Telechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining

dc.citation.epage41
dc.citation.issue1
dc.citation.spage34
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorVolianiuk, Kateryna
dc.contributor.authorMitina, Nataliya
dc.contributor.authorKinash, Nataliya
dc.contributor.authorHarhay, Khrystyna
dc.contributor.authorDolynska, Larysa
dc.contributor.authorNadashkevich, Zoriana
dc.contributor.authorHevus, Orest
dc.contributor.authorZaichenko, Alexander
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:34Z
dc.date.available2024-01-22T10:41:34Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractРадикальною полімеризацією в присутності агентів переносу ланцюга, отриманих з ізопропілбензолу, синтезовані полімери з кінцевими епоксидними, фосфатними, фтороалкільними групами. Структура полімерів підтверджена спектрами ЯМР та функціональним аналізом. Для синтезу полімер-неорганічних частинок використовували полімери з функціональним фрагментом та кополімери з полі(2-етил-2-оксазоліновим) фрагментом.
dc.description.abstractPolymers with terminal epoxy, phosphate, fluoroalkyl groups were obtained by radical polymerization in the presence of chain transfer agents derived from isopropylbenzene. The structure of polymers was confirmed by NMR spectra and functional analysis. Polymers with functional fragment were used for synthesis of polymer-inorganic particles and copolymers with poly(2-ethyl-2-oxazoline) fragment.
dc.format.extent34-41
dc.format.pages8
dc.identifier.citationTelechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining / Kateryna Volianiuk, Nataliya Mitina, Nataliya Kinash, Khrystyna Harhay, Larysa Dolynska, Zoriana Nadashkevich, Orest Hevus, Alexander Zaichenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 34–41.
dc.identifier.citationenTelechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining / Kateryna Volianiuk, Nataliya Mitina, Nataliya Kinash, Khrystyna Harhay, Larysa Dolynska, Zoriana Nadashkevich, Orest Hevus, Alexander Zaichenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 34–41.
dc.identifier.doidoi.org/10.23939/chcht16.01.034
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60958
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Bernaerts, K.V.; Du Prez, F.E. Dual/Heterofunctional Initiators for the Combination of Mechanistically Distinct Polymerization Techniques. Prog. Polym. Sci. 2006, 31, 671-722. https://doi.org/10.1016/j.progpolymsci.2006.08.007
dc.relation.references[2] Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 2nd edn.; Mishra, M.; Yagci, Y., Eds.; CRC Press: Boca Raton, 2016. https://doi.org/10.1201/9781420015133
dc.relation.references[3] Lowe, A.B.; McCormick, C.L. Reversible Addition–Fragmentation Chain Transfer (RAFT) Radical Polymerization and the Synthesis of Water-Soluble (Co) Polymers Under Homogeneous Conditions in Organic and Aqueous Media. Prog. Polym. Sci. 2007, 32, 283-351. https://doi.org/10.1016/j.progpolymsci.2006.11.003
dc.relation.references[4] Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Prog. Polym. Sci. 2020, 111, 101311. https://doi.org/10.1016/j.progpolymsci.2020.101311
dc.relation.references[5] Kuskov A.N.; Kulikov, P.P.; Goryachaya, A.V.; Tzatzarakis, M.N.; Docea, A.O.; Velonia, K.; Shtilman, M.I.; Tsatsakis, A.M. Amphiphilic Poly-N-Vinylpyrrolidone Nanoparticles as Carriers for Non-Steroidal, Anti-Inflammatory Drugs: In vitro Cytotoxicity and in vivo Acutetoxicity Study. Nanomedicine 2017, 13, 1021-1030. https://doi.org/10.1016/j.nano.2016.11.006
dc.relation.references[6] Strijkstra A.; Trautwein, K.; Jarling, R.; Wöhlbrand, L.; Dörries, M.; Reinhardt, R.; Drozdowska, M.; Golding, B.T.; Wilkes, H.; Rabus, R. Anaerobic Activation of p-Cymene in Denitrifying Betaproteo Bacteria: Methyl Group Hydroxylation Versus Addition to Fumarate. Appl. Environ. Microbiol. 2014, 80, 7592. https://doi.org/10.1128/AEM.02385-14
dc.relation.references[7] Wang B.; Ge, L.; Mo, J.; Su, L.; Li, Y.; Yang, K. Essential Oils and Ethanol Extract from Camellia Nitidissima and Evaluation of Their Biological Activity. Adv. J. Food Sci. Technol. 2018, 55, 5075-5081. https://doi.org/10.1007/s13197-018-3446-x
dc.relation.references[8] Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1997, 33, 217-224. https://doi.org/10.1016/S1381-5148(97)00045-X
dc.relation.references[9] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
dc.relation.references[10] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.references[11] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and Their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
dc.relation.references[12] Ivashkiv, O.; Namiesnik, J.; Astakhova, O.; Shyshchak, O.; Bratychak, M. A Synthesis and Application of Oligomer with Hydroxy Groups Based on Peroxy Derivative of ED-24 Epoxy Resin and PolyTHF-2000 Oligoether. Chem. Chem. Technol. 2015, 9, 313-318. https://doi.org/10.23939/chcht09.03.313
dc.relation.references[13] Paiuk, O.L.; Mitina, N.Ye.; Myagkota, O.S.; Volianiuk, K.A.; Musat, N.; Stryganyuk, G.Z.; Reshetnyak, O.V.; Kinash, N.I.; Hevus O.I.; Shermolovich, Yu.G. et al. Fluorine-Containing Polyamphiphiles of Block Structure Constructed of Synthetic and Biopolymer Blocks. Вiopolym. Cell, 2018, 34, 207-217. https://doi.org/10.7124/bc.00097B
dc.relation.references[14] Miagkota, O.; Mitina, N.; Nadashkevych, Z.; Yanchuk, I.; Greschuk, O.; Hevus, O.; Zaichenko, A. Novel Peroxide Containing Pegylated Polyampholytic Block Copolymers. Chem. Chem. Technol. 2014, 8, 61-66. https://doi.org/10.23939/chcht08.01.061
dc.relation.references[15] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
dc.relation.references[16] Volianiuk, K.A.; Paiuk, O.L.; Mitina, N.Ye.; Zaichenko, A.S.; Kinash, N.I. Luminescent Oligonucleotide Containing Block-Copolymers as Markers of Bacteria and Cells Based on Telechelatic Poly(N-Vinylpyrrolidone) with the Terminal Epoxy and Fluoroalkyl Fragment. Chem., Technol. Appl. Subst. 2019, 2, 166-172. https://doi.org/10.23939/ctas2019.01.166
dc.relation.references[17] Braun, D.; Cherdron, H.; Rehahn, M.; Ritter, H.; Voit, B. Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments; Springer: Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-28980-4
dc.relation.references[18] Bahdasarian, Ch.S. Teoriia Radykalnoi Polimerizacii. Nauka: Moskwa, 1966.
dc.relation.references[19] Toropceva, A.M. Laboratornyi Praktykum po Khimii i Technologii Vysokomolekuliarnykh Soedinenii, Khimia: Moskwa, 1972.
dc.relation.references[20] Botan, R.; de Bona Sartor, S. X-Ray Diffraction Analysis of Layered Double Hydroxide Polymer Nanocomposites. In Layered Double Hydroxide Polymer Nanocomposites; Sabu, T., Saju, D., Eds., Woodhead Publishing, 2019; pp 205-229. https://doi.org/10.1016/B978-0-08-101903-0.00005-2
dc.relation.references[21] Zaichenko, A.S.; Mitina, N.; Shevchuk, O.; Rayevska, K.; Lobaz, V.; Skorokhoda, T.; Stoika, R. Development of Novellinear, Block, and Branched Oligoelectrolytes and Functionally Targeting Nanoparticles. Pure Appl. Chem. 2008, 80, 2309-2326. https://doi.org/10.1351/pac200880112309
dc.relation.references[22] Odian, G. Principles of Polymerization, 4th edn.; John Wiley&Sons: New York, 2004. https://doi.org/10.1002/047147875X
dc.relation.references[23] Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 2015, Article ID 151683. https://doi.org/10.1155/2015/151683
dc.relation.referencesen[1] Bernaerts, K.V.; Du Prez, F.E. Dual/Heterofunctional Initiators for the Combination of Mechanistically Distinct Polymerization Techniques. Prog. Polym. Sci. 2006, 31, 671-722. https://doi.org/10.1016/j.progpolymsci.2006.08.007
dc.relation.referencesen[2] Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 2nd edn.; Mishra, M.; Yagci, Y., Eds.; CRC Press: Boca Raton, 2016. https://doi.org/10.1201/9781420015133
dc.relation.referencesen[3] Lowe, A.B.; McCormick, C.L. Reversible Addition–Fragmentation Chain Transfer (RAFT) Radical Polymerization and the Synthesis of Water-Soluble (Co) Polymers Under Homogeneous Conditions in Organic and Aqueous Media. Prog. Polym. Sci. 2007, 32, 283-351. https://doi.org/10.1016/j.progpolymsci.2006.11.003
dc.relation.referencesen[4] Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Prog. Polym. Sci. 2020, 111, 101311. https://doi.org/10.1016/j.progpolymsci.2020.101311
dc.relation.referencesen[5] Kuskov A.N.; Kulikov, P.P.; Goryachaya, A.V.; Tzatzarakis, M.N.; Docea, A.O.; Velonia, K.; Shtilman, M.I.; Tsatsakis, A.M. Amphiphilic Poly-N-Vinylpyrrolidone Nanoparticles as Carriers for Non-Steroidal, Anti-Inflammatory Drugs: In vitro Cytotoxicity and in vivo Acutetoxicity Study. Nanomedicine 2017, 13, 1021-1030. https://doi.org/10.1016/j.nano.2016.11.006
dc.relation.referencesen[6] Strijkstra A.; Trautwein, K.; Jarling, R.; Wöhlbrand, L.; Dörries, M.; Reinhardt, R.; Drozdowska, M.; Golding, B.T.; Wilkes, H.; Rabus, R. Anaerobic Activation of p-Cymene in Denitrifying Betaproteo Bacteria: Methyl Group Hydroxylation Versus Addition to Fumarate. Appl. Environ. Microbiol. 2014, 80, 7592. https://doi.org/10.1128/AEM.02385-14
dc.relation.referencesen[7] Wang B.; Ge, L.; Mo, J.; Su, L.; Li, Y.; Yang, K. Essential Oils and Ethanol Extract from Camellia Nitidissima and Evaluation of Their Biological Activity. Adv. J. Food Sci. Technol. 2018, 55, 5075-5081. https://doi.org/10.1007/s13197-018-3446-x
dc.relation.referencesen[8] Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1997, 33, 217-224. https://doi.org/10.1016/S1381-5148(97)00045-X
dc.relation.referencesen[9] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
dc.relation.referencesen[10] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.referencesen[11] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and Their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
dc.relation.referencesen[12] Ivashkiv, O.; Namiesnik, J.; Astakhova, O.; Shyshchak, O.; Bratychak, M. A Synthesis and Application of Oligomer with Hydroxy Groups Based on Peroxy Derivative of ED-24 Epoxy Resin and PolyTHF-2000 Oligoether. Chem. Chem. Technol. 2015, 9, 313-318. https://doi.org/10.23939/chcht09.03.313
dc.relation.referencesen[13] Paiuk, O.L.; Mitina, N.Ye.; Myagkota, O.S.; Volianiuk, K.A.; Musat, N.; Stryganyuk, G.Z.; Reshetnyak, O.V.; Kinash, N.I.; Hevus O.I.; Shermolovich, Yu.G. et al. Fluorine-Containing Polyamphiphiles of Block Structure Constructed of Synthetic and Biopolymer Blocks. Viopolym. Cell, 2018, 34, 207-217. https://doi.org/10.7124/bc.00097B
dc.relation.referencesen[14] Miagkota, O.; Mitina, N.; Nadashkevych, Z.; Yanchuk, I.; Greschuk, O.; Hevus, O.; Zaichenko, A. Novel Peroxide Containing Pegylated Polyampholytic Block Copolymers. Chem. Chem. Technol. 2014, 8, 61-66. https://doi.org/10.23939/chcht08.01.061
dc.relation.referencesen[15] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
dc.relation.referencesen[16] Volianiuk, K.A.; Paiuk, O.L.; Mitina, N.Ye.; Zaichenko, A.S.; Kinash, N.I. Luminescent Oligonucleotide Containing Block-Copolymers as Markers of Bacteria and Cells Based on Telechelatic Poly(N-Vinylpyrrolidone) with the Terminal Epoxy and Fluoroalkyl Fragment. Chem., Technol. Appl. Subst. 2019, 2, 166-172. https://doi.org/10.23939/ctas2019.01.166
dc.relation.referencesen[17] Braun, D.; Cherdron, H.; Rehahn, M.; Ritter, H.; Voit, B. Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments; Springer: Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-28980-4
dc.relation.referencesen[18] Bahdasarian, Ch.S. Teoriia Radykalnoi Polimerizacii. Nauka: Moskwa, 1966.
dc.relation.referencesen[19] Toropceva, A.M. Laboratornyi Praktykum po Khimii i Technologii Vysokomolekuliarnykh Soedinenii, Khimia: Moskwa, 1972.
dc.relation.referencesen[20] Botan, R.; de Bona Sartor, S. X-Ray Diffraction Analysis of Layered Double Hydroxide Polymer Nanocomposites. In Layered Double Hydroxide Polymer Nanocomposites; Sabu, T., Saju, D., Eds., Woodhead Publishing, 2019; pp 205-229. https://doi.org/10.1016/B978-0-08-101903-0.00005-2
dc.relation.referencesen[21] Zaichenko, A.S.; Mitina, N.; Shevchuk, O.; Rayevska, K.; Lobaz, V.; Skorokhoda, T.; Stoika, R. Development of Novellinear, Block, and Branched Oligoelectrolytes and Functionally Targeting Nanoparticles. Pure Appl. Chem. 2008, 80, 2309-2326. https://doi.org/10.1351/pac200880112309
dc.relation.referencesen[22] Odian, G. Principles of Polymerization, 4th edn.; John Wiley&Sons: New York, 2004. https://doi.org/10.1002/047147875X
dc.relation.referencesen[23] Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 2015, Article ID 151683. https://doi.org/10.1155/2015/151683
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2006.08.007
dc.relation.urihttps://doi.org/10.1201/9781420015133
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2006.11.003
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2020.101311
dc.relation.urihttps://doi.org/10.1016/j.nano.2016.11.006
dc.relation.urihttps://doi.org/10.1128/AEM.02385-14
dc.relation.urihttps://doi.org/10.1007/s13197-018-3446-x
dc.relation.urihttps://doi.org/10.1016/S1381-5148(97)00045-X
dc.relation.urihttps://doi.org/10.23939/chcht07.01.073
dc.relation.urihttps://doi.org/10.23939/chcht09.01.069
dc.relation.urihttps://doi.org/10.23939/chcht07.03.279
dc.relation.urihttps://doi.org/10.23939/chcht09.03.313
dc.relation.urihttps://doi.org/10.7124/bc.00097B
dc.relation.urihttps://doi.org/10.23939/chcht08.01.061
dc.relation.urihttps://doi.org/10.23939/chcht10.04si.561
dc.relation.urihttps://doi.org/10.23939/ctas2019.01.166
dc.relation.urihttps://doi.org/10.1007/978-3-642-28980-4
dc.relation.urihttps://doi.org/10.1016/B978-0-08-101903-0.00005-2
dc.relation.urihttps://doi.org/10.1351/pac200880112309
dc.relation.urihttps://doi.org/10.1002/047147875X
dc.relation.urihttps://doi.org/10.1155/2015/151683
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Volianiuk K., Mitina N., Kinash N., Harhay K., Dolynska L., Nadashkevich Z., Hevus O., Zaichenko A., 2022
dc.subjectтеломеризація
dc.subjectконтроль кінетичних та матеріальних ланцюгів
dc.subjectтелехелатні олігомери
dc.subjectблоккополімери
dc.subjectнаночастинки
dc.subjecttelomerization
dc.subjectcontrol of kinetic and material chains
dc.subjecttelechelic oligomers
dc.subjectblock copolymers
dc.subjectnanoparticles
dc.titleTelechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining
dc.title.alternativeТелехелатні оліго(N-вінілпіролідони) з кінцевими групами на основі кумолу для отримання блок-кополімерів та наночастинок
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n1_Volianiuk_K-Telechelic_Oligo_N_Vinylpyrolydone_34-41.pdf
Size:
640.17 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n1_Volianiuk_K-Telechelic_Oligo_N_Vinylpyrolydone_34-41__COVER.png
Size:
546.07 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: