Telechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining
dc.citation.epage | 41 | |
dc.citation.issue | 1 | |
dc.citation.spage | 34 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Volianiuk, Kateryna | |
dc.contributor.author | Mitina, Nataliya | |
dc.contributor.author | Kinash, Nataliya | |
dc.contributor.author | Harhay, Khrystyna | |
dc.contributor.author | Dolynska, Larysa | |
dc.contributor.author | Nadashkevich, Zoriana | |
dc.contributor.author | Hevus, Orest | |
dc.contributor.author | Zaichenko, Alexander | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T10:41:34Z | |
dc.date.available | 2024-01-22T10:41:34Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Радикальною полімеризацією в присутності агентів переносу ланцюга, отриманих з ізопропілбензолу, синтезовані полімери з кінцевими епоксидними, фосфатними, фтороалкільними групами. Структура полімерів підтверджена спектрами ЯМР та функціональним аналізом. Для синтезу полімер-неорганічних частинок використовували полімери з функціональним фрагментом та кополімери з полі(2-етил-2-оксазоліновим) фрагментом. | |
dc.description.abstract | Polymers with terminal epoxy, phosphate, fluoroalkyl groups were obtained by radical polymerization in the presence of chain transfer agents derived from isopropylbenzene. The structure of polymers was confirmed by NMR spectra and functional analysis. Polymers with functional fragment were used for synthesis of polymer-inorganic particles and copolymers with poly(2-ethyl-2-oxazoline) fragment. | |
dc.format.extent | 34-41 | |
dc.format.pages | 8 | |
dc.identifier.citation | Telechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining / Kateryna Volianiuk, Nataliya Mitina, Nataliya Kinash, Khrystyna Harhay, Larysa Dolynska, Zoriana Nadashkevich, Orest Hevus, Alexander Zaichenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 34–41. | |
dc.identifier.citationen | Telechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining / Kateryna Volianiuk, Nataliya Mitina, Nataliya Kinash, Khrystyna Harhay, Larysa Dolynska, Zoriana Nadashkevich, Orest Hevus, Alexander Zaichenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 34–41. | |
dc.identifier.doi | doi.org/10.23939/chcht16.01.034 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60958 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (16), 2022 | |
dc.relation.references | [1] Bernaerts, K.V.; Du Prez, F.E. Dual/Heterofunctional Initiators for the Combination of Mechanistically Distinct Polymerization Techniques. Prog. Polym. Sci. 2006, 31, 671-722. https://doi.org/10.1016/j.progpolymsci.2006.08.007 | |
dc.relation.references | [2] Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 2nd edn.; Mishra, M.; Yagci, Y., Eds.; CRC Press: Boca Raton, 2016. https://doi.org/10.1201/9781420015133 | |
dc.relation.references | [3] Lowe, A.B.; McCormick, C.L. Reversible Addition–Fragmentation Chain Transfer (RAFT) Radical Polymerization and the Synthesis of Water-Soluble (Co) Polymers Under Homogeneous Conditions in Organic and Aqueous Media. Prog. Polym. Sci. 2007, 32, 283-351. https://doi.org/10.1016/j.progpolymsci.2006.11.003 | |
dc.relation.references | [4] Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Prog. Polym. Sci. 2020, 111, 101311. https://doi.org/10.1016/j.progpolymsci.2020.101311 | |
dc.relation.references | [5] Kuskov A.N.; Kulikov, P.P.; Goryachaya, A.V.; Tzatzarakis, M.N.; Docea, A.O.; Velonia, K.; Shtilman, M.I.; Tsatsakis, A.M. Amphiphilic Poly-N-Vinylpyrrolidone Nanoparticles as Carriers for Non-Steroidal, Anti-Inflammatory Drugs: In vitro Cytotoxicity and in vivo Acutetoxicity Study. Nanomedicine 2017, 13, 1021-1030. https://doi.org/10.1016/j.nano.2016.11.006 | |
dc.relation.references | [6] Strijkstra A.; Trautwein, K.; Jarling, R.; Wöhlbrand, L.; Dörries, M.; Reinhardt, R.; Drozdowska, M.; Golding, B.T.; Wilkes, H.; Rabus, R. Anaerobic Activation of p-Cymene in Denitrifying Betaproteo Bacteria: Methyl Group Hydroxylation Versus Addition to Fumarate. Appl. Environ. Microbiol. 2014, 80, 7592. https://doi.org/10.1128/AEM.02385-14 | |
dc.relation.references | [7] Wang B.; Ge, L.; Mo, J.; Su, L.; Li, Y.; Yang, K. Essential Oils and Ethanol Extract from Camellia Nitidissima and Evaluation of Their Biological Activity. Adv. J. Food Sci. Technol. 2018, 55, 5075-5081. https://doi.org/10.1007/s13197-018-3446-x | |
dc.relation.references | [8] Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1997, 33, 217-224. https://doi.org/10.1016/S1381-5148(97)00045-X | |
dc.relation.references | [9] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.references | [10] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.references | [11] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and Their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.references | [12] Ivashkiv, O.; Namiesnik, J.; Astakhova, O.; Shyshchak, O.; Bratychak, M. A Synthesis and Application of Oligomer with Hydroxy Groups Based on Peroxy Derivative of ED-24 Epoxy Resin and PolyTHF-2000 Oligoether. Chem. Chem. Technol. 2015, 9, 313-318. https://doi.org/10.23939/chcht09.03.313 | |
dc.relation.references | [13] Paiuk, O.L.; Mitina, N.Ye.; Myagkota, O.S.; Volianiuk, K.A.; Musat, N.; Stryganyuk, G.Z.; Reshetnyak, O.V.; Kinash, N.I.; Hevus O.I.; Shermolovich, Yu.G. et al. Fluorine-Containing Polyamphiphiles of Block Structure Constructed of Synthetic and Biopolymer Blocks. Вiopolym. Cell, 2018, 34, 207-217. https://doi.org/10.7124/bc.00097B | |
dc.relation.references | [14] Miagkota, O.; Mitina, N.; Nadashkevych, Z.; Yanchuk, I.; Greschuk, O.; Hevus, O.; Zaichenko, A. Novel Peroxide Containing Pegylated Polyampholytic Block Copolymers. Chem. Chem. Technol. 2014, 8, 61-66. https://doi.org/10.23939/chcht08.01.061 | |
dc.relation.references | [15] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561 | |
dc.relation.references | [16] Volianiuk, K.A.; Paiuk, O.L.; Mitina, N.Ye.; Zaichenko, A.S.; Kinash, N.I. Luminescent Oligonucleotide Containing Block-Copolymers as Markers of Bacteria and Cells Based on Telechelatic Poly(N-Vinylpyrrolidone) with the Terminal Epoxy and Fluoroalkyl Fragment. Chem., Technol. Appl. Subst. 2019, 2, 166-172. https://doi.org/10.23939/ctas2019.01.166 | |
dc.relation.references | [17] Braun, D.; Cherdron, H.; Rehahn, M.; Ritter, H.; Voit, B. Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments; Springer: Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-28980-4 | |
dc.relation.references | [18] Bahdasarian, Ch.S. Teoriia Radykalnoi Polimerizacii. Nauka: Moskwa, 1966. | |
dc.relation.references | [19] Toropceva, A.M. Laboratornyi Praktykum po Khimii i Technologii Vysokomolekuliarnykh Soedinenii, Khimia: Moskwa, 1972. | |
dc.relation.references | [20] Botan, R.; de Bona Sartor, S. X-Ray Diffraction Analysis of Layered Double Hydroxide Polymer Nanocomposites. In Layered Double Hydroxide Polymer Nanocomposites; Sabu, T., Saju, D., Eds., Woodhead Publishing, 2019; pp 205-229. https://doi.org/10.1016/B978-0-08-101903-0.00005-2 | |
dc.relation.references | [21] Zaichenko, A.S.; Mitina, N.; Shevchuk, O.; Rayevska, K.; Lobaz, V.; Skorokhoda, T.; Stoika, R. Development of Novellinear, Block, and Branched Oligoelectrolytes and Functionally Targeting Nanoparticles. Pure Appl. Chem. 2008, 80, 2309-2326. https://doi.org/10.1351/pac200880112309 | |
dc.relation.references | [22] Odian, G. Principles of Polymerization, 4th edn.; John Wiley&Sons: New York, 2004. https://doi.org/10.1002/047147875X | |
dc.relation.references | [23] Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 2015, Article ID 151683. https://doi.org/10.1155/2015/151683 | |
dc.relation.referencesen | [1] Bernaerts, K.V.; Du Prez, F.E. Dual/Heterofunctional Initiators for the Combination of Mechanistically Distinct Polymerization Techniques. Prog. Polym. Sci. 2006, 31, 671-722. https://doi.org/10.1016/j.progpolymsci.2006.08.007 | |
dc.relation.referencesen | [2] Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 2nd edn.; Mishra, M.; Yagci, Y., Eds.; CRC Press: Boca Raton, 2016. https://doi.org/10.1201/9781420015133 | |
dc.relation.referencesen | [3] Lowe, A.B.; McCormick, C.L. Reversible Addition–Fragmentation Chain Transfer (RAFT) Radical Polymerization and the Synthesis of Water-Soluble (Co) Polymers Under Homogeneous Conditions in Organic and Aqueous Media. Prog. Polym. Sci. 2007, 32, 283-351. https://doi.org/10.1016/j.progpolymsci.2006.11.003 | |
dc.relation.referencesen | [4] Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Prog. Polym. Sci. 2020, 111, 101311. https://doi.org/10.1016/j.progpolymsci.2020.101311 | |
dc.relation.referencesen | [5] Kuskov A.N.; Kulikov, P.P.; Goryachaya, A.V.; Tzatzarakis, M.N.; Docea, A.O.; Velonia, K.; Shtilman, M.I.; Tsatsakis, A.M. Amphiphilic Poly-N-Vinylpyrrolidone Nanoparticles as Carriers for Non-Steroidal, Anti-Inflammatory Drugs: In vitro Cytotoxicity and in vivo Acutetoxicity Study. Nanomedicine 2017, 13, 1021-1030. https://doi.org/10.1016/j.nano.2016.11.006 | |
dc.relation.referencesen | [6] Strijkstra A.; Trautwein, K.; Jarling, R.; Wöhlbrand, L.; Dörries, M.; Reinhardt, R.; Drozdowska, M.; Golding, B.T.; Wilkes, H.; Rabus, R. Anaerobic Activation of p-Cymene in Denitrifying Betaproteo Bacteria: Methyl Group Hydroxylation Versus Addition to Fumarate. Appl. Environ. Microbiol. 2014, 80, 7592. https://doi.org/10.1128/AEM.02385-14 | |
dc.relation.referencesen | [7] Wang B.; Ge, L.; Mo, J.; Su, L.; Li, Y.; Yang, K. Essential Oils and Ethanol Extract from Camellia Nitidissima and Evaluation of Their Biological Activity. Adv. J. Food Sci. Technol. 2018, 55, 5075-5081. https://doi.org/10.1007/s13197-018-3446-x | |
dc.relation.referencesen | [8] Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1997, 33, 217-224. https://doi.org/10.1016/S1381-5148(97)00045-X | |
dc.relation.referencesen | [9] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.referencesen | [10] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.referencesen | [11] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and Their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.referencesen | [12] Ivashkiv, O.; Namiesnik, J.; Astakhova, O.; Shyshchak, O.; Bratychak, M. A Synthesis and Application of Oligomer with Hydroxy Groups Based on Peroxy Derivative of ED-24 Epoxy Resin and PolyTHF-2000 Oligoether. Chem. Chem. Technol. 2015, 9, 313-318. https://doi.org/10.23939/chcht09.03.313 | |
dc.relation.referencesen | [13] Paiuk, O.L.; Mitina, N.Ye.; Myagkota, O.S.; Volianiuk, K.A.; Musat, N.; Stryganyuk, G.Z.; Reshetnyak, O.V.; Kinash, N.I.; Hevus O.I.; Shermolovich, Yu.G. et al. Fluorine-Containing Polyamphiphiles of Block Structure Constructed of Synthetic and Biopolymer Blocks. Viopolym. Cell, 2018, 34, 207-217. https://doi.org/10.7124/bc.00097B | |
dc.relation.referencesen | [14] Miagkota, O.; Mitina, N.; Nadashkevych, Z.; Yanchuk, I.; Greschuk, O.; Hevus, O.; Zaichenko, A. Novel Peroxide Containing Pegylated Polyampholytic Block Copolymers. Chem. Chem. Technol. 2014, 8, 61-66. https://doi.org/10.23939/chcht08.01.061 | |
dc.relation.referencesen | [15] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561 | |
dc.relation.referencesen | [16] Volianiuk, K.A.; Paiuk, O.L.; Mitina, N.Ye.; Zaichenko, A.S.; Kinash, N.I. Luminescent Oligonucleotide Containing Block-Copolymers as Markers of Bacteria and Cells Based on Telechelatic Poly(N-Vinylpyrrolidone) with the Terminal Epoxy and Fluoroalkyl Fragment. Chem., Technol. Appl. Subst. 2019, 2, 166-172. https://doi.org/10.23939/ctas2019.01.166 | |
dc.relation.referencesen | [17] Braun, D.; Cherdron, H.; Rehahn, M.; Ritter, H.; Voit, B. Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments; Springer: Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-28980-4 | |
dc.relation.referencesen | [18] Bahdasarian, Ch.S. Teoriia Radykalnoi Polimerizacii. Nauka: Moskwa, 1966. | |
dc.relation.referencesen | [19] Toropceva, A.M. Laboratornyi Praktykum po Khimii i Technologii Vysokomolekuliarnykh Soedinenii, Khimia: Moskwa, 1972. | |
dc.relation.referencesen | [20] Botan, R.; de Bona Sartor, S. X-Ray Diffraction Analysis of Layered Double Hydroxide Polymer Nanocomposites. In Layered Double Hydroxide Polymer Nanocomposites; Sabu, T., Saju, D., Eds., Woodhead Publishing, 2019; pp 205-229. https://doi.org/10.1016/B978-0-08-101903-0.00005-2 | |
dc.relation.referencesen | [21] Zaichenko, A.S.; Mitina, N.; Shevchuk, O.; Rayevska, K.; Lobaz, V.; Skorokhoda, T.; Stoika, R. Development of Novellinear, Block, and Branched Oligoelectrolytes and Functionally Targeting Nanoparticles. Pure Appl. Chem. 2008, 80, 2309-2326. https://doi.org/10.1351/pac200880112309 | |
dc.relation.referencesen | [22] Odian, G. Principles of Polymerization, 4th edn.; John Wiley&Sons: New York, 2004. https://doi.org/10.1002/047147875X | |
dc.relation.referencesen | [23] Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 2015, Article ID 151683. https://doi.org/10.1155/2015/151683 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2006.08.007 | |
dc.relation.uri | https://doi.org/10.1201/9781420015133 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2006.11.003 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2020.101311 | |
dc.relation.uri | https://doi.org/10.1016/j.nano.2016.11.006 | |
dc.relation.uri | https://doi.org/10.1128/AEM.02385-14 | |
dc.relation.uri | https://doi.org/10.1007/s13197-018-3446-x | |
dc.relation.uri | https://doi.org/10.1016/S1381-5148(97)00045-X | |
dc.relation.uri | https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.03.313 | |
dc.relation.uri | https://doi.org/10.7124/bc.00097B | |
dc.relation.uri | https://doi.org/10.23939/chcht08.01.061 | |
dc.relation.uri | https://doi.org/10.23939/chcht10.04si.561 | |
dc.relation.uri | https://doi.org/10.23939/ctas2019.01.166 | |
dc.relation.uri | https://doi.org/10.1007/978-3-642-28980-4 | |
dc.relation.uri | https://doi.org/10.1016/B978-0-08-101903-0.00005-2 | |
dc.relation.uri | https://doi.org/10.1351/pac200880112309 | |
dc.relation.uri | https://doi.org/10.1002/047147875X | |
dc.relation.uri | https://doi.org/10.1155/2015/151683 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Volianiuk K., Mitina N., Kinash N., Harhay K., Dolynska L., Nadashkevich Z., Hevus O., Zaichenko A., 2022 | |
dc.subject | теломеризація | |
dc.subject | контроль кінетичних та матеріальних ланцюгів | |
dc.subject | телехелатні олігомери | |
dc.subject | блоккополімери | |
dc.subject | наночастинки | |
dc.subject | telomerization | |
dc.subject | control of kinetic and material chains | |
dc.subject | telechelic oligomers | |
dc.subject | block copolymers | |
dc.subject | nanoparticles | |
dc.title | Telechelic Oligo(N-Vinylpyrolydone)s with Cumene Based Terminal Groups for Block-Copolymer and nanoparticle obtaining | |
dc.title.alternative | Телехелатні оліго(N-вінілпіролідони) з кінцевими групами на основі кумолу для отримання блок-кополімерів та наночастинок | |
dc.type | Article |
Files
License bundle
1 - 1 of 1