Investigation of the Dispersed-Phase Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Natural Water Systems

dc.citation.epage856
dc.citation.issue4
dc.citation.spage846
dc.contributor.affiliationA. V. Dumansky Institute of Colloid Chemistry and Water Chemistry of National Academy of Sciences of Ukraine
dc.contributor.authorMilyukin, Mikhaylo
dc.contributor.authorGorban, Maksym
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:11Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ статті проаналізовано закономірності дисперсно-фазового розподілу органічних екотоксикантів, а саме: хлорорганічних пестицидів (ХОП), поліхлорованих біфенілів (ПХБ) і поліциклічних ароматичних вуглеводнів (ПАВ) – у природних водних системах. Встановлено залежність між дисперсно-фазовим розподілом індивідуальних ХОП, ПХБ та ПАВ і логарифмом константи розподілу в системі октанол/вода log Ko/w (коефіцієнтом гідрофобності). Показано, що водорозчинна частка індивідуальних органічних екотоксикантів зменшується зі збільшенняи їхнього коефіцієнту гідрофобності. Із одинадцяти наведених кореляцій вісім є чіткими, значимими та достовірними. Також досліджено вплив характеристик водної системи на дисперсно-фазовий розподіл органічних екотоксикантів. Показано, що загальна водорозчинна частка ХОП, ПХБ та ПАВ зменшується зі збільшенням значення хімічного споживання кисню (ХСК), біологічного споживання кисню (БСК) та суми важких металів (Cr, Ni, Cu, Mn, Zn, Cd, Pb). Із дев’яти відповідних кореляцій чотири є чіткими, значимими та достовірними.
dc.description.abstractThe article analyzes the patterns of the dispersed-phase distribution of organic ecotoxicants, namely organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), in natural water systems. The relationship between the dispersed-phase distribution of individual OCPs, PCBs, and PAHs and the logarithm of the octanol-water partition coefficient log Ko/w (hydrophobicity coefficient) was established. It was shown that the water-soluble part of individual organic ecotoxicants decreases with an increase in their hydrophobicity coefficient. Eight of the given eleven correlations are clear, significant and reliable. The influence of the characteristics of the water system on the dispersed-phase distribution of organic ecotoxicants was also investigated. It was shown that the total water-soluble part of OCPs, PCBs, and PAHs decreases with an increase in the chemical oxygen demand (COD), biological oxygen demand (BOD), and the total concentration of heavy metals (Cr, Ni, Cu, Mn, Zn, Cd, Pb). Four of the nine relevant correlations are clear, significant, and reliable.
dc.format.extent846-856
dc.format.pages11
dc.identifier.citationMilyukin M. Investigation of the Dispersed-Phase Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Natural Water Systems / Mikhaylo Milyukin, Maksym Gorban // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 846–856.
dc.identifier.citationenMilyukin M. Investigation of the Dispersed-Phase Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Natural Water Systems / Mikhaylo Milyukin, Maksym Gorban // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 846–856.
dc.identifier.doidoi.org/10.23939/chcht17.04.846
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63695
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Milyukin, M.V.; Goncharuk, V.V. Chemical Monitoring of Organic Ecotoxicants in Water Systems; Naukova dumka: Kyiv, 2016.
dc.relation.references[2] Fiedler, H.; Kallenborn, R.; de Boer, J.; Sydnes, L.K. The Stockholm Convention: A Tool for the Global Regulation of Persistent Organic Pollutants. Chemistry International 2019, 41, 4–11. https://doi.org/10.1515/ci-2019-0202
dc.relation.references[3] Milyukin, M.V.; Goncharuk, V.V. Chemical Monitoring of Organic Ecotoxicants in Aqueous Systems. J. Water Chem. Technol. 2019, 41, 307–312. https://doi.org/10.3103/S1063455X19050060
dc.relation.references[4] Ho, K.T.; Konovets, I.M.; Terletskaya, A.V.; Milyukin, M.V.; Lyashenko, A.V.; Shitikova, L.I.; Shevchuk, L.I.; Afanasiev, S.O.; Krot, Yu.G.; Zorina-Sakharova et al. Contaminants, Mutagenicity and Toxicity in the Surface Waters of Kyiv, Ukraine. Mar. Pollut. Bull. 2020, 155, 111153. https://doi.org/10.1016/j.marpolbul.2020.111153
dc.relation.references[5] Milyukin, M.V.; Gorban, M.V.; Skrynnyk, M.M. Monitoring and Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Surface River Water and Suspended Particulate Matter. Methods Objects Chem. Anal. 2019, 14, 117–129. https://doi.org/10.17721/moca.2019.117-129
dc.relation.references[6] Montuori, P.; Aurino, S.; Garzonio, F.; Triassi, M. Polychlorinated Biphenyls and Organochlorine Pesticides in Tiber River and Estuary: Occurrence, Distribution and Ecological Risk. Sci. Total Environ. 2016, 571, 1001–1016. https://doi.org/10.1016/j.scitotenv.2016.07.089
dc.relation.references[7] Wurl., O.; Obbard, J.P.; Lam, P.K.S. Distribution of Organochlorines in the Dissolved and Suspended Phase of the Sea-Surface Microlayer and Seawater in Hong Kong, China. Mar. Pollut. Bull. 2006, 52, 768–777. https://doi.org/10.1016/j.marpolbul.2005.11.024
dc.relation.references[8] Tang, Z.; Yang, Z.; Shen, Z.; Niu, J.; Cai, Y. Residues of Organochlorine Pesticides in Water and Suspended Particulate Matter from the Yangtze River Catchment of Wuhan, China. Environ. Monit. Assess. 2008, 137, 427–439. https://doi.org/10.1007/s10661-007-9778-z
dc.relation.references[9] Zhang, L.; Shi, S.; Dong, L.; Zhang T.; Zhou, L.; Huang, Y. Concentrations and Possible Sources of Polychlorinated Biphenyls in the Surface Water of the Yangtze River Delta, China. Chemosphere 2011, 85, 399–405. https://doi.org/10.1016/j.chemosphere.2011.07.064
dc.relation.references[10] Patrolecco, L.; Ademollo, N.; Capri, S.; Pagnotta, R; Polesello, S. Occurrence of Priority Hazardous PAHs in Water, Suspended Particulate Matter, Sediment and Common Eels (Anguilla anguilla) in the Urban Stretch of the River Tiber (Italy). Chemosphere 2010, 81, 1386–1392. https://doi.org/10.1016/j.chemosphere.2010.09.027
dc.relation.references[11] Zheng, B.; Wang, L.; Lei, K.; Nan, B. Distribution and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Water, Suspended Particulate Matter and Sediment from Daliao River Estuary and the Adjacent Area, China. Chemosphere 2016, 149, 91–100. https://doi.org/10.1016/j.chemosphere.2016.01.039
dc.relation.references[12] Milyukin, M.V.; Gorban, M.V. Patterns of the Disperse-Phase Distribution of Organic Ecotoxicants in the Water of the World River Systems. Methods Objects Chem. Anal. 2022, 17, 133–140. https://doi.org/10.17721/moca.2022.133-140
dc.relation.references[13] Klochenko, P.D. Amines Endo- and Exometabolites of Algae. Gidrobiologicheskiy zhurnal 1994, 30, 42–62.
dc.relation.references[14] Petrov, A.; Nevrova, E.; Terletskaya, A.; Milyukin, M.; Demchenko, V. Structure and Taxonomic Diversity of Benthic Diatom Assemblage in a Polluted Marine Environment (Balaklava Bay, Black Sea). Pol. Bot. J. 2010, 55, 183–197.
dc.relation.references[15] Heemken, O.P.; Stachel, B.; Theobald, N; Wenclawiak, B.W. Temporal Variability of Organic Micropollutants in Suspended Particulate Matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Arch. Environ. Contam. Toxicol. 2000, 38, 11–31. https://doi.org/10.1007/s002449910003
dc.relation.references[16] Li, W.; Yang, H.; Gao, Q.; Pan, H.; Yang, H. Residues of Organochlorine Pesticides in water and Suspended Particulate Matter from Xiangshan Bay, East China Sea. Bull. Environ. Contam. Toxicol. 2012, 89, 811–815. https://doi.org/10.1007/s00128-012-0777-6
dc.relation.references[17] Cruzeiro, C.; Pardal, M.A.; Rocha, E.; Rocha, M.J. Occurrence and Seasonal Loads of Pesticides in Surface Water and Suspended Particulate Matter from a Wetland Of Worldwide Interest – the Ria Formosa Lagoon, Portugal. Environ. Monit. Assess. 2015, 187, 669. https://doi.org/10.1007/s10661-015-4824-8
dc.relation.references[18] Guhr, H.; Karrasch, B.; Spott, D. Shifts in the Processes of Oxygen and Nutrient Balances in the River Elbe since the Transformation of the Economic Structur. Acta Hydroch. Hydrob. 2000, 28, 155–161. https://doi.org/10.1002/1521-401X(200003)28:3%3C155::AID-AHEH155%3E3.0.CO;2-R
dc.relation.references[19] Wang, X.; Han, J.; Bi, C.; Huang, X.; Jia, J., Chen, Z. Distribution, Sources, and Risk Assessment of Polychlorinated Biphenyls in Surface Waters and Sediments of Rivers in Shanghai, China. Front. Earth Sci. 2017, 11, 283–296. https://doi.org/10.1007/s11707-016-0590-3
dc.relation.references[20] Niu, L.; Cai, H.; Van Gelder, P.H.A.J.M.; Luo, P.; Liu, F.; Yang, X. Dynamics of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Column of Pearl River Estuary (China): Seasonal Pattern, Environmental Fate and Source Implication. Appl. Geochem. 2018, 90, 39–49. https://doi.org/10.1016/j.apgeochem.2017.12.014
dc.relation.references[21] Maldonado, C.; Bayona, J.M.; Bodineau, L. Sources, Distribution and Water Column Processes of Aliphatic and Polycyclic Aromatic Hydrocarbons in the Northwestern Black Sea Water. Environ. Sci. Technol. 1999, 33, 2693–2702. https://doi.org/10.1021/es9811647
dc.relation.references[22] Unificirovannye metody issledovanija kachestva vod, ch. 1, t. 1; SJeV, 1987.
dc.relation.references[23] Pidlisnyuk, V.; Harrington, J. JR; Melnyk, Y.; Vystavna, Y. Fluctuations of Annual Precipitation and Water Resources Quality in Ukraine. Chem. Chem. Technol. 2016, 10, 621–629. https://doi.org/10.23939/chcht10.04si.621
dc.relation.references[24] Nedzarek, A.; Czerniejewski, P. The Edible Tissues of the Major European Population of the Invasive Chinese Mitten Crab (Eriocheir sinensis) in the Elbe River, Germany, as a Valuable and Safe Complement in Essential Elements to the Human Diet. J. Food Compos. Anal. 2020, 96, 103713. https://doi.org/10.1016/j.jfca.2020.103713
dc.relation.references[25] Zhu, Z.; Deng, Q.; Zhou, H.; Ouyang, T.; Kuang, Y.; Huang, N.; Qiao, Y. Water Pollution and Degradation in Pearl River Delta, South China. Ambio 2002, 31, 226–230. https://doi.org/10.1579/0044-7447-31.3.226
dc.relation.references[26] Geng, J.; Wang, Y.; Luo, H. Distribution, Sources, and Fluxes of Heavy Metals in the Pearl River Delta, South China. Mar. Pollut. Bull. 2015, 101, 914–921. https://doi.org/10.1016/j.marpolbul.2015.10.066
dc.relation.references[27] La Vigna, F.; Ciadamidaro, S.; Mazza, R.; Mancini, L. Water Quality and Relationship between Superficial and Ground Water in Rome (Aniene River Basin, Central Italy). Environ. Earth Sci. 2010, 60, 1267–1279. https://doi.org/10.1007/s12665-009-0267-2
dc.relation.references[28] Montuori, P.; Aurino, S.; Garzonio, F.; Nardone, A.; Triassi, M. Estimation of Heavy Metal Loads from Tiber River to the Tyrrhenian Sea and Environmental Quality Assessment. Environ. Sci. Pollut. Res. 2016, 23, 23694–23713. https://doi.org/10.1007/s11356-016-7557-5
dc.relation.references[29] Zhao, J.; Lin, L.; Yang, K.; Liu, Q.; Qian, G. Influences of Land Use on Water Quality in a Reticular River Network Area: A Case Study in Shanghai, China. Landsc. Urban Plan. 2015, 137, 20–29. https://doi.org/10.1016/j.landurbplan.2014.12.010
dc.relation.references[30] Zhang, H. The Orientation of Water Quality Variation from the Metropolis River – Huangpu River, Shanghai. Environ. Monit. Assess. 2007, 127, 429–434. https://doi.org/10.1007/s10661-006-9292-8
dc.relation.references[31] Bi, C.; Wang, X.; Jia, J.; Chen, Z. Spatial Variation and Sources of Polycyclic Aromatic Hydrocarbons Influenced by Intensive Land Use in an Urbanized River Network of East China. Sci. Total Environ. 2018, 627, 671–680. https://doi.org/10.1016/j.scitotenv.2018.01.272
dc.relation.references[32] Zhang, Y.; Guo, F.; Meng, W.; Wang, X.-Q. Water Quality Assessment and Source Identification of Daliao River Basin Using Multivariate Statistical Methods. Environ. Monit. Assess. 2009, 152, 105–121. https://doi.org/10.1007/s10661-008-0300-z
dc.relation.references[33] Tan, L.; He, M.; Men, B.; Lin, C. Distribution and Sources of Organochlorine Pesticides in Water and Sediments from Daliao River Estuary of Liaodong Bay, Bohai Sea (China). Estuar. Coast. Shelf Sci. 2009, 84, 119–127. https://doi.org/10.1016/j.ecss.2009.06.013
dc.relation.references[34] Gao, X.; Song, J; Li, N.; Li, X. Spatial Distribution and Diurnal Variation of Chemical Oxygen Demand at the Beginning of the Rainy Season in the Changjiang (Yangtze) River Estuary. Chin. J. Oceanol. Limnol. 2007, 25, 254–260. https://doi.org/10.1007/s00343-007-0254-y
dc.relation.references[35] Liu, Y.X.; Xu, X.M.; Wang, T.; Ni, J.R. Microscopic View of Phytoplankton along the Yangtze River. Sci. China Technol. Sci. 2019, 62, 1873–1884. https://doi.org/10.1007/s11431-019-9545-y
dc.relation.references[36] Fan, H.; Chen, S.; Li, Z.; Liu, P.; Xu, C.; Yang, X. Assessment of Heavy Metals in Water, Sediment and Shellfish Organisms in Typical Areas of the Yangtze River Estuary, China. Mar. Pollut. Bull. 2020, 151, 110864. https://doi.org/10.1016/j.marpolbul.2019.110864
dc.relation.references[37] Barbulescu, A.; Barbes, L. Assessing the Water Quality of the Danube River (at Chiciu, Romania) by Statistical Methods. Environ. Earth Sci. 2020, 79, 122. https://doi.org/10.1007/s12665-020-8872-1
dc.relation.references[38] Chen, L.; Zhu, G.; Shi, Q.; Jin, M.; Zhang, J. The Chemical Characteristics and Evaluation of Water Environment in Xiangshan Harbor of the East China Sea. Int. Conf. Biomed. Eng. Biotechnol. 2012, 1783–1786. https://doi.org/10.1109/iCBEB.2012.402
dc.relation.references[39] Zhao, B.; Wang, X.; Jin, H.; Feng, H.; Shen, G.; Cao, Y.; Yu, C.; Lu, Z.; Zhang, Q. Spatiotemporal Variation and Potential Risks of Seven Heavy Metals in Seawater, Sediment, and Seafood in Xiangshan Bay, China (2011-2016). Chemosphere 2018, 212, 1163–1171. https://doi.org/10.1016/j.chemosphere.2018.09.020
dc.relation.references[40] Gamito, S. Benthic Ecology of Semi-Natural Coastal Lagoons, in the Ria Formosa (Southern Portugal), Exposed to Different Water Renewal Regimes. Hydrobiologia 2006, 555, 75–87. https://doi.org/10.1007/s10750-005-1107-3
dc.relation.references[41] Chen, H.; Teng, Y.; Yue, W.; Song, L. Characterization and Source Apportionment of Water Pollution in Jinjiang River, China. Environ. Monit. Assess. 2013, 185, 9639–9650. https://doi.org/10.1007/s10661-013-3279-z
dc.relation.references[42] Yang D.; Qi, S.; Zhang, J.; Wu, C.; Xing, X. Organochlorine Pesticides in Soil, Water and Sediment along the Jinjiang River Mainstream to Quanzhou Bay, Southeast China. Ecotoxicol. Environ. Saf. 2013, 89, 59–65. https://doi.org/10.1016/j.ecoenv.2012.11.014
dc.relation.referencesen[1] Milyukin, M.V.; Goncharuk, V.V. Chemical Monitoring of Organic Ecotoxicants in Water Systems; Naukova dumka: Kyiv, 2016.
dc.relation.referencesen[2] Fiedler, H.; Kallenborn, R.; de Boer, J.; Sydnes, L.K. The Stockholm Convention: A Tool for the Global Regulation of Persistent Organic Pollutants. Chemistry International 2019, 41, 4–11. https://doi.org/10.1515/ci-2019-0202
dc.relation.referencesen[3] Milyukin, M.V.; Goncharuk, V.V. Chemical Monitoring of Organic Ecotoxicants in Aqueous Systems. J. Water Chem. Technol. 2019, 41, 307–312. https://doi.org/10.3103/S1063455X19050060
dc.relation.referencesen[4] Ho, K.T.; Konovets, I.M.; Terletskaya, A.V.; Milyukin, M.V.; Lyashenko, A.V.; Shitikova, L.I.; Shevchuk, L.I.; Afanasiev, S.O.; Krot, Yu.G.; Zorina-Sakharova et al. Contaminants, Mutagenicity and Toxicity in the Surface Waters of Kyiv, Ukraine. Mar. Pollut. Bull. 2020, 155, 111153. https://doi.org/10.1016/j.marpolbul.2020.111153
dc.relation.referencesen[5] Milyukin, M.V.; Gorban, M.V.; Skrynnyk, M.M. Monitoring and Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Surface River Water and Suspended Particulate Matter. Methods Objects Chem. Anal. 2019, 14, 117–129. https://doi.org/10.17721/moca.2019.117-129
dc.relation.referencesen[6] Montuori, P.; Aurino, S.; Garzonio, F.; Triassi, M. Polychlorinated Biphenyls and Organochlorine Pesticides in Tiber River and Estuary: Occurrence, Distribution and Ecological Risk. Sci. Total Environ. 2016, 571, 1001–1016. https://doi.org/10.1016/j.scitotenv.2016.07.089
dc.relation.referencesen[7] Wurl., O.; Obbard, J.P.; Lam, P.K.S. Distribution of Organochlorines in the Dissolved and Suspended Phase of the Sea-Surface Microlayer and Seawater in Hong Kong, China. Mar. Pollut. Bull. 2006, 52, 768–777. https://doi.org/10.1016/j.marpolbul.2005.11.024
dc.relation.referencesen[8] Tang, Z.; Yang, Z.; Shen, Z.; Niu, J.; Cai, Y. Residues of Organochlorine Pesticides in Water and Suspended Particulate Matter from the Yangtze River Catchment of Wuhan, China. Environ. Monit. Assess. 2008, 137, 427–439. https://doi.org/10.1007/s10661-007-9778-z
dc.relation.referencesen[9] Zhang, L.; Shi, S.; Dong, L.; Zhang T.; Zhou, L.; Huang, Y. Concentrations and Possible Sources of Polychlorinated Biphenyls in the Surface Water of the Yangtze River Delta, China. Chemosphere 2011, 85, 399–405. https://doi.org/10.1016/j.chemosphere.2011.07.064
dc.relation.referencesen[10] Patrolecco, L.; Ademollo, N.; Capri, S.; Pagnotta, R; Polesello, S. Occurrence of Priority Hazardous PAHs in Water, Suspended Particulate Matter, Sediment and Common Eels (Anguilla anguilla) in the Urban Stretch of the River Tiber (Italy). Chemosphere 2010, 81, 1386–1392. https://doi.org/10.1016/j.chemosphere.2010.09.027
dc.relation.referencesen[11] Zheng, B.; Wang, L.; Lei, K.; Nan, B. Distribution and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Water, Suspended Particulate Matter and Sediment from Daliao River Estuary and the Adjacent Area, China. Chemosphere 2016, 149, 91–100. https://doi.org/10.1016/j.chemosphere.2016.01.039
dc.relation.referencesen[12] Milyukin, M.V.; Gorban, M.V. Patterns of the Disperse-Phase Distribution of Organic Ecotoxicants in the Water of the World River Systems. Methods Objects Chem. Anal. 2022, 17, 133–140. https://doi.org/10.17721/moca.2022.133-140
dc.relation.referencesen[13] Klochenko, P.D. Amines Endo- and Exometabolites of Algae. Gidrobiologicheskiy zhurnal 1994, 30, 42–62.
dc.relation.referencesen[14] Petrov, A.; Nevrova, E.; Terletskaya, A.; Milyukin, M.; Demchenko, V. Structure and Taxonomic Diversity of Benthic Diatom Assemblage in a Polluted Marine Environment (Balaklava Bay, Black Sea). Pol. Bot. J. 2010, 55, 183–197.
dc.relation.referencesen[15] Heemken, O.P.; Stachel, B.; Theobald, N; Wenclawiak, B.W. Temporal Variability of Organic Micropollutants in Suspended Particulate Matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Arch. Environ. Contam. Toxicol. 2000, 38, 11–31. https://doi.org/10.1007/s002449910003
dc.relation.referencesen[16] Li, W.; Yang, H.; Gao, Q.; Pan, H.; Yang, H. Residues of Organochlorine Pesticides in water and Suspended Particulate Matter from Xiangshan Bay, East China Sea. Bull. Environ. Contam. Toxicol. 2012, 89, 811–815. https://doi.org/10.1007/s00128-012-0777-6
dc.relation.referencesen[17] Cruzeiro, C.; Pardal, M.A.; Rocha, E.; Rocha, M.J. Occurrence and Seasonal Loads of Pesticides in Surface Water and Suspended Particulate Matter from a Wetland Of Worldwide Interest – the Ria Formosa Lagoon, Portugal. Environ. Monit. Assess. 2015, 187, 669. https://doi.org/10.1007/s10661-015-4824-8
dc.relation.referencesen[18] Guhr, H.; Karrasch, B.; Spott, D. Shifts in the Processes of Oxygen and Nutrient Balances in the River Elbe since the Transformation of the Economic Structur. Acta Hydroch. Hydrob. 2000, 28, 155–161. https://doi.org/10.1002/1521-401X(200003)28:3%3C155::AID-AHEH155%3E3.0.CO;2-R
dc.relation.referencesen[19] Wang, X.; Han, J.; Bi, C.; Huang, X.; Jia, J., Chen, Z. Distribution, Sources, and Risk Assessment of Polychlorinated Biphenyls in Surface Waters and Sediments of Rivers in Shanghai, China. Front. Earth Sci. 2017, 11, 283–296. https://doi.org/10.1007/s11707-016-0590-3
dc.relation.referencesen[20] Niu, L.; Cai, H.; Van Gelder, P.H.A.J.M.; Luo, P.; Liu, F.; Yang, X. Dynamics of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Column of Pearl River Estuary (China): Seasonal Pattern, Environmental Fate and Source Implication. Appl. Geochem. 2018, 90, 39–49. https://doi.org/10.1016/j.apgeochem.2017.12.014
dc.relation.referencesen[21] Maldonado, C.; Bayona, J.M.; Bodineau, L. Sources, Distribution and Water Column Processes of Aliphatic and Polycyclic Aromatic Hydrocarbons in the Northwestern Black Sea Water. Environ. Sci. Technol. 1999, 33, 2693–2702. https://doi.org/10.1021/es9811647
dc.relation.referencesen[22] Unificirovannye metody issledovanija kachestva vod, ch. 1, t. 1; SJeV, 1987.
dc.relation.referencesen[23] Pidlisnyuk, V.; Harrington, J. JR; Melnyk, Y.; Vystavna, Y. Fluctuations of Annual Precipitation and Water Resources Quality in Ukraine. Chem. Chem. Technol. 2016, 10, 621–629. https://doi.org/10.23939/chcht10.04si.621
dc.relation.referencesen[24] Nedzarek, A.; Czerniejewski, P. The Edible Tissues of the Major European Population of the Invasive Chinese Mitten Crab (Eriocheir sinensis) in the Elbe River, Germany, as a Valuable and Safe Complement in Essential Elements to the Human Diet. J. Food Compos. Anal. 2020, 96, 103713. https://doi.org/10.1016/j.jfca.2020.103713
dc.relation.referencesen[25] Zhu, Z.; Deng, Q.; Zhou, H.; Ouyang, T.; Kuang, Y.; Huang, N.; Qiao, Y. Water Pollution and Degradation in Pearl River Delta, South China. Ambio 2002, 31, 226–230. https://doi.org/10.1579/0044-7447-31.3.226
dc.relation.referencesen[26] Geng, J.; Wang, Y.; Luo, H. Distribution, Sources, and Fluxes of Heavy Metals in the Pearl River Delta, South China. Mar. Pollut. Bull. 2015, 101, 914–921. https://doi.org/10.1016/j.marpolbul.2015.10.066
dc.relation.referencesen[27] La Vigna, F.; Ciadamidaro, S.; Mazza, R.; Mancini, L. Water Quality and Relationship between Superficial and Ground Water in Rome (Aniene River Basin, Central Italy). Environ. Earth Sci. 2010, 60, 1267–1279. https://doi.org/10.1007/s12665-009-0267-2
dc.relation.referencesen[28] Montuori, P.; Aurino, S.; Garzonio, F.; Nardone, A.; Triassi, M. Estimation of Heavy Metal Loads from Tiber River to the Tyrrhenian Sea and Environmental Quality Assessment. Environ. Sci. Pollut. Res. 2016, 23, 23694–23713. https://doi.org/10.1007/s11356-016-7557-5
dc.relation.referencesen[29] Zhao, J.; Lin, L.; Yang, K.; Liu, Q.; Qian, G. Influences of Land Use on Water Quality in a Reticular River Network Area: A Case Study in Shanghai, China. Landsc. Urban Plan. 2015, 137, 20–29. https://doi.org/10.1016/j.landurbplan.2014.12.010
dc.relation.referencesen[30] Zhang, H. The Orientation of Water Quality Variation from the Metropolis River – Huangpu River, Shanghai. Environ. Monit. Assess. 2007, 127, 429–434. https://doi.org/10.1007/s10661-006-9292-8
dc.relation.referencesen[31] Bi, C.; Wang, X.; Jia, J.; Chen, Z. Spatial Variation and Sources of Polycyclic Aromatic Hydrocarbons Influenced by Intensive Land Use in an Urbanized River Network of East China. Sci. Total Environ. 2018, 627, 671–680. https://doi.org/10.1016/j.scitotenv.2018.01.272
dc.relation.referencesen[32] Zhang, Y.; Guo, F.; Meng, W.; Wang, X.-Q. Water Quality Assessment and Source Identification of Daliao River Basin Using Multivariate Statistical Methods. Environ. Monit. Assess. 2009, 152, 105–121. https://doi.org/10.1007/s10661-008-0300-z
dc.relation.referencesen[33] Tan, L.; He, M.; Men, B.; Lin, C. Distribution and Sources of Organochlorine Pesticides in Water and Sediments from Daliao River Estuary of Liaodong Bay, Bohai Sea (China). Estuar. Coast. Shelf Sci. 2009, 84, 119–127. https://doi.org/10.1016/j.ecss.2009.06.013
dc.relation.referencesen[34] Gao, X.; Song, J; Li, N.; Li, X. Spatial Distribution and Diurnal Variation of Chemical Oxygen Demand at the Beginning of the Rainy Season in the Changjiang (Yangtze) River Estuary. Chin. J. Oceanol. Limnol. 2007, 25, 254–260. https://doi.org/10.1007/s00343-007-0254-y
dc.relation.referencesen[35] Liu, Y.X.; Xu, X.M.; Wang, T.; Ni, J.R. Microscopic View of Phytoplankton along the Yangtze River. Sci. China Technol. Sci. 2019, 62, 1873–1884. https://doi.org/10.1007/s11431-019-9545-y
dc.relation.referencesen[36] Fan, H.; Chen, S.; Li, Z.; Liu, P.; Xu, C.; Yang, X. Assessment of Heavy Metals in Water, Sediment and Shellfish Organisms in Typical Areas of the Yangtze River Estuary, China. Mar. Pollut. Bull. 2020, 151, 110864. https://doi.org/10.1016/j.marpolbul.2019.110864
dc.relation.referencesen[37] Barbulescu, A.; Barbes, L. Assessing the Water Quality of the Danube River (at Chiciu, Romania) by Statistical Methods. Environ. Earth Sci. 2020, 79, 122. https://doi.org/10.1007/s12665-020-8872-1
dc.relation.referencesen[38] Chen, L.; Zhu, G.; Shi, Q.; Jin, M.; Zhang, J. The Chemical Characteristics and Evaluation of Water Environment in Xiangshan Harbor of the East China Sea. Int. Conf. Biomed. Eng. Biotechnol. 2012, 1783–1786. https://doi.org/10.1109/iCBEB.2012.402
dc.relation.referencesen[39] Zhao, B.; Wang, X.; Jin, H.; Feng, H.; Shen, G.; Cao, Y.; Yu, C.; Lu, Z.; Zhang, Q. Spatiotemporal Variation and Potential Risks of Seven Heavy Metals in Seawater, Sediment, and Seafood in Xiangshan Bay, China (2011-2016). Chemosphere 2018, 212, 1163–1171. https://doi.org/10.1016/j.chemosphere.2018.09.020
dc.relation.referencesen[40] Gamito, S. Benthic Ecology of Semi-Natural Coastal Lagoons, in the Ria Formosa (Southern Portugal), Exposed to Different Water Renewal Regimes. Hydrobiologia 2006, 555, 75–87. https://doi.org/10.1007/s10750-005-1107-3
dc.relation.referencesen[41] Chen, H.; Teng, Y.; Yue, W.; Song, L. Characterization and Source Apportionment of Water Pollution in Jinjiang River, China. Environ. Monit. Assess. 2013, 185, 9639–9650. https://doi.org/10.1007/s10661-013-3279-z
dc.relation.referencesen[42] Yang D.; Qi, S.; Zhang, J.; Wu, C.; Xing, X. Organochlorine Pesticides in Soil, Water and Sediment along the Jinjiang River Mainstream to Quanzhou Bay, Southeast China. Ecotoxicol. Environ. Saf. 2013, 89, 59–65. https://doi.org/10.1016/j.ecoenv.2012.11.014
dc.relation.urihttps://doi.org/10.1515/ci-2019-0202
dc.relation.urihttps://doi.org/10.3103/S1063455X19050060
dc.relation.urihttps://doi.org/10.1016/j.marpolbul.2020.111153
dc.relation.urihttps://doi.org/10.17721/moca.2019.117-129
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2016.07.089
dc.relation.urihttps://doi.org/10.1016/j.marpolbul.2005.11.024
dc.relation.urihttps://doi.org/10.1007/s10661-007-9778-z
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2011.07.064
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2010.09.027
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2016.01.039
dc.relation.urihttps://doi.org/10.17721/moca.2022.133-140
dc.relation.urihttps://doi.org/10.1007/s002449910003
dc.relation.urihttps://doi.org/10.1007/s00128-012-0777-6
dc.relation.urihttps://doi.org/10.1007/s10661-015-4824-8
dc.relation.urihttps://doi.org/10.1002/1521-401X(200003)28:3%3C155::AID-AHEH155%3E3.0.CO;2-R
dc.relation.urihttps://doi.org/10.1007/s11707-016-0590-3
dc.relation.urihttps://doi.org/10.1016/j.apgeochem.2017.12.014
dc.relation.urihttps://doi.org/10.1021/es9811647
dc.relation.urihttps://doi.org/10.23939/chcht10.04si.621
dc.relation.urihttps://doi.org/10.1016/j.jfca.2020.103713
dc.relation.urihttps://doi.org/10.1579/0044-7447-31.3.226
dc.relation.urihttps://doi.org/10.1016/j.marpolbul.2015.10.066
dc.relation.urihttps://doi.org/10.1007/s12665-009-0267-2
dc.relation.urihttps://doi.org/10.1007/s11356-016-7557-5
dc.relation.urihttps://doi.org/10.1016/j.landurbplan.2014.12.010
dc.relation.urihttps://doi.org/10.1007/s10661-006-9292-8
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2018.01.272
dc.relation.urihttps://doi.org/10.1007/s10661-008-0300-z
dc.relation.urihttps://doi.org/10.1016/j.ecss.2009.06.013
dc.relation.urihttps://doi.org/10.1007/s00343-007-0254-y
dc.relation.urihttps://doi.org/10.1007/s11431-019-9545-y
dc.relation.urihttps://doi.org/10.1016/j.marpolbul.2019.110864
dc.relation.urihttps://doi.org/10.1007/s12665-020-8872-1
dc.relation.urihttps://doi.org/10.1109/iCBEB.2012.402
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2018.09.020
dc.relation.urihttps://doi.org/10.1007/s10750-005-1107-3
dc.relation.urihttps://doi.org/10.1007/s10661-013-3279-z
dc.relation.urihttps://doi.org/10.1016/j.ecoenv.2012.11.014
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Milyukin M., Gorban M., 2023
dc.subjectХОП
dc.subjectПХБ
dc.subjectПАВ
dc.subjectдисперсно-фазовий розподіл
dc.subjectкоефіцієнт гідрофобності
dc.subjectХСК
dc.subjectБСК
dc.subjectOCPs
dc.subjectPCBs
dc.subjectPAHs
dc.subjectdispersed-phase distribution
dc.subjectcoefficient of hydrophobicity
dc.subjectCOD
dc.subjectBOD
dc.titleInvestigation of the Dispersed-Phase Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Natural Water Systems
dc.title.alternativeДослідження дисперсно-фазового розподілу хлорорганічних пестицидів, поліхлорованих біфенілів і поліциклічних ароматичних вуглеводнів у природних водних системах
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Milyukin_M-Investigation_of_the_Dispersed_846-856.pdf
Size:
649.28 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Milyukin_M-Investigation_of_the_Dispersed_846-856__COVER.png
Size:
541.04 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: