Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine
dc.citation.epage | 828 | |
dc.citation.issue | 4 | |
dc.citation.spage | 820 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Melnyk, Stepan | |
dc.contributor.author | Melnyk, Yurii | |
dc.contributor.author | Mahorivska, Halyna | |
dc.contributor.author | Fuchyla, Olena | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:54:09Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Запропоновано схему перетворень пентил ацетату, етаноламіну та продуктів їхньої взаємодії за реакціями амінолізу, трансестерифікації та O-N-ацил міграції, каталізованих гомогенними і гетерогенними основами і кислотами Бренстеда-Лоурі. Встановлено, що порівняно з некаталітичним процесом кислотні та основні каталізатори істотно прискорюють реакції амінолізу естерів аміноспиртами. Оцінено вплив каталізаторів на кожну з реакцій. | |
dc.description.abstract | A conversion scheme for pentyl acetate, ethanolamine, and the products resulting from their interaction through aminolysis, transesterification, and O-N-acyl migration reactions catalyzed by homogeneous and heterogeneous Brønsted-Lowry bases and acids is proposed. It has been determined that acid and base catalysts significantly enhance the aminolysis reaction of esters with amino alcohols when compared to the non-catalytic process. The impact of the catalyst on each reaction has been assessed. | |
dc.format.extent | 820-828 | |
dc.format.pages | 9 | |
dc.identifier.citation | Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine / Stepan Melnyk, Yurii Melnyk, Halyna Mahorivska, Olena Fuchyla // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 820–828. | |
dc.identifier.citationen | Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine / Stepan Melnyk, Yurii Melnyk, Halyna Mahorivska, Olena Fuchyla // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 820–828. | |
dc.identifier.doi | doi.org/10.23939/chcht17.04.820 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63692 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (17), 2023 | |
dc.relation.references | [1] Peng, X. Method of an Organic Synthesis Intermediate N-acetamidoethanol. CN 106631859 A, May 10, 2017. | |
dc.relation.references | [2] Mondal M.G.; Pratap A.P. Synthesis and Performance Properties of Cationic Fabric Softeners Derived from Free Fatty Acid of Tallow Fat. J Oleo Sci 2016, 65, 663-670. https://doi.org/10.5650/jos.ess15276 | |
dc.relation.references | [3] Hansen, H.S.; Diep, T.A. N-acylethanolamines, Anandamide and Food Intake. Biochem. Pharmacol. 2009, 78, 553–560. https://doi.org/10.1016/j.bcp.2009.04.024 | |
dc.relation.references | [4] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12, 400–404. https://doi.org/10.23939/chcht12.03.400 | |
dc.relation.references | [5] Melnyk, S.; Danyliuk, R.; Melnyk, Yu.; Reutskyy V. The Reaction of Oleic Acid with a Mixture of Ethanolamines. Chem. Chem. Technol. 2018, 12, 13–17. https://doi.org/10.23939/chcht12.01.013 | |
dc.relation.references | [6] Dinesh, K.; Amjad, A. Direct Synthesis of Fatty Acid Alkanolamides and Fatty Acid Alkyl Esters from High Free Fatty Acid Containing Triglycerides as Lubricity Improvers Using Heterogeneous Catalyst. Fuel 2015, 159, 845–853. https://doi.org/10.1016/j.fuel.2015.07.046 | |
dc.relation.references | [7] Mahadevan, S.; Venkatasubban, K. Synthesis of Hydroxyalkyl Amides from Esters. WO 2012/148624 Al. January 11, 2012. | |
dc.relation.references | [8] Markey, S.P.; Dudding, T.; Wang, T.-C.L. Base- and acid-Catalyzed Interconversions of O-acyl- and N-acyl-ethanolamines: A Cautionary Note for Lipid Analyses. J. Lipid Res. 2000, 41, 657–662. https://doi.org/10.1016/S0022-2275(20)32414-7 | |
dc.relation.references | [9] Berčíková, M.; Lád, J.; Hrádková, I.; Kumherová, M.; Šmidrkal, J. Reaction of Fatty Acid Methyl Ester with Monoethanolamine and Diethanolamine. Tenside, Surfactants, Deterg. 2021, 58, 287–292. https://doi.org/10.1515/tsd-2020-2328 | |
dc.relation.references | [10] Thabuis, C.; Tissot-Favre, D.; Bezelgues, J.-B.; Martin, J.-C.; Cruz-Hernandez, C.; Dionisi, F.; Destaillats F. Analysis of Chemically Synthesized Oleoylethanolamide by Gas-Liquid Chromatography. J. Chromatogr. A 2008, 1202, 216–219. | |
dc.relation.references | [11] Wang, X.; Chen, Y.; Jin, Q.; Huang, J.; Wang, X. Synthesis of Linoleoyl Ethanolamide. J Oleo Sci 2013, 62, 427–433. https://doi.org/10.5650/jos.62.427 | |
dc.relation.references | [12] Ohshima, Y.; Imoto, H.; Fujiu A. Verfahren zur Herstellung von hochreinem Alkanolamid. DE 19648513 A1. February 15, 2007. | |
dc.relation.references | [13] Caldwell, N.; Jamieson, C.; Simpson, I.; Tuttle T. Organobase-Catalyzed Amidation of Esters with Amino Alcohols. Org. Lett. 2013, 15, 2506–2509. https://doi.org/10.1021/ol400987p | |
dc.relation.references | [14] Movassaghi, M.; Schmid M. A. N-Heterocyclic Carbene-Catalyzed Amidation of Unactivated Esters with Amino Alcohols. Org. Lett. 2005, 7, 2453–2456. https://doi.org/10.1021/ol050773y | |
dc.relation.references | [15] Lei, X.; Lu, W.; Peng, Q.; Li, H.; Chen, T.; Xu, S.; Zhang, F. Activated MgAl-layered Double Hydroxide as Solid Base Catalysts for the Conversion of Fatty Acid Methyl Esters to Monoethanolamides. APPL CATAL A-GEN 2011, 399, 87–92. https://doi.org/10.1016/j.apcata.2011.03.042 | |
dc.relation.references | [16] Chintareddy, V.R.; Ho, H.-A.; Sadow, A.D.; Verkade, J.G. Polymer-mounted N3=P(MeNCH2CH2)3N: A Green, Efficient and Recyclable Catalyst for Room-Temperature Transesterifications and Amidations of Unactivated Esters. Tetrahedron Lett. 2011, 52, 6523–6529. https://doi.org/10.1016/j.tetlet.2011.09.102 | |
dc.relation.references | [17] Melnyk, Yu.; Melnyk, S.; Palyukh, Z.; Dzinyak, B. Research into Transesterification of Triglycerides by Aliphatic Alcohols C2–C4 in the Presence of Ionites. East.-Eur. J. Enterp. Technol. 2018, 1/6(94), 10–16. https://doi.org/10.15587/1729-4061.2018.122938 | |
dc.relation.references | [18] Melnyk, S.; Danyliuk, R.; Melnyk, Yu.; Stadnytska, N. Study of the Pentyl Acetate and Ethanolamine Catalytic and Non-Catalytic Interaction. J. Chem. Technol. Metall. 2022, 57, 439–450. | |
dc.relation.references | [19] Melnyk S.R.; Danyliuk R.V.; Melnyk Yu.R. Ethanolamine and Pentyl Acetate Interaction Catalyzed by Cation Exchange Resin: Kinetic Insight. Journal of Chemistry and Technologies 2023, 31, 167–177. https://doi.org/10.15421/jchemtech.v31i1.267433 | |
dc.relation.references | [20] Melnyk, S., Dzinyak, B. Selectivity of Formation and Yield of Dicarboxylic Acid Mono- and Diesters under Stationary Conditions. Chem. Chem. Technol. 2015, 9, 325–332. https://doi.org/10.23939/chcht09.03.325 | |
dc.relation.references | [21] Melnyk, S.R.; Khlibkevych, U.I.; Melnyk, Yu.R.; Mahorivska, H.Ya. Kinetic Research and Modeling of Benzoic Acid Esterification Process. Journal of Chemistry and Technologies 2021, 29, 559–569. https://doi.org/10.15421/jchemtech.v29i4.241445 | |
dc.relation.references | [22] Glavan, D.; Gremasco, Y.; Gomes Mantovani, A.C.; Bona, E.; Killner, M.; Borsato, D. Kinetic Study of the Transesterification Reaction by Artificial Neural Networks and Parametric Particle Swarm Optimization. Fuel 2020, 267, 1172218. https://doi.org/10.1016/j.fuel.2020.117221 | |
dc.relation.referencesen | [1] Peng, X. Method of an Organic Synthesis Intermediate N-acetamidoethanol. CN 106631859 A, May 10, 2017. | |
dc.relation.referencesen | [2] Mondal M.G.; Pratap A.P. Synthesis and Performance Properties of Cationic Fabric Softeners Derived from Free Fatty Acid of Tallow Fat. J Oleo Sci 2016, 65, 663-670. https://doi.org/10.5650/jos.ess15276 | |
dc.relation.referencesen | [3] Hansen, H.S.; Diep, T.A. N-acylethanolamines, Anandamide and Food Intake. Biochem. Pharmacol. 2009, 78, 553–560. https://doi.org/10.1016/j.bcp.2009.04.024 | |
dc.relation.referencesen | [4] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12, 400–404. https://doi.org/10.23939/chcht12.03.400 | |
dc.relation.referencesen | [5] Melnyk, S.; Danyliuk, R.; Melnyk, Yu.; Reutskyy V. The Reaction of Oleic Acid with a Mixture of Ethanolamines. Chem. Chem. Technol. 2018, 12, 13–17. https://doi.org/10.23939/chcht12.01.013 | |
dc.relation.referencesen | [6] Dinesh, K.; Amjad, A. Direct Synthesis of Fatty Acid Alkanolamides and Fatty Acid Alkyl Esters from High Free Fatty Acid Containing Triglycerides as Lubricity Improvers Using Heterogeneous Catalyst. Fuel 2015, 159, 845–853. https://doi.org/10.1016/j.fuel.2015.07.046 | |
dc.relation.referencesen | [7] Mahadevan, S.; Venkatasubban, K. Synthesis of Hydroxyalkyl Amides from Esters. WO 2012/148624 Al. January 11, 2012. | |
dc.relation.referencesen | [8] Markey, S.P.; Dudding, T.; Wang, T.-C.L. Base- and acid-Catalyzed Interconversions of O-acyl- and N-acyl-ethanolamines: A Cautionary Note for Lipid Analyses. J. Lipid Res. 2000, 41, 657–662. https://doi.org/10.1016/S0022-2275(20)32414-7 | |
dc.relation.referencesen | [9] Berčíková, M.; Lád, J.; Hrádková, I.; Kumherová, M.; Šmidrkal, J. Reaction of Fatty Acid Methyl Ester with Monoethanolamine and Diethanolamine. Tenside, Surfactants, Deterg. 2021, 58, 287–292. https://doi.org/10.1515/tsd-2020-2328 | |
dc.relation.referencesen | [10] Thabuis, C.; Tissot-Favre, D.; Bezelgues, J.-B.; Martin, J.-C.; Cruz-Hernandez, C.; Dionisi, F.; Destaillats F. Analysis of Chemically Synthesized Oleoylethanolamide by Gas-Liquid Chromatography. J. Chromatogr. A 2008, 1202, 216–219. | |
dc.relation.referencesen | [11] Wang, X.; Chen, Y.; Jin, Q.; Huang, J.; Wang, X. Synthesis of Linoleoyl Ethanolamide. J Oleo Sci 2013, 62, 427–433. https://doi.org/10.5650/jos.62.427 | |
dc.relation.referencesen | [12] Ohshima, Y.; Imoto, H.; Fujiu A. Verfahren zur Herstellung von hochreinem Alkanolamid. DE 19648513 A1. February 15, 2007. | |
dc.relation.referencesen | [13] Caldwell, N.; Jamieson, C.; Simpson, I.; Tuttle T. Organobase-Catalyzed Amidation of Esters with Amino Alcohols. Org. Lett. 2013, 15, 2506–2509. https://doi.org/10.1021/ol400987p | |
dc.relation.referencesen | [14] Movassaghi, M.; Schmid M. A. N-Heterocyclic Carbene-Catalyzed Amidation of Unactivated Esters with Amino Alcohols. Org. Lett. 2005, 7, 2453–2456. https://doi.org/10.1021/ol050773y | |
dc.relation.referencesen | [15] Lei, X.; Lu, W.; Peng, Q.; Li, H.; Chen, T.; Xu, S.; Zhang, F. Activated MgAl-layered Double Hydroxide as Solid Base Catalysts for the Conversion of Fatty Acid Methyl Esters to Monoethanolamides. APPL CATAL A-GEN 2011, 399, 87–92. https://doi.org/10.1016/j.apcata.2011.03.042 | |
dc.relation.referencesen | [16] Chintareddy, V.R.; Ho, H.-A.; Sadow, A.D.; Verkade, J.G. Polymer-mounted N3=P(MeNCH2CH2)3N: A Green, Efficient and Recyclable Catalyst for Room-Temperature Transesterifications and Amidations of Unactivated Esters. Tetrahedron Lett. 2011, 52, 6523–6529. https://doi.org/10.1016/j.tetlet.2011.09.102 | |
dc.relation.referencesen | [17] Melnyk, Yu.; Melnyk, S.; Palyukh, Z.; Dzinyak, B. Research into Transesterification of Triglycerides by Aliphatic Alcohols P.2–P.4 in the Presence of Ionites. East.-Eur. J. Enterp. Technol. 2018, 1/6(94), 10–16. https://doi.org/10.15587/1729-4061.2018.122938 | |
dc.relation.referencesen | [18] Melnyk, S.; Danyliuk, R.; Melnyk, Yu.; Stadnytska, N. Study of the Pentyl Acetate and Ethanolamine Catalytic and Non-Catalytic Interaction. J. Chem. Technol. Metall. 2022, 57, 439–450. | |
dc.relation.referencesen | [19] Melnyk S.R.; Danyliuk R.V.; Melnyk Yu.R. Ethanolamine and Pentyl Acetate Interaction Catalyzed by Cation Exchange Resin: Kinetic Insight. Journal of Chemistry and Technologies 2023, 31, 167–177. https://doi.org/10.15421/jchemtech.v31i1.267433 | |
dc.relation.referencesen | [20] Melnyk, S., Dzinyak, B. Selectivity of Formation and Yield of Dicarboxylic Acid Mono- and Diesters under Stationary Conditions. Chem. Chem. Technol. 2015, 9, 325–332. https://doi.org/10.23939/chcht09.03.325 | |
dc.relation.referencesen | [21] Melnyk, S.R.; Khlibkevych, U.I.; Melnyk, Yu.R.; Mahorivska, H.Ya. Kinetic Research and Modeling of Benzoic Acid Esterification Process. Journal of Chemistry and Technologies 2021, 29, 559–569. https://doi.org/10.15421/jchemtech.v29i4.241445 | |
dc.relation.referencesen | [22] Glavan, D.; Gremasco, Y.; Gomes Mantovani, A.C.; Bona, E.; Killner, M.; Borsato, D. Kinetic Study of the Transesterification Reaction by Artificial Neural Networks and Parametric Particle Swarm Optimization. Fuel 2020, 267, 1172218. https://doi.org/10.1016/j.fuel.2020.117221 | |
dc.relation.uri | https://doi.org/10.5650/jos.ess15276 | |
dc.relation.uri | https://doi.org/10.1016/j.bcp.2009.04.024 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.03.400 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.01.013 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2015.07.046 | |
dc.relation.uri | https://doi.org/10.1016/S0022-2275(20)32414-7 | |
dc.relation.uri | https://doi.org/10.1515/tsd-2020-2328 | |
dc.relation.uri | https://doi.org/10.5650/jos.62.427 | |
dc.relation.uri | https://doi.org/10.1021/ol400987p | |
dc.relation.uri | https://doi.org/10.1021/ol050773y | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2011.03.042 | |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2011.09.102 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2018.122938 | |
dc.relation.uri | https://doi.org/10.15421/jchemtech.v31i1.267433 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.03.325 | |
dc.relation.uri | https://doi.org/10.15421/jchemtech.v29i4.241445 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2020.117221 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Melnyk S., Melnyk Yu., Mahorivska H., Fuchyla O., 2023 | |
dc.subject | аміноліз | |
dc.subject | трансестерифікація | |
dc.subject | O-N-ацил міграція | |
dc.subject | кінетика | |
dc.subject | каталізатори кислоти й основи Бренстеда-Лоурі | |
dc.subject | aminolysis | |
dc.subject | transesterification | |
dc.subject | O-N-acyl migration | |
dc.subject | kinetics | |
dc.subject | acid and base Brønsted-Lowry catalysts | |
dc.title | Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine | |
dc.title.alternative | Кінетичні аспекти каталітичної взаємодії пентилацетату й етаноламіну | |
dc.type | Article |
Files
License bundle
1 - 1 of 1