Eco-Friendly Bamboo-Based Composites

dc.citation.epage56
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage44
dc.citation.volume18
dc.contributor.affiliationIvane Javakhishvili’ Tbilisi State University
dc.contributor.authorTatrishvili, Tamara
dc.contributor.authorMukbaniani, Omar
dc.contributor.authorKvnikadze, Nikoloz
dc.contributor.authorChikhladze, Shota
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:59Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractДослідження присвячено отриманню композиційних матеріалів на основі бамбука та нових екологічно чистих в'яжучих речовин з різним ступенем силілювання (15-35 %) за різних тисків і температур. Синтез проводили з використанням силільованого полістирену (полі[триметокси(4-вінілфенетил)]силану) та стирену як в'яжучої речовини й армувального агента в присутності органічних/неорганічних добавок, антиоксидантів та антипірену. Полі[триметокси(4-вінілфенетил)]силан, тверду речовину коричневого кольору, було синтезовано реакцією алкілування вінілтриметоксисилану та полістирену в присутності безводного AlCl3. У цій статті представлено розробку композитів екологічного призначення (екокомпозитів) з використанням бамбукових волокон та їхні основні механічні властивості. Поверхневі структури нових композитів досліджували кількома методами, включаючи електронну мікроскопію, енергодисперсійний рентгенівський мікроаналіз, випробування на згин, ударний тест Шарпі, термогравіметричні дослідження та визначення водопоглинання. Нові композити характеризуються добрими механічними властивостями, термостійкістю, екологічною чистотою та водопоглинанням, значно меншим за водопоглинання існуючих деревостружкових плит.
dc.description.abstractThe study focuses on obtaining bamboo-based composite materials and new environmentally friendly binders with different degrees of silylation (15-35%) at different pressures and temperatures. The synthesis was carried out using silylated polystyrene (poly[trimethoxy(4-vinylphenethyl)] silane) and styrene as a binder and reinforcing agent in the presence of organic/inorganic additives, antioxidants and antipirene. Poly[trimethoxy(4-vinylphenethyl)] silane, a solid brown substance, was synthesized via an alkylation reaction of vinyltrimethoxysilane and polystyrene, in the presence of anhydrous AlCl3. This paper presents the development of composites for ecological purposes (eco-composites) using bamboo fibers and their basic mechanical properties. The surface structures of the new composites were studied by several techniques including electron microscopy, energy dispersive X-ray microanalysis, bending test, Charpy impact test, thermogravimetry study, and water absorption determination. The new composites are characterized by good mechanical properties, thermal resistance, ecological purity, and water absorption capacity much smaller than the water absorption of existing particle boards.
dc.format.extent44-56
dc.format.pages13
dc.identifier.citationEco-Friendly Bamboo-Based Composites / Tamara Tatrishvili, Omar Mukbaniani, Nikoloz Kvnikadze, Shota Chikhladze // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 44–56.
dc.identifier.citationenEco-Friendly Bamboo-Based Composites / Tamara Tatrishvili, Omar Mukbaniani, Nikoloz Kvnikadze, Shota Chikhladze // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 44–56.
dc.identifier.doidoi.org/10.23939/chcht18.01.044
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111783
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Mohanty, B.N.; Sujatha, D.; Uday, D.N. Bamboo Composite Material: Game-changer for Developing Economies; 10th World Bamboo Congress, Korea 2015.
dc.relation.references[2] Chen, H.C.; Chen, T.Y.; Hsu, C.H. Effects of Wood Particle Size and Mixing Ratios of HDPE on the Properties of the Composites. Holz Roh Werkst 2006, 64, 172–177. https://doi.org/10.1007/s00107-005-0072-x
dc.relation.references[3] Laemlaksakul, V.; Kaewkuekool, S. Laminated Bamboo Materials for Furniture – A Systematic Approach to Innovative Product Design. WSEAS Transactions on Advances in Engineering Education 2006, 3, 424–430.
dc.relation.references[4] Li, S.H.; Zeng, Q.Y.; Xiao, Y.L.; Fu, S.Y.; Zhou, B.L. Biomimicry of Bamboo Bast Fiber with Engineering Composite Materials. Mater. Sci. Eng. C 1995, 3, 125–130. https://doi.org/10.1016/0928-4931(95)00115-8
dc.relation.references[5] Zhu, J.X.; Sheng, S.L. Discussing the Ecological Quality of Bamboo Structural Building. Journal of Building Science 2005, 21, 92–94.
dc.relation.references[6] Shen, Z.R.; Ni, Y.; Hu, Z. Material Test and Structural Analysis For “Germany and China-Together Cooperation” Bamboo Structure Exhibition Hall. Journal of Structural Engineers 2009, 25, 51–54.
dc.relation.references[7] Wen, Y.; Xu, K.; Tang, J.; Li, Y. Research Status and Development trend of Steel-Bamboo Composite Structure. Adv Mat Res, 2014, 893, 716–719. https://doi.org/10.4028/www.scientific.net/AMR.893.716
dc.relation.references[8] Shin, F.G.; Xian, X.J.; Zheng, W.P.; Yipp, M.W. Analyses of the Mechanical Properties and Microstructure of Bamboo-Epoxy Composites. J Mater Sci 1989, 24, 3483–3490. https://doi.org/10.1007/BF02385729
dc.relation.references[9] Okubo, K.; Fujii, T.; Yamamoto, Y. Development of Bamboo-Based Polymer Composites and Their Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 377–383. https://doi.org/10.1016/j.compositesa.2003.09.017
dc.relation.references[10] Janssen, J.J.A. Building with bamboo (2nd ed.); Intermediate Technology Publication: London, 1995.
dc.relation.references[11] Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu K. Fiber Texture and Mechanical Graded Structure of Bamboo. Compos. B. Eng. 1997, 28, 13–20. https://doi.org/10.1016/S1359-8368(96)00020-0
dc.relation.references[12] Abdulkareem, S.A.; Adeniyi, A.G. Production of Particleboards Using Polystyrene and Bamboo Wastes. Niger. J. Technol. 2017, 36, 788–793. http://dx.doi.org/10.4314/njt.v36i3.18
dc.relation.references[13]. Mukbaniani, O.; Aneli, J.; Buzaladze, G.; Markarashvili, E.; Tatrishvili, T. Composites on the Basis of Straw with Some Organic and Inorganic Binders. Oxid. Commun. 2016, 39, 2763–2777.
dc.relation.references[14] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035
dc.relation.references[15] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201–209. https://doi.org/10.23939/chcht11.02.201
dc.relation.references[16] Tolentino, M.S.; Carpena, J.F.; Javier, R.M.; Aquino, R.R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Series: Mater. Sci. Eng. 2017, 205, 012024. https://doi.org/10.1088/1757-899X/205/1/012024
dc.relation.references[17] Mukbaniani, O.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Pachulia, Z.; Pirtskheliani, N. Synthesis of Triethoxy(Vinylphenethyl)silane with Alkylation Reaction of Vinyltriethoxysilane to Styrene. Oxid. Commun. 2022, 45, 309–320.
dc.relation.references[18] Iulianelli, G.; Bruno Tavares, M.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225–229. https://doi.org/10.23939/chcht04.03.225
dc.relation.references[19] Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour-Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900–1905. https://doi.org/10.1002/app.12864
dc.relation.references[20] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33–41. https://doi.org/10.4236/wjm.2015.53004
dc.relation.references[21] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Demchuk, Y.; Astakhova, O.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
dc.relation.references[22] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
dc.relation.references[23] Mukbaniani, O.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T. Ecologically Friendly Polymer Composites on the Base of Leafs. Oxid. Commun. 2021, 44, 908–921.
dc.relation.references[24] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E.; Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym Adv Technol 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965
dc.relation.references[25] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325
dc.relation.references[26] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001–1009. https://doi.org/10.1515/pac-2017-0804
dc.relation.references[27] Xu, G.; Wang, L.; Liu, J.; Wu, J. FTIR and XPS Analysis of the Changes in Bamboo Chemical Structure Decayed by White-Rot and Brown-Rot Fungi. Appl. Surf. Sci. 2013, 280, 799–805. https://doi.org/10.1016/j.apsusc.2013.05.065
dc.relation.references[28] Kickelbick, G. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. https://doi.org/10.1016/S0079-6700(02)00019-9
dc.relation.references[29] Bledzky, A.; Letman, M.; Viksne, A.; Rence, L. A Comparison of Compounding Processes and Wood Type for Wood Fibre–PP Composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 789–797. https://doi.org/10.1016/j.compositesa.2004.10.029
dc.relation.references[30] Shi, S.Q.; Gardner, D.J. Hygroscopic Thickness Swelling Rate of Compression Molded Wood Fiberboard and Wood Fiber/Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1276–1285. https://doi.org/10.1016/j.compositesa.2005.08.015
dc.relation.referencesen[1] Mohanty, B.N.; Sujatha, D.; Uday, D.N. Bamboo Composite Material: Game-changer for Developing Economies; 10th World Bamboo Congress, Korea 2015.
dc.relation.referencesen[2] Chen, H.C.; Chen, T.Y.; Hsu, C.H. Effects of Wood Particle Size and Mixing Ratios of HDPE on the Properties of the Composites. Holz Roh Werkst 2006, 64, 172–177. https://doi.org/10.1007/s00107-005-0072-x
dc.relation.referencesen[3] Laemlaksakul, V.; Kaewkuekool, S. Laminated Bamboo Materials for Furniture – A Systematic Approach to Innovative Product Design. WSEAS Transactions on Advances in Engineering Education 2006, 3, 424–430.
dc.relation.referencesen[4] Li, S.H.; Zeng, Q.Y.; Xiao, Y.L.; Fu, S.Y.; Zhou, B.L. Biomimicry of Bamboo Bast Fiber with Engineering Composite Materials. Mater. Sci. Eng. P. 1995, 3, 125–130. https://doi.org/10.1016/0928-4931(95)00115-8
dc.relation.referencesen[5] Zhu, J.X.; Sheng, S.L. Discussing the Ecological Quality of Bamboo Structural Building. Journal of Building Science 2005, 21, 92–94.
dc.relation.referencesen[6] Shen, Z.R.; Ni, Y.; Hu, Z. Material Test and Structural Analysis For "Germany and China-Together Cooperation" Bamboo Structure Exhibition Hall. Journal of Structural Engineers 2009, 25, 51–54.
dc.relation.referencesen[7] Wen, Y.; Xu, K.; Tang, J.; Li, Y. Research Status and Development trend of Steel-Bamboo Composite Structure. Adv Mat Res, 2014, 893, 716–719. https://doi.org/10.4028/www.scientific.net/AMR.893.716
dc.relation.referencesen[8] Shin, F.G.; Xian, X.J.; Zheng, W.P.; Yipp, M.W. Analyses of the Mechanical Properties and Microstructure of Bamboo-Epoxy Composites. J Mater Sci 1989, 24, 3483–3490. https://doi.org/10.1007/BF02385729
dc.relation.referencesen[9] Okubo, K.; Fujii, T.; Yamamoto, Y. Development of Bamboo-Based Polymer Composites and Their Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 377–383. https://doi.org/10.1016/j.compositesa.2003.09.017
dc.relation.referencesen[10] Janssen, J.J.A. Building with bamboo (2nd ed.); Intermediate Technology Publication: London, 1995.
dc.relation.referencesen[11] Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu K. Fiber Texture and Mechanical Graded Structure of Bamboo. Compos. B. Eng. 1997, 28, 13–20. https://doi.org/10.1016/S1359-8368(96)00020-0
dc.relation.referencesen[12] Abdulkareem, S.A.; Adeniyi, A.G. Production of Particleboards Using Polystyrene and Bamboo Wastes. Niger. J. Technol. 2017, 36, 788–793. http://dx.doi.org/10.4314/njt.v36i3.18
dc.relation.referencesen[13]. Mukbaniani, O.; Aneli, J.; Buzaladze, G.; Markarashvili, E.; Tatrishvili, T. Composites on the Basis of Straw with Some Organic and Inorganic Binders. Oxid. Commun. 2016, 39, 2763–2777.
dc.relation.referencesen[14] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035
dc.relation.referencesen[15] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201–209. https://doi.org/10.23939/chcht11.02.201
dc.relation.referencesen[16] Tolentino, M.S.; Carpena, J.F.; Javier, R.M.; Aquino, R.R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Series: Mater. Sci. Eng. 2017, 205, 012024. https://doi.org/10.1088/1757-899X/205/1/012024
dc.relation.referencesen[17] Mukbaniani, O.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Pachulia, Z.; Pirtskheliani, N. Synthesis of Triethoxy(Vinylphenethyl)silane with Alkylation Reaction of Vinyltriethoxysilane to Styrene. Oxid. Commun. 2022, 45, 309–320.
dc.relation.referencesen[18] Iulianelli, G.; Bruno Tavares, M.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225–229. https://doi.org/10.23939/chcht04.03.225
dc.relation.referencesen[19] Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour-Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900–1905. https://doi.org/10.1002/app.12864
dc.relation.referencesen[20] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33–41. https://doi.org/10.4236/wjm.2015.53004
dc.relation.referencesen[21] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Demchuk, Y.; Astakhova, O.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
dc.relation.referencesen[22] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
dc.relation.referencesen[23] Mukbaniani, O.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T. Ecologically Friendly Polymer Composites on the Base of Leafs. Oxid. Commun. 2021, 44, 908–921.
dc.relation.referencesen[24] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E.; Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym Adv Technol 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965
dc.relation.referencesen[25] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325
dc.relation.referencesen[26] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001–1009. https://doi.org/10.1515/pac-2017-0804
dc.relation.referencesen[27] Xu, G.; Wang, L.; Liu, J.; Wu, J. FTIR and XPS Analysis of the Changes in Bamboo Chemical Structure Decayed by White-Rot and Brown-Rot Fungi. Appl. Surf. Sci. 2013, 280, 799–805. https://doi.org/10.1016/j.apsusc.2013.05.065
dc.relation.referencesen[28] Kickelbick, G. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. https://doi.org/10.1016/S0079-6700(02)00019-9
dc.relation.referencesen[29] Bledzky, A.; Letman, M.; Viksne, A.; Rence, L. A Comparison of Compounding Processes and Wood Type for Wood Fibre–PP Composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 789–797. https://doi.org/10.1016/j.compositesa.2004.10.029
dc.relation.referencesen[30] Shi, S.Q.; Gardner, D.J. Hygroscopic Thickness Swelling Rate of Compression Molded Wood Fiberboard and Wood Fiber/Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1276–1285. https://doi.org/10.1016/j.compositesa.2005.08.015
dc.relation.urihttps://doi.org/10.1007/s00107-005-0072-x
dc.relation.urihttps://doi.org/10.1016/0928-4931(95)00115-8
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMR.893.716
dc.relation.urihttps://doi.org/10.1007/BF02385729
dc.relation.urihttps://doi.org/10.1016/j.compositesa.2003.09.017
dc.relation.urihttps://doi.org/10.1016/S1359-8368(96)00020-0
dc.relation.urihttp://dx.doi.org/10.4314/njt.v36i3.18
dc.relation.urihttps://doi.org/10.23939/chcht17.01.035
dc.relation.urihttps://doi.org/10.23939/chcht11.02.201
dc.relation.urihttps://doi.org/10.1088/1757-899X/205/1/012024
dc.relation.urihttps://doi.org/10.23939/chcht04.03.225
dc.relation.urihttps://doi.org/10.1002/app.12864
dc.relation.urihttps://doi.org/10.4236/wjm.2015.53004
dc.relation.urihttps://doi.org/10.3390/ma14051320
dc.relation.urihttps://doi.org/10.23939/chcht16.03.377
dc.relation.urihttps://doi.org/10.1002/pat.4965
dc.relation.urihttps://doi.org/10.23939/chcht17.02.325
dc.relation.urihttps://doi.org/10.1515/pac-2017-0804
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2013.05.065
dc.relation.urihttps://doi.org/10.1016/S0079-6700(02)00019-9
dc.relation.urihttps://doi.org/10.1016/j.compositesa.2004.10.029
dc.relation.urihttps://doi.org/10.1016/j.compositesa.2005.08.015
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Tatrishvili T., Mukbaniani O., Kvnikadze N., Chikhladze Sh., 2024
dc.subjectкомпозити
dc.subjectполі[триметокси(4вінілфенетил)] силан
dc.subjectантиоксиданти
dc.subjectбамбукові волокна
dc.subjectІЧ-спектроскопія
dc.subjectрентгенівський мікроаналіз
dc.subjectтермогравіметричні дослідження
dc.subjectcomposites
dc.subjectpoly[trimethoxy(4-vinylphenethyl)] silane
dc.subjectantioxidants
dc.subjectbamboo fibers
dc.subjectFTIR
dc.subjectX-ray microanalysis
dc.subjectthermogravimetric investigations
dc.titleEco-Friendly Bamboo-Based Composites
dc.title.alternativeЕкологічно чисті композити на основі бамбука
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Tatrishvili_T-Eco_Friendly_Bamboo_Based_44-56.pdf
Size:
9.43 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Tatrishvili_T-Eco_Friendly_Bamboo_Based_44-56__COVER.png
Size:
576.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: