A nonlinear fractional partial differential equation for image inpainting

dc.citation.epage546
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage536
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.authorГуаснуан, О.
dc.contributor.authorМуссаід, Н.
dc.contributor.authorБужена, С.
dc.contributor.authorКаблі, К.
dc.contributor.authorGouasnouane, O.
dc.contributor.authorMoussaid, N.
dc.contributor.authorBoujena, S.
dc.contributor.authorKabli, K.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:33:05Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractЗафарбовування зображень є важливим напрямком досліджень в обробці зображень. Його основна мета — доповнити відсутні або пошкоджені області зображень, використовуючи інформацію з навколишніх областей. Цей крок може бути виконаний, використовуючи нелінійні дифузійні фільтри, які вимагають розв’язування диференціальних еволюційних рівнянь у частинних похідних. У цій роботі пропонується фільтр, який визначається нелінійним еволюційним рівнянням у частинних похідних із дробовими просторовими похідними. Завдяки цьому вдалося покращити продуктивність відомих моделей зафарбовування, які базуються на диференціальних рівняннях у частинних похідних, і розширити деякі існуючі результати в обробці зображень. Дискретизація дробового диференціального рівняння у частинних похідних пропонованої моделі здійснюється за допомогою зміщеної формули Грюнвальда–Летнікова, що дозволяє будувати стійкі чисельні схеми. Порівняльний аналіз показує, що запропонована модель забезпечує покращену якість зображення, якіснішу або співмірну з якістю, отриманою на основі інших ефективних моделей, відомих в літературі.
dc.description.abstractImage inpainting is an important research area in image processing. Its main purpose is to supplement missing or damaged domains of images using information from surrounding areas. This step can be performed by using nonlinear diffusive filters requiring a resolution of partial differential evolution equations. In this paper, we propose a filter defined by a partial differential nonlinear evolution equation with spatial fractional derivatives. Due to this, we were able to improve the performance obtained by known inpainting models based on partial differential equations and extend certain existing results in image processing. The discretization of the fractional partial differential equation of the proposed model is carried out using the shifted Grünwald–Letnikov formula, which allows us to build stable numerical schemes. The comparative analysis shows that the proposed model produces an improved image quality better or comparable to that obtained by various other efficient models known from the literature.
dc.format.extent536-546
dc.format.pages11
dc.identifier.citationA nonlinear fractional partial differential equation for image inpainting / O. Gouasnouane, N. Moussaid, S. Boujena, K. Kabli // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 536–546.
dc.identifier.citationenA nonlinear fractional partial differential equation for image inpainting / O. Gouasnouane, N. Moussaid, S. Boujena, K. Kabli // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 536–546.
dc.identifier.doidoi.org/10.23939/mmc2022.03.536
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63478
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 3 (9), 2022
dc.relation.references[1] Bertalmio M., Sapiro G., Caselles V., Ballester C. Image Inpainting. Proceedings of the 27th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’00. 417–424 (2000).
dc.relation.references[2] Boujena S., El Guarmah E., Gouasnouane O., Pousin J. An Improved Nonlinear Model for Image Restoration. Pure and Applied Functional. 2 (4), 599–623 (2017).
dc.relation.references[3] Boujena S., El Guarmah E., Gouasnouane O., Pousin J. On a derived non linear model in image restoration. Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM). 1–3 (2013).
dc.relation.references[4] Boujena S., Bellaj K., Gouasnouane O., El Guarmah E. An improved nonlinear model for image inpainting. Applied Mathematical Sciences. 9 (124), 6189–6205 (2015).
dc.relation.references[5] Boujena S., Bellaj K., Gouasnouane O., El Guarmah E. One approach for image denoising based on finite element method and domain decomposition technique. International Journal of Applied Physics and Mathematics. 7 (2), 141–147 (2017).
dc.relation.references[6] Chan T. F., Shen J. Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics. 62 (3), 1019–1043 (2002).
dc.relation.references[7] Chan T. F., Shen J. Nontexture inpainting by curvature driven diffusions (CDD). Journal of Visual Communication and Image Representation. 12 (4), 436–449 (2001).
dc.relation.references[8] Gouasnouane O., Moussaid N., Boujena S. A Nonlinear Fractional Partial Differential Equation for Image Denoising. Third International Conference on Transportation and Smart Technologies (TST). 59–64 (2021).
dc.relation.references[9] Sayah A., Moussaid N., Gouasnouane O. Finite difference method for Perona–Malik model with fractional derivative and its application in image processing. 2021 Third International Conference on Transportation and Smart Technologies (TST). 101–106 (2021).
dc.relation.references[10] Li H., Yu Z., Zhou J. Fractional differential and variational method for image fusion and super-resolution. Neurocomputing. 171, 138–148 (2016).
dc.relation.references[11] Chen D., Chen Y., Xue D. 1-D and 2-D digital fractional-order Savitzky–Golay differentiator. Signal, Image and Video Processing. 6 (3), 503–511 (2012).
dc.relation.references[12] Cuesta E., Codes J. Image processing by means of a linear integro-differential equation. 3rd IASTED Int. Conf. Visualization, Imaging and Image Processing. 1, 438–442 (2003).
dc.relation.references[13] Didasa S., Burgeth B., Imiya A., Weickert J. Regularity and scalespace properties of fractional high order linear filtering. Scale Spaces and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science. 3459, 13–25 (2005).
dc.relation.references[14] Ben-Loghfyry A., Hakim A. Time-fractional diffusion equation for signal and image smoothing. Mathematical Modeling and Computing. 9 (2), 351–364 (2022).
dc.relation.references[15] Zhang Y., Pu Y. F., Zhou J. Two new nonlinear PDE image inpainting models. Computer Science for Environmental Engineering and EcoInformatics. CSEEE 2011. Communications in Computer and Information Science. 158, 341–347 (2011).
dc.relation.references[16] Zhang Y., Pu Y. F., Hu J., Zhou J. L. A class of fractional-order variational image inpainting models. Applied Mathematics & Information Sciences. 6 (2), 299–306 (2012).
dc.relation.references[17] Bosch J., Stoll M. A fractional inpainting model based on the vector-valued cahn-hilliard equation. SIAM Journal on Imaging Sciences. 8 (4), 2352–2382 (2015).
dc.relation.references[18] Perona P., Malik J. Scale-espace and edge detection using anisotropic diffusion. IEEE Transaction on Pattern Analysis and Machine Intelligence. 12 (7), 429–439 (1990).
dc.relation.references[19] Changpin L., Fanhai Z. Numerical Methods for Fractional Calculus. CRC Press (2015).
dc.relation.references[20] Meerschaert M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics. 172 (1), 65–77 (2004).
dc.relation.references[21] Oldham K., Spanier J. The Fractional Calculus. Academic Press, New York (1974).
dc.relation.referencesen[1] Bertalmio M., Sapiro G., Caselles V., Ballester C. Image Inpainting. Proceedings of the 27th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’00. 417–424 (2000).
dc.relation.referencesen[2] Boujena S., El Guarmah E., Gouasnouane O., Pousin J. An Improved Nonlinear Model for Image Restoration. Pure and Applied Functional. 2 (4), 599–623 (2017).
dc.relation.referencesen[3] Boujena S., El Guarmah E., Gouasnouane O., Pousin J. On a derived non linear model in image restoration. Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM). 1–3 (2013).
dc.relation.referencesen[4] Boujena S., Bellaj K., Gouasnouane O., El Guarmah E. An improved nonlinear model for image inpainting. Applied Mathematical Sciences. 9 (124), 6189–6205 (2015).
dc.relation.referencesen[5] Boujena S., Bellaj K., Gouasnouane O., El Guarmah E. One approach for image denoising based on finite element method and domain decomposition technique. International Journal of Applied Physics and Mathematics. 7 (2), 141–147 (2017).
dc.relation.referencesen[6] Chan T. F., Shen J. Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics. 62 (3), 1019–1043 (2002).
dc.relation.referencesen[7] Chan T. F., Shen J. Nontexture inpainting by curvature driven diffusions (CDD). Journal of Visual Communication and Image Representation. 12 (4), 436–449 (2001).
dc.relation.referencesen[8] Gouasnouane O., Moussaid N., Boujena S. A Nonlinear Fractional Partial Differential Equation for Image Denoising. Third International Conference on Transportation and Smart Technologies (TST). 59–64 (2021).
dc.relation.referencesen[9] Sayah A., Moussaid N., Gouasnouane O. Finite difference method for Perona–Malik model with fractional derivative and its application in image processing. 2021 Third International Conference on Transportation and Smart Technologies (TST). 101–106 (2021).
dc.relation.referencesen[10] Li H., Yu Z., Zhou J. Fractional differential and variational method for image fusion and super-resolution. Neurocomputing. 171, 138–148 (2016).
dc.relation.referencesen[11] Chen D., Chen Y., Xue D. 1-D and 2-D digital fractional-order Savitzky–Golay differentiator. Signal, Image and Video Processing. 6 (3), 503–511 (2012).
dc.relation.referencesen[12] Cuesta E., Codes J. Image processing by means of a linear integro-differential equation. 3rd IASTED Int. Conf. Visualization, Imaging and Image Processing. 1, 438–442 (2003).
dc.relation.referencesen[13] Didasa S., Burgeth B., Imiya A., Weickert J. Regularity and scalespace properties of fractional high order linear filtering. Scale Spaces and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science. 3459, 13–25 (2005).
dc.relation.referencesen[14] Ben-Loghfyry A., Hakim A. Time-fractional diffusion equation for signal and image smoothing. Mathematical Modeling and Computing. 9 (2), 351–364 (2022).
dc.relation.referencesen[15] Zhang Y., Pu Y. F., Zhou J. Two new nonlinear PDE image inpainting models. Computer Science for Environmental Engineering and EcoInformatics. CSEEE 2011. Communications in Computer and Information Science. 158, 341–347 (2011).
dc.relation.referencesen[16] Zhang Y., Pu Y. F., Hu J., Zhou J. L. A class of fractional-order variational image inpainting models. Applied Mathematics & Information Sciences. 6 (2), 299–306 (2012).
dc.relation.referencesen[17] Bosch J., Stoll M. A fractional inpainting model based on the vector-valued cahn-hilliard equation. SIAM Journal on Imaging Sciences. 8 (4), 2352–2382 (2015).
dc.relation.referencesen[18] Perona P., Malik J. Scale-espace and edge detection using anisotropic diffusion. IEEE Transaction on Pattern Analysis and Machine Intelligence. 12 (7), 429–439 (1990).
dc.relation.referencesen[19] Changpin L., Fanhai Z. Numerical Methods for Fractional Calculus. CRC Press (2015).
dc.relation.referencesen[20] Meerschaert M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics. 172 (1), 65–77 (2004).
dc.relation.referencesen[21] Oldham K., Spanier J. The Fractional Calculus. Academic Press, New York (1974).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectобробка зображень
dc.subjectзафарбовування зображень
dc.subjectдробове числення
dc.subjectдиференціальне рівняння в частинних похідних дробового порядку
dc.subjectнелінійна дифузія
dc.subjectдробова похідна
dc.subjectimage processing
dc.subjectimage inpainting
dc.subjectfractional calculus
dc.subjectfractional order partial differential equation
dc.subjectnonlinear diffusion
dc.subjectfractional derivativ
dc.titleA nonlinear fractional partial differential equation for image inpainting
dc.title.alternativeНелінійне рівняння в частинних похідних для зафарбовування зображень
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n3_Gouasnouane_O-A_nonlinear_fractional_536-546.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n3_Gouasnouane_O-A_nonlinear_fractional_536-546__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: