Measurement and Correlation of Isobaric Vapor-Liquid Equilibrium Data for Water + 2-Azido-N,N-Dimethylethanamine System at 4 kPa
dc.citation.epage | 232 | |
dc.citation.issue | 2 | |
dc.citation.spage | 226 | |
dc.contributor.affiliation | Malek Ashtar University of Technology | |
dc.contributor.author | Rouhandeh, Hosein | |
dc.contributor.author | Pakdehi, Shahram Ghanbari | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T10:19:12Z | |
dc.date.available | 2024-01-09T10:19:12Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Одержані дані ізобаричної паро-рідинної рівноваги (ПРР) для бінарної системи вода + 2-азидо-N,N-диметилетанамін при 4 кПа. Встановлено, що азеотропна точка знаходиться за x1 = 0,985 і T = 302,17 К. Проведено кореляцію даних з невипадковою дворідинною моделлю (NRTL), моделлю Уілсона та універсальною моделлю коефіцієнта квазіхімічної активності (UNIQUAC) для рідкої фази. Проведено порівняння характеристик моделі, використовуючи критерій середнього абсолютного відхилення, стандартного відхилення та середнього стандартного відхилення в точці кипіння. Показано, що модель NRTL задовільно корелює з даними ПРР. | |
dc.description.abstract | Isobaric vapor-liquid equilibrium (VLE) data for binary system of water + 2-azido-N,N-dimethylethanamine (DMAZ) was measured at 4 kPa. The results showed an azeotropic point at x1 = 0.985 and T = 302.17 K. The data was correlated with nonrandom two-liquid (NRTL), Wilson and universal quasi-chemical activity coefficient (UNIQUAC) models for the liquid phase. A comparison of the model performances was made using of the criterion of the average absolute deviation, standard deviation and mean standard deviation in boiling-point temperature. The results indicated that the NRTL activity coefficient model satisfactorily correlated the VLE data. | |
dc.format.extent | 226-232 | |
dc.format.pages | 7 | |
dc.identifier.citation | Rouhandeh H. Measurement and Correlation of Isobaric Vapor-Liquid Equilibrium Data for Water + 2-Azido-N,N-Dimethylethanamine System at 4 kPa / Hosein Rouhandeh, Shahram Ghanbari Pakdehi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 226–232. | |
dc.identifier.citationen | Rouhandeh H. Measurement and Correlation of Isobaric Vapor-Liquid Equilibrium Data for Water + 2-Azido-N,N-Dimethylethanamine System at 4 kPa / Hosein Rouhandeh, Shahram Ghanbari Pakdehi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 226–232. | |
dc.identifier.doi | doi.org/10.23939/chcht15.02.226 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60730 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (15), 2021 | |
dc.relation.references | [1] Schmidt E.: Hydrazine and Its Derivatives, 2nd edn. Wiley, New York 2001 | |
dc.relation.references | [2] Agrawal J.: High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, Weinheim 2010. | |
dc.relation.references | [3] Reddy G., Song J., Mecchi M., Johnson M.: Res.-Gen. Tox. En., 2010, 700, 26. https://doi.org/10.1016/j.mrgentox.2010.04.019 | |
dc.relation.references | [4] Aronson J.: The Synthesis and Characterization of Energetic Materials from Sodium Azide, PhD Thesis, Georgia Institute of Technology 2004 | |
dc.relation.references | [5] Chouireb N., Crespo E., Pereira L. et al.: J. Chem. Eng. Data, 2018, 63, 2394. https://doi.org/10.1021/acs.jced.7b00945 | |
dc.relation.references | [6] Li G., Yin X.: J. Chem. Eng. Data, 2018, 63, 2009. https://doi.org/10.1021/acs.jced.8b00005 | |
dc.relation.references | [7] Liu L., Zhong Y., Zhang R., Tan W.: J. Chem. Eng. Data, 2015, 60, 3268. https://doi.org/10.1021/acs.jced.5b00500 | |
dc.relation.references | [8] Figueiredo B., Da Silva F., Silva C.: Ind. Eng. Chem. Res., 2013, 52, 16044. https://doi.org/10.1021/ie402575c | |
dc.relation.references | [9] Milzetti J., Nayar D., van der Vegt N.: J. Phys. Chem. B, 2018, 2018, 5515. https://doi.org/10.1021/acs.jpcb.7b11831 | |
dc.relation.references | [10] Vranes M., Tot A., Papovic S. et al.: J. Chem. Thermodyn., 2015, 81, 66. https://doi.org/10.1016/j.jct.2014.10.002 | |
dc.relation.references | [11] Torcal M., Langa E., Pardo J. et al. J. Chem. Thermodyn., 2016, 97, 88. https://doi.org/10.1016/j.jct.2016.01.008 | |
dc.relation.references | [12] Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 107, 216. https://doi.org/10.1016/j.jct.2016.12.027 | |
dc.relation.references | [13] Ma Y., Gao J., Li M. et al.: J. Chem. Thermodyn., 2018, 122, 154. https://doi.org/10.1021/je400531a | |
dc.relation.references | [14] Lemos C., Rade L., Gilfrida W. et al.: J. Chem. Thermodyn. 2018, 123, 46. https://doi.org/10.1016/j.jct.2018.03.023 | |
dc.relation.references | [15] Kokan T., Olds J., Seitzman J., Ludovice P.: Acta Astronaut., 2009, 65, 967. https://doi.org/10.1016/j.actaastro.2009.01.064 | |
dc.relation.references | [16] Smith J., Van Ness H.: Introduction to Chemical Engineering Thermodynamics, 4th edn. McGraw-Hill, New York 1987. | |
dc.relation.references | [17] Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 105, 385. https://doi.org/10.1016/j.jct.2016.10.038 | |
dc.relation.references | [18] Poling B., Prausnitz J., O΄Connell J.: The Properties of Gases and Liquids, 5th edn. McGraw Hill, New York 2001 | |
dc.relation.references | [19] Mali N., Yadav S., Ghuge P., Joshi S.: J. Chem. Eng. Data, 2017, 62, 4356. https://doi.org/10.1021/acs.jced.7b00704 | |
dc.relation.references | [20] Yang J., Pan X., Yu M. et al.: J. Mol. Liq., 2018, 268, 19. https://doi.org/10.1016/j.molliq.2018.07.038 | |
dc.relation.references | [21] Li M., Xu X., Li X. et al.: Sci. Rep., 2017, 7, 9497. https://doi.org/10.1038/s41598-017-09088-2 | |
dc.relation.references | [22]Jia H., Wang H., Ma K. et al.: Chin. J. Chem. Eng., 2018, 26, 993. https://doi.org/10.1016/j.cjche.2017.11.003 | |
dc.relation.referencesen | [1] Schmidt E., Hydrazine and Its Derivatives, 2nd edn. Wiley, New York 2001 | |
dc.relation.referencesen | [2] Agrawal J., High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, Weinheim 2010. | |
dc.relation.referencesen | [3] Reddy G., Song J., Mecchi M., Johnson M., Res.-Gen. Tox. En., 2010, 700, 26. https://doi.org/10.1016/j.mrgentox.2010.04.019 | |
dc.relation.referencesen | [4] Aronson J., The Synthesis and Characterization of Energetic Materials from Sodium Azide, PhD Thesis, Georgia Institute of Technology 2004 | |
dc.relation.referencesen | [5] Chouireb N., Crespo E., Pereira L. et al., J. Chem. Eng. Data, 2018, 63, 2394. https://doi.org/10.1021/acs.jced.7b00945 | |
dc.relation.referencesen | [6] Li G., Yin X., J. Chem. Eng. Data, 2018, 63, 2009. https://doi.org/10.1021/acs.jced.8b00005 | |
dc.relation.referencesen | [7] Liu L., Zhong Y., Zhang R., Tan W., J. Chem. Eng. Data, 2015, 60, 3268. https://doi.org/10.1021/acs.jced.5b00500 | |
dc.relation.referencesen | [8] Figueiredo B., Da Silva F., Silva C., Ind. Eng. Chem. Res., 2013, 52, 16044. https://doi.org/10.1021/ie402575c | |
dc.relation.referencesen | [9] Milzetti J., Nayar D., van der Vegt N., J. Phys. Chem. B, 2018, 2018, 5515. https://doi.org/10.1021/acs.jpcb.7b11831 | |
dc.relation.referencesen | [10] Vranes M., Tot A., Papovic S. et al., J. Chem. Thermodyn., 2015, 81, 66. https://doi.org/10.1016/j.jct.2014.10.002 | |
dc.relation.referencesen | [11] Torcal M., Langa E., Pardo J. et al. J. Chem. Thermodyn., 2016, 97, 88. https://doi.org/10.1016/j.jct.2016.01.008 | |
dc.relation.referencesen | [12] Wisniak J., Ortega J., Fernandez L., J. Chem. Thermodyn., 2017, 107, 216. https://doi.org/10.1016/j.jct.2016.12.027 | |
dc.relation.referencesen | [13] Ma Y., Gao J., Li M. et al., J. Chem. Thermodyn., 2018, 122, 154. https://doi.org/10.1021/je400531a | |
dc.relation.referencesen | [14] Lemos C., Rade L., Gilfrida W. et al., J. Chem. Thermodyn. 2018, 123, 46. https://doi.org/10.1016/j.jct.2018.03.023 | |
dc.relation.referencesen | [15] Kokan T., Olds J., Seitzman J., Ludovice P., Acta Astronaut., 2009, 65, 967. https://doi.org/10.1016/j.actaastro.2009.01.064 | |
dc.relation.referencesen | [16] Smith J., Van Ness H., Introduction to Chemical Engineering Thermodynamics, 4th edn. McGraw-Hill, New York 1987. | |
dc.relation.referencesen | [17] Wisniak J., Ortega J., Fernandez L., J. Chem. Thermodyn., 2017, 105, 385. https://doi.org/10.1016/j.jct.2016.10.038 | |
dc.relation.referencesen | [18] Poling B., Prausnitz J., O΄Connell J., The Properties of Gases and Liquids, 5th edn. McGraw Hill, New York 2001 | |
dc.relation.referencesen | [19] Mali N., Yadav S., Ghuge P., Joshi S., J. Chem. Eng. Data, 2017, 62, 4356. https://doi.org/10.1021/acs.jced.7b00704 | |
dc.relation.referencesen | [20] Yang J., Pan X., Yu M. et al., J. Mol. Liq., 2018, 268, 19. https://doi.org/10.1016/j.molliq.2018.07.038 | |
dc.relation.referencesen | [21] Li M., Xu X., Li X. et al., Sci. Rep., 2017, 7, 9497. https://doi.org/10.1038/s41598-017-09088-2 | |
dc.relation.referencesen | [22]Jia H., Wang H., Ma K. et al., Chin. J. Chem. Eng., 2018, 26, 993. https://doi.org/10.1016/j.cjche.2017.11.003 | |
dc.relation.uri | https://doi.org/10.1016/j.mrgentox.2010.04.019 | |
dc.relation.uri | https://doi.org/10.1021/acs.jced.7b00945 | |
dc.relation.uri | https://doi.org/10.1021/acs.jced.8b00005 | |
dc.relation.uri | https://doi.org/10.1021/acs.jced.5b00500 | |
dc.relation.uri | https://doi.org/10.1021/ie402575c | |
dc.relation.uri | https://doi.org/10.1021/acs.jpcb.7b11831 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2014.10.002 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2016.01.008 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2016.12.027 | |
dc.relation.uri | https://doi.org/10.1021/je400531a | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2018.03.023 | |
dc.relation.uri | https://doi.org/10.1016/j.actaastro.2009.01.064 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2016.10.038 | |
dc.relation.uri | https://doi.org/10.1021/acs.jced.7b00704 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2018.07.038 | |
dc.relation.uri | https://doi.org/10.1038/s41598-017-09088-2 | |
dc.relation.uri | https://doi.org/10.1016/j.cjche.2017.11.003 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Rouhandeh H., Pakdehi S., 2021 | |
dc.subject | 2-азидо-N | |
dc.subject | N-диметилетанамін | |
dc.subject | паро-рідинна рівновага | |
dc.subject | азеотроп | |
dc.subject | NRTL | |
dc.subject | 2-azido-N | |
dc.subject | N-dimethylethanamine | |
dc.subject | vapor-liquid equilibrium | |
dc.subject | azeotrope | |
dc.subject | NRTL | |
dc.title | Measurement and Correlation of Isobaric Vapor-Liquid Equilibrium Data for Water + 2-Azido-N,N-Dimethylethanamine System at 4 kPa | |
dc.title.alternative | Вимірювання та кореляція даних ізобаричної паро-рідинної рівноваги для системи вода + 2-азидо-N,N-диметилетанамін при 4 кПа | |
dc.type | Article |
Files
License bundle
1 - 1 of 1