Application of Response Surface Method to Copper Cementation by Metallic Aluminum Particles
dc.citation.epage | 596 | |
dc.citation.issue | 4 | |
dc.citation.spage | 590 | |
dc.contributor.affiliation | Inonu University | |
dc.contributor.author | Demirkiran, Nizamettin | |
dc.contributor.author | G. Deniz Turhan Özdemir | |
dc.contributor.author | Dardağan, Merve | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-12-13T10:02:56Z | |
dc.date.available | 2023-12-13T10:02:56Z | |
dc.date.created | 2010-03-16 | |
dc.date.issued | 2010-03-16 | |
dc.description.abstract | За допомогою методу крутого сходження досліджено взаємний вплив концентрації міді, температури та тривалості процесу на ефективність цементації міді металевими частинками алюмінію. Встановлено, що ефективність цементації збільшується зі збільшенням початкової концентрації міді, температури і часу. Аналіз множинної регресії стосовно експериментальних даних показав взаємний вплив змінних процесу. Отримано поліноміальне рівняння другого порядку. Визначено оптимальні параметри процесу: концентрація 0,075 моль/л, температура 1073 К і час 90 хв., за яких отримують максимальну кількість осадженої міді. | |
dc.description.abstract | In the present study, the interactive effects of the process variables containing copper concentration, temperature, and time on the efficiency of copper cementation by metallic aluminum particles were examined by using response surface methodology (RSM). It was observed that the efficiency of cementation increased with an increase in the initial concentration of copper, temperature and time. The multiple regression analysis to the experimental data was applied to see the interactive effects of process variables. The second-order polynomial equation was obtained. The optimal values were found to be 0.075 mol/l, 303 K, and 90 min to maximize the amount of the deposited copper. | |
dc.format.extent | 590-596 | |
dc.format.pages | 7 | |
dc.identifier.citation | Demirkiran N. Application of Response Surface Method to Copper Cementation by Metallic Aluminum Particles / Nizamettin Demirkiran, G. Deniz Turhan Özdemir, Merve Dardağan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 4. — P. 590–596. | |
dc.identifier.citationen | Demirkiran N. Application of Response Surface Method to Copper Cementation by Metallic Aluminum Particles / Nizamettin Demirkiran, G. Deniz Turhan Özdemir, Merve Dardağan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 4. — P. 590–596. | |
dc.identifier.doi | doi.org/10.23939/chcht14.04.590 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60571 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (14), 2020 | |
dc.relation.references | [1] Sedzimir J.: Hydrometallurgy, 2002, 64, 161. https://doi.org/10.1016/S0304-386X(02)00033-6 | |
dc.relation.references | [2] Djoudi W., Issani-Benissad F., Bourouina-Bacha S.: Chem. Eng. J., 2007, 133, 1. https://doi.org/10.1016/j.cej.2007.01.033 | |
dc.relation.references | [3] Noubactep C.: J. Hazard. Mater., 2010, 181, 1170. https://doi.org/10.1016/j.jhazmat.2010.05.085 | |
dc.relation.references | [4] Nazim M., Pal P., Al Shoaibi A., Elkamel A.: Chem. Eng. Technol., 2012, 35, 1744. https://doi.org/10.1002/ceat.201100492 | |
dc.relation.references | [5] Demirkiran N.: Sep. Sci. Technol., 2013, 48, 827. https://doi.org/10.1080/01496395.2012.710702 | |
dc.relation.references | [6] El-Shazly A., Nassr A., Mubarak A., Zaatout A.: Desalin. WaterTreat., 2016, 57, 22835. https://doi.org/10.1080/19443994.2015.1133872 | |
dc.relation.references | [7] Ekmekyapar A., Tanaydın M., Demirkiran N.: Physicochem. Probl. Miner. Process., 2012, 48, 355. https://doi.org/10.5277/ppmp120203 | |
dc.relation.references | [8] Gouvea L., Morais C.: Miner.Eng., 2007, 20, 956. https://doi.org/10.1016/j.mineng.2007.04.016 | |
dc.relation.references | [9] Demirkiran N.: Ind. Eng. Chem. Res., 2013, 52, 8157. https://doi.org/10.1021/ie400438b | |
dc.relation.references | [10] Yahiaoui I., Aissani-Benissad F., Ait-Amar H.: Can. J. Chem. Eng., 2010, 88, 1099. https://doi.org/10.1002/cjce.20348 | |
dc.relation.references | [11] Sudamalla P., Saravanan P., Matheswaran M.: Sustain. Environ. Res., 2012, 22, 1. | |
dc.relation.references | [12] Ottoni C., Cuervo-Fernández R., Piccoli R. et al.: Braz. J. Chem. Eng., 2012, 29, 49. https://doi.org/10.1590/S0104-66322012000100006 | |
dc.relation.references | [13] Shalchian H., Rafsancani-Abbasi A., Vahdati-Khakl J., Babakhani A.: Metall. Mater. Trans. B, 2015, 46B, 38. https://doi.org/10.1007/s11663-014-0216-7 | |
dc.relation.references | [14] Salehi S., Noaparast M., Shafaei S.: Physicochem. Probl. Miner. Process., 2016, 52, 1023. https://doi.org/10.5277/ppmp160239 | |
dc.relation.referencesen | [1] Sedzimir J., Hydrometallurgy, 2002, 64, 161. https://doi.org/10.1016/S0304-386X(02)00033-6 | |
dc.relation.referencesen | [2] Djoudi W., Issani-Benissad F., Bourouina-Bacha S., Chem. Eng. J., 2007, 133, 1. https://doi.org/10.1016/j.cej.2007.01.033 | |
dc.relation.referencesen | [3] Noubactep C., J. Hazard. Mater., 2010, 181, 1170. https://doi.org/10.1016/j.jhazmat.2010.05.085 | |
dc.relation.referencesen | [4] Nazim M., Pal P., Al Shoaibi A., Elkamel A., Chem. Eng. Technol., 2012, 35, 1744. https://doi.org/10.1002/ceat.201100492 | |
dc.relation.referencesen | [5] Demirkiran N., Sep. Sci. Technol., 2013, 48, 827. https://doi.org/10.1080/01496395.2012.710702 | |
dc.relation.referencesen | [6] El-Shazly A., Nassr A., Mubarak A., Zaatout A., Desalin. WaterTreat., 2016, 57, 22835. https://doi.org/10.1080/19443994.2015.1133872 | |
dc.relation.referencesen | [7] Ekmekyapar A., Tanaydın M., Demirkiran N., Physicochem. Probl. Miner. Process., 2012, 48, 355. https://doi.org/10.5277/ppmp120203 | |
dc.relation.referencesen | [8] Gouvea L., Morais C., Miner.Eng., 2007, 20, 956. https://doi.org/10.1016/j.mineng.2007.04.016 | |
dc.relation.referencesen | [9] Demirkiran N., Ind. Eng. Chem. Res., 2013, 52, 8157. https://doi.org/10.1021/ie400438b | |
dc.relation.referencesen | [10] Yahiaoui I., Aissani-Benissad F., Ait-Amar H., Can. J. Chem. Eng., 2010, 88, 1099. https://doi.org/10.1002/cjce.20348 | |
dc.relation.referencesen | [11] Sudamalla P., Saravanan P., Matheswaran M., Sustain. Environ. Res., 2012, 22, 1. | |
dc.relation.referencesen | [12] Ottoni C., Cuervo-Fernández R., Piccoli R. et al., Braz. J. Chem. Eng., 2012, 29, 49. https://doi.org/10.1590/S0104-66322012000100006 | |
dc.relation.referencesen | [13] Shalchian H., Rafsancani-Abbasi A., Vahdati-Khakl J., Babakhani A., Metall. Mater. Trans. B, 2015, 46B, 38. https://doi.org/10.1007/s11663-014-0216-7 | |
dc.relation.referencesen | [14] Salehi S., Noaparast M., Shafaei S., Physicochem. Probl. Miner. Process., 2016, 52, 1023. https://doi.org/10.5277/ppmp160239 | |
dc.relation.uri | https://doi.org/10.1016/S0304-386X(02)00033-6 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2007.01.033 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2010.05.085 | |
dc.relation.uri | https://doi.org/10.1002/ceat.201100492 | |
dc.relation.uri | https://doi.org/10.1080/01496395.2012.710702 | |
dc.relation.uri | https://doi.org/10.1080/19443994.2015.1133872 | |
dc.relation.uri | https://doi.org/10.5277/ppmp120203 | |
dc.relation.uri | https://doi.org/10.1016/j.mineng.2007.04.016 | |
dc.relation.uri | https://doi.org/10.1021/ie400438b | |
dc.relation.uri | https://doi.org/10.1002/cjce.20348 | |
dc.relation.uri | https://doi.org/10.1590/S0104-66322012000100006 | |
dc.relation.uri | https://doi.org/10.1007/s11663-014-0216-7 | |
dc.relation.uri | https://doi.org/10.5277/ppmp160239 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Demirkiran N., Özdemir D, Dardağan M., 2020 | |
dc.subject | мідь | |
dc.subject | цементація | |
dc.subject | оптимізація | |
dc.subject | метод крутого сходження | |
dc.subject | copper | |
dc.subject | cementation | |
dc.subject | optimization | |
dc.subject | response surface methodology | |
dc.title | Application of Response Surface Method to Copper Cementation by Metallic Aluminum Particles | |
dc.title.alternative | Застосування методу крутого сходження для цементації міді металевими частинками алюмінію | |
dc.type | Article |
Files
License bundle
1 - 1 of 1