs/2020/v7i119011
dc.relation.referencesen[26] Perná, I.; Hanzlíček, T.; Šupová, M. The Identification of Geopolymer Affinity in Specific Cases of Clay Materials. Appl. Clay Sci. 2014, 102, 213–219. https://doi.org/10.1016/j.clay.2014.09.042
dc.relation.referencesen[27] Singh, S.; Aswath, M.U.; Das Biswas, R.; Ranganath, R.V.; Choudhary, H.K.; Kumar, R.; Sahoo, B. Role of Iron in the Enhanced Reactivity of Pulverized Red Mud: Analysis by Mössbauer Spectroscopy and FTIR Spectroscopy. Case Stud. Constr. Mater. 2019, 11, e00266. https://doi.org/10.1016/j.cscm.2019.e00266
dc.relation.referencesen[28] Adams, F.V.; Ikotun, B.D.; Patrick, D.O.; Mulaba-Bafubiandi, A.F. Characterization of Rice Hull Ash and Its Performance in Turbidity Removal from Water. Part. Sci. Technol. 2014, 32, 329–333. https://doi.org/10.1080/02726351.2013.867001
dc.relation.referencesen[29] Rahman, M.M.; Muttakin, M.; Pal, A.; Shafiullah, A.Z.; Saha, B.B. A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies 2019, 12, 4565. https://doi.org/10.3390/en12234565.
dc.relation.referencesen[30] Donohue, M.D.; Aranovich, G.L. Classification of Gibbs Adsorption Isotherms. Adv. Colloid Interface Sci. 1998, 76-77, 137–152. https://doi.org/10.1016/S0001-8686(98)00044-X
dc.relation.referencesen[31] Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.L.; Rodriguez-Reinoso, F. Characterization of the Adsorption Site Energies and Heterogeneous Surfaces of Porous Materials. J. Mater. Chem. A 2019, 7, 10104–10137. https://doi.org/10.1039/P.9TA00287A
dc.relation.referencesen[32] Liou, T.-H.; Liou, Y.H. Utilization of Rice Husk Ash in the Preparation of Graphene-Oxide-Based Mesoporous Nanocomposites with Excellent Adsorption Performance. Materials 2021, 14, 1214. https://doi.org/10.3390/ma14051214.
dc.relation.urihttps://doi.org/10.22581/muet1982.2103.14
dc.relation.urihttps://doi.org/10.1016/j.ecoenv.2021.113160
dc.relation.urihttps://library.unccd.int/Details/fullCatalogue/1356
dc.relation.urihttps://doi.org/10.1016/j.watres.2016.05.050
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2019.e02711
dc.relation.urihttps://doi.org/10.1016/j.jece.2018.06.060
dc.relation.urihttps://doi.org/10.1016/j.cis.2014.04.002
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2018.08.011
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2015.10.097
dc.relation.urihttps://doi.org/10.32508/stdj.v25i1.3421
dc.relation.urihttps://doi.org/10.3390/ma15196852
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2017.10.013
dc.relation.urihttps://doi.org/10.1016/j.msea.2011.04.044
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2013.10.082
dc.relation.urihttps://doi.org/10.1016/j.tca.2009.04.002
dc.relation.urihttps://doi.org/10.1016/j.msea.2011.06.027
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2016.03.086
dc.relation.urihttps://doi.org/10.1111/ijac.14028
dc.relation.urihttps://doi.org/10.4491/eer.2019.374
dc.relation.urihttps://doi.org/10.1007/s42452-019-0436-1
dc.relation.urihttps://doi.org/10.1021/je200311y
dc.relation.urihttps://doi.org/10.9734/ajocs/2020/v7i119011
dc.relation.urihttps://doi.org/10.1016/j.clay.2014.09.042
dc.relation.urihttps://doi.org/10.1016/j.cscm.2019.e00266
dc.relation.urihttps://doi.org/10.1080/02726351.2013.867001
dc.relation.urihttps://doi.org/10.3390/en12234565
dc.relation.urihttps://doi.org/10.1016/S0001-8686(98)00044-X
dc.relation.urihttps://doi.org/10.1039/C9TA00287A
dc.relation.urihttps://doi.org/10.3390/ma14051214
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Nguyen D. K., Tran A. T. H., Kaus N. H. M, 2023
dc.subjectадсорбція барвника
dc.subjectгеополімер
dc.subjectбромкрезоловий зелений
dc.subjectчервоний шлам
dc.subjectзола рисового лушпиння
dc.subjectdye adsorption
dc.subjectgeopolymer
dc.subjectbromocresol green
dc.subjectred mud
dc.subjectrice husk ash
dc.titlePreparation and Characterization of Red Mud-Based Geopolymer Composited with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution
dc.title.alternativeОдержання та характеристика геополімеру на основі червоного шламу з додаванням золи рисового лушпиння для адсорбції бромкрезолового зеленого у водному розчині
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Nguyen_K_D-Preparation_and_Characterization_857-869.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Nguyen_K_D-Preparation_and_Characterization_857-869__COVER.png
Size:
531.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: