Machine learning for forecasting some stock market index
| dc.citation.epage | 138 | |
| dc.citation.issue | 11 | |
| dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
| dc.citation.spage | 134 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Прем’єрський університет Мохаммеда, Уджда | |
| dc.contributor.affiliation | Mohammed Premier University, Oujda | |
| dc.contributor.author | Бенмумен, М. | |
| dc.contributor.author | Салхі, І. | |
| dc.contributor.author | Benmoumen, M. | |
| dc.contributor.author | Salhi, I. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T07:44:08Z | |
| dc.date.created | 2024-02-24 | |
| dc.date.issued | 2024-02-24 | |
| dc.description.abstract | У цій статті оцінюється алгоритм QMLKF, розроблений у попередній статті [ Benmoumen M. Чисельна оптимізація функції правдоподібності на основі фільтра Калмана в моделях GARCH. Математичне моделювання та обчислення. 9 (3), 599–606 (2022) ] для оцінки параметрів моделей GARCH шляхом перенесення його на реальні дані, а потім представляємо наше машинне навчання для прогнозування дохідності деяких фондових індексів. | |
| dc.description.abstract | In this paper, we evaluate the QMLKF algorithm, designed in the previous paper [Benmoumen M. Numerical optimization of the likelihood function based on Kalman Filter in the GARCH models. Mathematical Modeling and Computing. 9 (3), 599–606 (2022)] for parameter estimation of GARCH models, by transposing it to real data and then present our machine learning for forecasting the returns of some stock indices. | |
| dc.format.extent | 134-138 | |
| dc.format.pages | 5 | |
| dc.identifier.citation | Benmoumen M. Machine learning for forecasting some stock market index / M. Benmoumen, I. Salhi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 134–138. | |
| dc.identifier.citationen | Benmoumen M. Machine learning for forecasting some stock market index / M. Benmoumen, I. Salhi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 134–138. | |
| dc.identifier.doi | 10.23939/mmc2024.01.134 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113773 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Математичне моделювання та комп'ютинг, 11 (1), 2024 | |
| dc.relation.ispartof | Mathematical Modeling and Computing, 11 (1), 2024 | |
| dc.relation.references | [1] Franses P. H., Van Dijk D. Non-linear time series models in empirical finance. Cambridge University Press (2000). | |
| dc.relation.references | [2] Engle R. E. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 50 (4), 987–1007 (1982). | |
| dc.relation.references | [3] Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 31 (3), 307–327 (1986). | |
| dc.relation.references | [4] Benmoumen M. Numerical optimization of the likelihood function based on Kalman Filter in the GARCH models. Mathematical Modeling and Computing. 9 (3), 599–606 (2022). | |
| dc.relation.references | [5] Ghalanos A. Introduction to the rugarch package (Version 1.3-1), (2020). http://cran.r-project.org/web/packages/rugarch. | |
| dc.relation.references | [6] Benmoumen M. Numerical optimization of the likelihood function based on Kalman filter in the ARCH models. AIP Conference Proceedings. 2074, 020020 (2019). | |
| dc.relation.references | [7] Benmoumen M., Allal J., Salhi I. Parameter Estimation for p-Order Random Coefficient Autoregressive (RCA) Models Based on Kalman Filter. Journal of Applied Mathematics. 2019, 8479086 (2019). | |
| dc.relation.references | [8] Corana A., Marchesi M., Martini C., Ridella S. Minimizing Multimodal functions of continuous variables with “Simulated Annealing” Algorithm. ACM Transactions on Mathematical Software. 13 (3), 262–280 (1987). | |
| dc.relation.referencesen | [1] Franses P. H., Van Dijk D. Non-linear time series models in empirical finance. Cambridge University Press (2000). | |
| dc.relation.referencesen | [2] Engle R. E. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 50 (4), 987–1007 (1982). | |
| dc.relation.referencesen | [3] Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 31 (3), 307–327 (1986). | |
| dc.relation.referencesen | [4] Benmoumen M. Numerical optimization of the likelihood function based on Kalman Filter in the GARCH models. Mathematical Modeling and Computing. 9 (3), 599–606 (2022). | |
| dc.relation.referencesen | [5] Ghalanos A. Introduction to the rugarch package (Version 1.3-1), (2020). http://cran.r-project.org/web/packages/rugarch. | |
| dc.relation.referencesen | [6] Benmoumen M. Numerical optimization of the likelihood function based on Kalman filter in the ARCH models. AIP Conference Proceedings. 2074, 020020 (2019). | |
| dc.relation.referencesen | [7] Benmoumen M., Allal J., Salhi I. Parameter Estimation for p-Order Random Coefficient Autoregressive (RCA) Models Based on Kalman Filter. Journal of Applied Mathematics. 2019, 8479086 (2019). | |
| dc.relation.referencesen | [8] Corana A., Marchesi M., Martini C., Ridella S. Minimizing Multimodal functions of continuous variables with "Simulated Annealing" Algorithm. ACM Transactions on Mathematical Software. 13 (3), 262–280 (1987). | |
| dc.relation.uri | http://cran.r-project.org/web/packages/rugarch | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | машинне навчання | |
| dc.subject | статистичне навчання | |
| dc.subject | модель GARCH | |
| dc.subject | фільтр Калмана | |
| dc.subject | індекс фондового ринку | |
| dc.subject | Machine learning | |
| dc.subject | statistical learning | |
| dc.subject | GARCH model | |
| dc.subject | Kalman filter | |
| dc.subject | stock market index | |
| dc.title | Machine learning for forecasting some stock market index | |
| dc.title.alternative | Машинне навчання для прогнозування деяких індексів фондового ринку | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1