MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation
dc.citation.epage | 203 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 195 | |
dc.contributor.affiliation | SRM Інститут науки і технологій | |
dc.contributor.affiliation | SRM Institute of Science and Technology | |
dc.contributor.author | Нітія, Н. | |
dc.contributor.author | Венніла, Б. | |
dc.contributor.author | Nithya, N. | |
dc.contributor.author | Vennila, B. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:54:50Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Метою цього дослідження є вивчення усталеного нестисливого двовимірного гідромагнітного пограничного шару потоку нанофлюїду, що проходить через розтягнутий лист під впливом в’язкої та омічної дисипації. Ця задача вирішується за допомогою аналітичного методу під назвою DTM апроксимацією Паде. Математичне моделювання потоку розглядається у формі диференціального рівняння в частинних похідних і перетворюється на диференціальне рівняння за допомогою відповідного перетворення подібності. Впливи фіксованих параметрів, таких як число термофорезу Nt, число броунівського руху Nb, число Прандтля Pr, число Льюїса Le, магнітне поле M, всмоктування/впорскування S та число Екарта Ec показано на рисунках. Наші результати показали більшу тенденцію в профілі швидкості для параметрів магнітного поля M, всмоктування S та параметра нелінійного розтягування n. Тоді як на профілі температури виявляється обернена залежність зі збільшенням числа Прандтля, Число Льюїса та інші параметри збільшують профіль концентрації. | |
dc.description.abstract | The objective of this research is to examine the steady incompressible two-dimensional hydromagnetic boundary layer flow of nanofluid passing through a stretched sheet in the influence of viscous and ohmic dissipations. The present problem is obtained with the help of an analytical technique called DTM-Pade Approximation. The mathematical modeling of the flow is considered in the form of the partial differential equation and is transformed into a differential equation through suitable similarity transformation. The force of fixed parameters like thermophoresis number Nt, Brownian motion number Nb, Prandtl number Pr, Lewis number Le, Magnetic field M, suction/injection S and Eckart number Ec are displayed with the aid of Figures. Our outcomes showed a greater trend in the velocity profile for the parameters of magnetics M, suction S, and nonlinear stretching parameter n. While the reverse trend is found against the temperature profile when the Prandtl number increases. Lewis number and other parameters have shown increasing behavior in the concentration profile. | |
dc.format.extent | 195-203 | |
dc.format.pages | 9 | |
dc.identifier.citation | Nithya N. MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation / N. Nithya, B. Vennila // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 195–203. | |
dc.identifier.citationen | Nithya N. MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation / N. Nithya, B. Vennila // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 195–203. | |
dc.identifier.doi | 10.23939/mmc2023.01.195 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63490 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 1 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (10), 2023 | |
dc.relation.references | [1] Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME international mechanical engineering congress and exposition. San Francisco, 12–17 Nov 1995 (1995). | |
dc.relation.references | [2] Mustafa M., Khan J. A., Hayat T., Alsedi A. Boundary layer flow of nanofluid over a nonlinearly stretching sheet with convective boundary condition. IEEE Transactions on nanotechnology. 14 (1), 159–168 (2015). | |
dc.relation.references | [3] Khan W. A., Pop I. Boundary layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer. 53 (11–12), 2477–2483 (2010). | |
dc.relation.references | [4] Hassani M., Mohammad Tabar M., Nemati H., Domairry G., Noori F. An analytical solution for boundary layer flow of a nanofluid past stretching sheet. International Journal of Thermal Sciences. 50 (11), 2256–2263 (2011). | |
dc.relation.references | [5] Jabeen K., Mushtaq M., Akram R. M. Analysis of the MHd boundary layer flow over a non linear stretching seet in a porous medium using semianalytical approaches. Mathematical Problem in Engineering. 2020, 3012854 (2020). | |
dc.relation.references | [6] Vennila B., Nithya N., Kabilan M. Outcome of a magnetic field on heat transfer of carbon nanotubes (CNTs)-suspended nanofluids by shooting type Laplace–Adomian Decompostion method (LADM). In: Kondraivendhan B., Modhera C. D., Matsagar V. (eds) Sustainable Building Materials and Construction. Lecture Notes in Civil Engineering. Vol. 222, 153–160 (2022). | |
dc.relation.references | [7] Mabood F., Khan W. A., Ismail A. I. M. MHD boundary layer flow and heat transfer of nanofluid over a non linear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials. 374, 569–576 (2015). | |
dc.relation.references | [8] Mustafa M., Khan J. A. Model for flow of cassonnanofluid past a non linearly stretching sheet considering magnetic field effects. AIP Advances. 5 (7), 077148 (2015). | |
dc.relation.references | [9] Ellahi R., Alamri S. Z., Basit A., Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University of Science. 12 (4), 476–482 (2018). | |
dc.relation.references | [10] Rashid I., Sagheer M., Hussain S. Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall. Physica A: Statistical Mechanics and its Applications. 536, 122608 (2019). | |
dc.relation.references | [11] Japili N., Rosali H., Bachok N. MHD stagnation point flow over a stretching sheet in a porous medium with velocity slip. Mathematical Modeling and Computing. 9 (4), 825–832 (2022). | |
dc.relation.references | [12] Alias N., Hafidzuddin M. E. H. Effect of suction and MHD induced Navier slip flow due ot non linear stretching/shrinking sheet. Mathematical Modeling and Computing. 9 (1), 83–91 (2022). | |
dc.relation.references | [13] Malik M. Y., Hussain A., Salahuddin T., Awais M. Effect of viscous dissipation on MHD boundary layer flow of sisko fluid over a stretching cylinder. AIP Advances. 6, 035009 (2016). | |
dc.relation.references | [14] Prakash D., Narsu Sivakumar, Suriyakumar P., Rushikumar B. Influence of viscous and ohmic heating on MHD flow of nanofluid over an inclined nonlinear stretching sheet embedded in a porous medium. International Journal of Mechanical Engineering and Technology. 9 (8), 992–1001 (2018). | |
dc.relation.references | [15] Ganga B., Ansari M. Y. S., Vishnu Ganesh N., Abdul Hakeem A. K. MHD radiative boundary layer flow of nanofluid past a vertical plate with internal heat generation/absorption, viscous and ohmic dissipation effects. Journal of the Nigerian Mathematical Society. 34 (2), 181–194 (2015). | |
dc.relation.references | [16] Sheikholeslami M., Abelman S., Ganji D. D. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. International Journal of Heat and Mass Transfer. 79, 212–222 (2014). | |
dc.relation.references | [17] Nayak M. K. MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radation and viscous dissipation. International Journal of Mechanical Sciences. 124–125, 185–193 (2017). | |
dc.relation.references | [18] Dogonchi A. S., Chamkha A. J., Seyyedi S. M., Hashemi–Tilehnoee M., Ganji D. D. Viscous dissipation impact on free convection flow of Cu–water nanofluid in a circular enclosure with porosity considering internal heat sources. Journal of Applied and Computational Mechanics. 5 (4), 717–726 (2019). | |
dc.relation.references | [19] Rashidi M. M., Rabiel F., Naseri Nila S., Abbasbandy S. A review: Differential transform method for semianalytical solution of differential equation. International journal of Applied Mechanics and Engineering. 25 (2), 122–129 (2020). | |
dc.relation.references | [20] Usman M., Hamid M., Khan U., Mohyud Din S. T., Iqbal M. A., Wang W. Differential transform method for unsteady nanofluid flow and heat transfer. Alexandria Engineering Journal. 57 (3), 1867–1875 (2018). | |
dc.relation.references | [21] Saha D., Sengupta S. Dual DTM–Pade approximations on for convection MHD mass transfer flow of nanofluid through a stretching sheet in presence of Soret and Dufour phenomena. WSEAS Transactions on Fluid Mechanics. 15, 23–40 (2020). | |
dc.relation.references | [22] Sayyed S. R., Singh B. B., Makinde O. D., Bano N. DTM–Pade approach to MHD slip flow and heat transfer over a radially stretching sheet with thermal radiation. Latin American Applied Research. 50 (3), 175–184 (2020). | |
dc.relation.references | [23] Khashi’ie N. S., Wahi N., Arifin N. M., Ghani A. A., Hamzah K. B. Effect of suction on the MHD flow in double-stratified micropolar fluid over a shrinking sheet. Mathematical Modeling and Computing. 9 (1), 92–100 (2022). | |
dc.relation.references | [24] Yousif M. A., Hatamai M., Mahmod B. A., Rashidi M. M. Thermal boundary layer ananlysis of nanofluid flow past over a stretching flat plate in differential transpiration conditions by using DTM–Pade method. Journal of Mathematics and Computer Science. 17 (1), 84–95 (2017). | |
dc.relation.referencesen | [1] Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME international mechanical engineering congress and exposition. San Francisco, 12–17 Nov 1995 (1995). | |
dc.relation.referencesen | [2] Mustafa M., Khan J. A., Hayat T., Alsedi A. Boundary layer flow of nanofluid over a nonlinearly stretching sheet with convective boundary condition. IEEE Transactions on nanotechnology. 14 (1), 159–168 (2015). | |
dc.relation.referencesen | [3] Khan W. A., Pop I. Boundary layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer. 53 (11–12), 2477–2483 (2010). | |
dc.relation.referencesen | [4] Hassani M., Mohammad Tabar M., Nemati H., Domairry G., Noori F. An analytical solution for boundary layer flow of a nanofluid past stretching sheet. International Journal of Thermal Sciences. 50 (11), 2256–2263 (2011). | |
dc.relation.referencesen | [5] Jabeen K., Mushtaq M., Akram R. M. Analysis of the MHd boundary layer flow over a non linear stretching seet in a porous medium using semianalytical approaches. Mathematical Problem in Engineering. 2020, 3012854 (2020). | |
dc.relation.referencesen | [6] Vennila B., Nithya N., Kabilan M. Outcome of a magnetic field on heat transfer of carbon nanotubes (CNTs)-suspended nanofluids by shooting type Laplace–Adomian Decompostion method (LADM). In: Kondraivendhan B., Modhera C. D., Matsagar V. (eds) Sustainable Building Materials and Construction. Lecture Notes in Civil Engineering. Vol. 222, 153–160 (2022). | |
dc.relation.referencesen | [7] Mabood F., Khan W. A., Ismail A. I. M. MHD boundary layer flow and heat transfer of nanofluid over a non linear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials. 374, 569–576 (2015). | |
dc.relation.referencesen | [8] Mustafa M., Khan J. A. Model for flow of cassonnanofluid past a non linearly stretching sheet considering magnetic field effects. AIP Advances. 5 (7), 077148 (2015). | |
dc.relation.referencesen | [9] Ellahi R., Alamri S. Z., Basit A., Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University of Science. 12 (4), 476–482 (2018). | |
dc.relation.referencesen | [10] Rashid I., Sagheer M., Hussain S. Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall. Physica A: Statistical Mechanics and its Applications. 536, 122608 (2019). | |
dc.relation.referencesen | [11] Japili N., Rosali H., Bachok N. MHD stagnation point flow over a stretching sheet in a porous medium with velocity slip. Mathematical Modeling and Computing. 9 (4), 825–832 (2022). | |
dc.relation.referencesen | [12] Alias N., Hafidzuddin M. E. H. Effect of suction and MHD induced Navier slip flow due ot non linear stretching/shrinking sheet. Mathematical Modeling and Computing. 9 (1), 83–91 (2022). | |
dc.relation.referencesen | [13] Malik M. Y., Hussain A., Salahuddin T., Awais M. Effect of viscous dissipation on MHD boundary layer flow of sisko fluid over a stretching cylinder. AIP Advances. 6, 035009 (2016). | |
dc.relation.referencesen | [14] Prakash D., Narsu Sivakumar, Suriyakumar P., Rushikumar B. Influence of viscous and ohmic heating on MHD flow of nanofluid over an inclined nonlinear stretching sheet embedded in a porous medium. International Journal of Mechanical Engineering and Technology. 9 (8), 992–1001 (2018). | |
dc.relation.referencesen | [15] Ganga B., Ansari M. Y. S., Vishnu Ganesh N., Abdul Hakeem A. K. MHD radiative boundary layer flow of nanofluid past a vertical plate with internal heat generation/absorption, viscous and ohmic dissipation effects. Journal of the Nigerian Mathematical Society. 34 (2), 181–194 (2015). | |
dc.relation.referencesen | [16] Sheikholeslami M., Abelman S., Ganji D. D. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. International Journal of Heat and Mass Transfer. 79, 212–222 (2014). | |
dc.relation.referencesen | [17] Nayak M. K. MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radation and viscous dissipation. International Journal of Mechanical Sciences. 124–125, 185–193 (2017). | |
dc.relation.referencesen | [18] Dogonchi A. S., Chamkha A. J., Seyyedi S. M., Hashemi–Tilehnoee M., Ganji D. D. Viscous dissipation impact on free convection flow of Cu–water nanofluid in a circular enclosure with porosity considering internal heat sources. Journal of Applied and Computational Mechanics. 5 (4), 717–726 (2019). | |
dc.relation.referencesen | [19] Rashidi M. M., Rabiel F., Naseri Nila S., Abbasbandy S. A review: Differential transform method for semianalytical solution of differential equation. International journal of Applied Mechanics and Engineering. 25 (2), 122–129 (2020). | |
dc.relation.referencesen | [20] Usman M., Hamid M., Khan U., Mohyud Din S. T., Iqbal M. A., Wang W. Differential transform method for unsteady nanofluid flow and heat transfer. Alexandria Engineering Journal. 57 (3), 1867–1875 (2018). | |
dc.relation.referencesen | [21] Saha D., Sengupta S. Dual DTM–Pade approximations on for convection MHD mass transfer flow of nanofluid through a stretching sheet in presence of Soret and Dufour phenomena. WSEAS Transactions on Fluid Mechanics. 15, 23–40 (2020). | |
dc.relation.referencesen | [22] Sayyed S. R., Singh B. B., Makinde O. D., Bano N. DTM–Pade approach to MHD slip flow and heat transfer over a radially stretching sheet with thermal radiation. Latin American Applied Research. 50 (3), 175–184 (2020). | |
dc.relation.referencesen | [23] Khashi’ie N. S., Wahi N., Arifin N. M., Ghani A. A., Hamzah K. B. Effect of suction on the MHD flow in double-stratified micropolar fluid over a shrinking sheet. Mathematical Modeling and Computing. 9 (1), 92–100 (2022). | |
dc.relation.referencesen | [24] Yousif M. A., Hatamai M., Mahmod B. A., Rashidi M. M. Thermal boundary layer ananlysis of nanofluid flow past over a stretching flat plate in differential transpiration conditions by using DTM–Pade method. Journal of Mathematics and Computer Science. 17 (1), 84–95 (2017). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | магнітний | |
dc.subject | Екарт | |
dc.subject | термофорез | |
dc.subject | броунівський | |
dc.subject | теплопередача | |
dc.subject | масообмін | |
dc.subject | magnetic field | |
dc.subject | Eckart number | |
dc.subject | thermophoresis number | |
dc.subject | Brownian motion | |
dc.subject | heat transfer | |
dc.subject | mass transfer | |
dc.title | MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation | |
dc.title.alternative | МГД-потік пограничного шару нанорідини на листі, який розтягується, з в’язкою омічною дисипацією | |
dc.type | Article |
Files
License bundle
1 - 1 of 1