Chebyshev approximation of multivariable functions with the interpolation

dc.citation.epage766
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage757
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМалачівський, П.
dc.contributor.authorМельничок, Л.
dc.contributor.authorПізюр, Я.
dc.contributor.authorMalachivskyy, P.
dc.contributor.authorMelnychok, L.
dc.contributor.authorPizyur, Ya.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:33:03Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractЗапропоновано метод побудови чебишовського наближення функції багатьох змінних узагальненим поліномом з відтворенням її значень у заданих точках. Він ґрунтується на послідовній побудові середньостепеневих наближень з врахуванням інтерполяційної умови. Середньостепеневе наближення обчислюється за ітераційною схемою на основі методу найменших квадратів зі змінною ваговою функцією. Описано алгоритм для обчислення параметрів чебишовського наближення з інтерполяційною умовою для абсолютної та відносної похибки. Подані результати розв’язування тестових прикладів підтверджують швидку збіжність методу під час обчислення параметрів чебишовського наближення таблично заданих неперервних функцій однієї, двох і трьох змінних з відтворенням значення функції у заданих точках.
dc.description.abstractA method of constructing a Chebyshev approximation of multivariable functions by a generalized polynomial with the exact reproduction of its values at a given points is proposed. It is based on the sequential construction of mean-power approximations, taking into account the interpolation condition. The mean-power approximation is calculated using an iterative scheme based on the method of least squares with the variable weight function. An algorithm for calculating the Chebyshev approximation parameters with the interpolation condition for absolute and relative error is described. The presented results of solving test examples confirm the rapid convergence of the method when calculating the parameters of the Chebyshev approximation of tabular continuous functions of one, two and three variables with the reproduction of the values of the function at given points.
dc.format.extent757-766
dc.format.pages10
dc.identifier.citationMalachivskyy P. Chebyshev approximation of multivariable functions with the interpolation / P. Malachivskyy, L. Melnychok, Ya. Pizyur // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 757–766.
dc.identifier.citationenMalachivskyy P. Chebyshev approximation of multivariable functions with the interpolation / P. Malachivskyy, L. Melnychok, Ya. Pizyur // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 757–766.
dc.identifier.doidoi.org/10.23939/mmc2022.03.757
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63472
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 3 (9), 2022
dc.relation.references[1] Melnychok L. S., Popov B. A. Best approximation of table functions with a condition. Algorithms and programs for calculating functions on a digital computer. Institute of Cybernetics. 4, 95–102 (1977), (in Russian).
dc.relation.references[2] Collatz L., Krabs W. Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen. Teubner, Stuttgart (1973), (in German).
dc.relation.references[3] Dunham C. B. Discrete Chebyshev approximation with interpolation. International Journal of Computer Mathematics. 11 (3–4), 243–245 (1982).
dc.relation.references[4] Popov B. A., Tesler G. S. Approximation of Functions for Engineering Applications. Naukova Dumka, Kyiv (1980), (in Russian).
dc.relation.references[5] Collatz L., Albrecht J. Aufgaben aus der Angewandten Mathematik I. Gleichungen in einer oder mehreren Variablen, Approximationen. Vieweg, Braunschweig (1972), (in German).
dc.relation.references[6] Bomba A. J., Hladka O. M. Problems of Identification of the Parameters of Quasiideal Filtration Processes in Nonlinear Layered Porous Media. Journal of Mathematical Sciences. 220 (2), 213–225 (2017).
dc.relation.references[7] Gerashchenko O. A., Gordov A. I., Eremina A. K. Temperature measurements. Naukova Dumka, Kyiv (1989), (in Russian).
dc.relation.references[8] Atieg A., Watson G. A. Use of lp norms in fitting curves and surfaces to data. The ANZIAM Journal. 45 (E), 187–200 (2004).
dc.relation.references[9] Verlan A. F., Adbusadarov B. B., Ignatenko A. A., Maksimovich N. N. Methods and devices for interpreting experimental dependencies in the study and control of energy processes. Naukova Dumka, Kyiv (1993), (in Russian).
dc.relation.references[10] Dunham C. B. Remez algorithm for Chebyshev approximation with interpolation. Computing. 28, 75–78 (1982).
dc.relation.references[11] Kondrat’ev V. P. Uniform approximation with constraints of interpolation type. Algorithms and programs for approximating functions. IMM AN USSR, Sverdlovsk, 40–69 (1981), (in Russian).
dc.relation.references[12] Dunham C., Zhu C. Strong uniqueness of nonlinear Chebyshev approximation (with interpolation). Numerical Mathematics and Computing. 161–169 (1990).
dc.relation.references[13] Skopetskii V. V., Malachivskii P. S. Chebyshev approximation of functions by the sum of a polynomial and an expression with a nonlinear parameter and endpoint interpolation. Cybernetics and Systems Analysis. 45 (1), 58–68 (2009).
dc.relation.references[14] Malachivskyy P. S., Skopetskii V. V. Continuous and Smooth Minimax Spline Approximation. Naukova Dumka, Kyiv (2013), (in Ukrainian).
dc.relation.references[15] Korneychuk N. P., Ligun A. A., Doronin V. G. Approximation with restrictions. Naukova Dumka, Kyiv (1982), (in Russian).
dc.relation.references[16] Remez E. Ya. Fundamentals of the Numerical Methods of Chebyshev Approximation. Naukova Dumka, Kyiv (1969), (in Russian).
dc.relation.references[17] Malachivskyy P. S., Matviychuk Y. N., Pizyur Y. V., Malachivskyi R. P. Uniform Approximation of Functions of Two Variables. Cybernetics and Systems Analysis. 53 (3), 426–431 (2017).
dc.relation.references[18] Malachivskyy P. S., Pizyur Y. V., Malachivskyi R. P., Ukhanska O. M. Chebyshev Approximation of Functions of Several Variables. Cybernetics and Systems Analysis. 56 (1), 118–125 (2020).
dc.relation.references[19] Malachivskyy P. S., Melnychok L. S., Pizyur Y. V. Chebyshev Approximation of the Functions of Many Variables with the Condition. 15th International Conference on Computer Sciences and Information Technologies (CSIT). 54–57 (2020).
dc.relation.references[20] Jukic D. On the existence of the best discrete approximation in lp norm by reciprocals of real polynomials. Journal of Approximation Theory. 156 (2), 212–222 (2009).
dc.relation.references[21] Malachivskyy P. S., Pizyur Ya. V., Malachivskyi R. P. Calculating the Chebyshev approximation of functions of several variables. 5th Sci.-Tech. Conf. Computational Methods and Systems of Information Transformation. 35–38 (2018), (in Ukrainian).
dc.relation.references[22] Malachivskyy P. S., Montsibovych B. R., Pizyur Y. V., Malachivskyi R. P. Chebyshev approximation of functions of two variables by a rational expression. Matematychne ta Komp. Modelyuvannya. 19, 75–81 (2019), (in Ukrainian).
dc.relation.references[23] Malachivskyy P. S., Pizyur Y. V., Malachivsky R. P. Chebyshev Approximation by a Rational Expression for Functions of Many Variables. Cybernetics and Systems Analysis. 56 (5), 811–819 (2020).
dc.relation.references[24] Nakatsukasa Y., Trefethen L. N. An Algorithm for Real and Complex Rational Minimax Approximation. SIAM Journal on Scientific Computing. 42 (5), A3157–A3179 (2020).
dc.relation.referencesen[1] Melnychok L. S., Popov B. A. Best approximation of table functions with a condition. Algorithms and programs for calculating functions on a digital computer. Institute of Cybernetics. 4, 95–102 (1977), (in Russian).
dc.relation.referencesen[2] Collatz L., Krabs W. Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen. Teubner, Stuttgart (1973), (in German).
dc.relation.referencesen[3] Dunham C. B. Discrete Chebyshev approximation with interpolation. International Journal of Computer Mathematics. 11 (3–4), 243–245 (1982).
dc.relation.referencesen[4] Popov B. A., Tesler G. S. Approximation of Functions for Engineering Applications. Naukova Dumka, Kyiv (1980), (in Russian).
dc.relation.referencesen[5] Collatz L., Albrecht J. Aufgaben aus der Angewandten Mathematik I. Gleichungen in einer oder mehreren Variablen, Approximationen. Vieweg, Braunschweig (1972), (in German).
dc.relation.referencesen[6] Bomba A. J., Hladka O. M. Problems of Identification of the Parameters of Quasiideal Filtration Processes in Nonlinear Layered Porous Media. Journal of Mathematical Sciences. 220 (2), 213–225 (2017).
dc.relation.referencesen[7] Gerashchenko O. A., Gordov A. I., Eremina A. K. Temperature measurements. Naukova Dumka, Kyiv (1989), (in Russian).
dc.relation.referencesen[8] Atieg A., Watson G. A. Use of lp norms in fitting curves and surfaces to data. The ANZIAM Journal. 45 (E), 187–200 (2004).
dc.relation.referencesen[9] Verlan A. F., Adbusadarov B. B., Ignatenko A. A., Maksimovich N. N. Methods and devices for interpreting experimental dependencies in the study and control of energy processes. Naukova Dumka, Kyiv (1993), (in Russian).
dc.relation.referencesen[10] Dunham C. B. Remez algorithm for Chebyshev approximation with interpolation. Computing. 28, 75–78 (1982).
dc.relation.referencesen[11] Kondrat’ev V. P. Uniform approximation with constraints of interpolation type. Algorithms and programs for approximating functions. IMM AN USSR, Sverdlovsk, 40–69 (1981), (in Russian).
dc.relation.referencesen[12] Dunham C., Zhu C. Strong uniqueness of nonlinear Chebyshev approximation (with interpolation). Numerical Mathematics and Computing. 161–169 (1990).
dc.relation.referencesen[13] Skopetskii V. V., Malachivskii P. S. Chebyshev approximation of functions by the sum of a polynomial and an expression with a nonlinear parameter and endpoint interpolation. Cybernetics and Systems Analysis. 45 (1), 58–68 (2009).
dc.relation.referencesen[14] Malachivskyy P. S., Skopetskii V. V. Continuous and Smooth Minimax Spline Approximation. Naukova Dumka, Kyiv (2013), (in Ukrainian).
dc.relation.referencesen[15] Korneychuk N. P., Ligun A. A., Doronin V. G. Approximation with restrictions. Naukova Dumka, Kyiv (1982), (in Russian).
dc.relation.referencesen[16] Remez E. Ya. Fundamentals of the Numerical Methods of Chebyshev Approximation. Naukova Dumka, Kyiv (1969), (in Russian).
dc.relation.referencesen[17] Malachivskyy P. S., Matviychuk Y. N., Pizyur Y. V., Malachivskyi R. P. Uniform Approximation of Functions of Two Variables. Cybernetics and Systems Analysis. 53 (3), 426–431 (2017).
dc.relation.referencesen[18] Malachivskyy P. S., Pizyur Y. V., Malachivskyi R. P., Ukhanska O. M. Chebyshev Approximation of Functions of Several Variables. Cybernetics and Systems Analysis. 56 (1), 118–125 (2020).
dc.relation.referencesen[19] Malachivskyy P. S., Melnychok L. S., Pizyur Y. V. Chebyshev Approximation of the Functions of Many Variables with the Condition. 15th International Conference on Computer Sciences and Information Technologies (CSIT). 54–57 (2020).
dc.relation.referencesen[20] Jukic D. On the existence of the best discrete approximation in lp norm by reciprocals of real polynomials. Journal of Approximation Theory. 156 (2), 212–222 (2009).
dc.relation.referencesen[21] Malachivskyy P. S., Pizyur Ya. V., Malachivskyi R. P. Calculating the Chebyshev approximation of functions of several variables. 5th Sci.-Tech. Conf. Computational Methods and Systems of Information Transformation. 35–38 (2018), (in Ukrainian).
dc.relation.referencesen[22] Malachivskyy P. S., Montsibovych B. R., Pizyur Y. V., Malachivskyi R. P. Chebyshev approximation of functions of two variables by a rational expression. Matematychne ta Komp. Modelyuvannya. 19, 75–81 (2019), (in Ukrainian).
dc.relation.referencesen[23] Malachivskyy P. S., Pizyur Y. V., Malachivsky R. P. Chebyshev Approximation by a Rational Expression for Functions of Many Variables. Cybernetics and Systems Analysis. 56 (5), 811–819 (2020).
dc.relation.referencesen[24] Nakatsukasa Y., Trefethen L. N. An Algorithm for Real and Complex Rational Minimax Approximation. SIAM Journal on Scientific Computing. 42 (5), A3157–A3179 (2020).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectчебишовське наближення з інтерполяційною умовою
dc.subjectфункції багатьох змінних
dc.subjectсередньостепеневе наближення
dc.subjectметод найменших квадратів
dc.subjectзмінна вагова функція
dc.subjectChebyshev approximation with the interpolation condition
dc.subjectmultivariable functions
dc.subjectmean-power approximation
dc.subjectleast squares method
dc.subjectvariable weight function
dc.titleChebyshev approximation of multivariable functions with the interpolation
dc.title.alternativeЧебишовське наближення функцій багатьох змінних з інтерполюванням
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n3_Malachivskyy_P-Chebyshev_approximation_757-766.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n3_Malachivskyy_P-Chebyshev_approximation_757-766__COVER.png
Size:
349.91 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: