Regularities of the traffic lane change by the driver when interacting with car-obstacle

dc.citation.epage11
dc.citation.issue1
dc.citation.spage1
dc.contributor.affiliationO. M. Beketov National University of Urban Economy in Kharkiv
dc.contributor.authorPrasolenko, Oleksii
dc.contributor.authorChumachenko, Vitalii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-05T07:55:25Z
dc.date.available2023-07-05T07:55:25Z
dc.date.created2023-06-30
dc.date.issued2023-06-30
dc.description.abstractПредставлено результати експериментальних досліджень поводження водіїв під час взаємодії з об’єктами-перешкодами, які зумовлені припаркованими транспортними засобами. На сьогодні паркування автомобілів на двосмугових вулицях є значною проблемою для водіїв під час руху та створює перешкоди. Водіям потрібно вчасно помітити припаркований автомобіль та виконати маневр зміни смуги руху. Все це впливає на траєкторії руху транспортних засобів та функціональний стан водія. Водієві потрібен певний проміжок часу для виконання маневру, який складається з часу реакції, прийняття рішення про зміну смуги руху та виконання дії. Все це ускладнюється умовами руху для водія та створює небезпеку для керування. Якщо водій вчасно не отримає інформацію про розташування паркування на вулиці зі швидкісним рухом, імовірність небезпеки значно підвищується. Крім того, водії для зменшення впливу паркування на функціональний стан організму заздалегідь намагаються змінити смугу руху, яка зайнята попереду паркуванням. Також спостерігається відхилення у поперечному перерізі вулиці за збільшення швидкості руху відносно припаркованого автомобіля, що остаточно вказує на зміну положення на смузі руху. Було встановлено, що водії індивідуально обирають траєкторії зміни смуги руху відповідно до швидкості руху. Крім того, кожен водій на власний розсуд суб’єктивно приймає рішення про початок зміни смуги руху під час виникнення перешкоди на певній відстані. В якості індикатора імовірності знаходження об’єкта перешкоди у небезпечному стані було використано кутову швидкість. Кутова швидкість є основним параметром в орієнтовній діяльності водія та сигналізує про небезпеку. За значень кутової швидкості від 0,015–0,03 рад/c водії намагались завершити маневр та залишити певну відстань до перешкоди (зазор безпеки). Це вказує на певний інтервал кутової швидкості щодо сприйняття об’єкта перешкоди у просторі та відчуття небезпеки. Отримані закономірності зміни смуги руху водіями дозволяють визначити безпечну відстань до паркування та забезпечити безпеку руху шляхом використання відповідної розмітки та дорожніх знаків.
dc.description.abstractThe paper presents the results of experimental studies of drivers` behavior when interacting with obstacles caused by parked vehicles. Today, parking cars on two-lane streets is a significant problem for drivers while driving as it creates obstacles. Drivers need to spot a parked car in time and perform a lane change maneuver. It affects the trajectories of vehicles and the functional state of the driver. The driver needs a certain amount of time to maneuver, which consists of the reaction time, the decision to change the lane, and the execution of the action. It complicates traffic conditions for the driver and creates danger for driving. If the driver does not receive information about the parking location on the street with high-speed traffic in time, the probability of danger increases significantly. In addition, drivers try to change the traffic lane, which is further occupied by parking, in advance to reduce the impact of parking on the functional state of their bodies. There is also a deviation in the cross-section of the street when the speed of movement increases relative to the parked car, which finally indicates a change in the position in the traffic lane. It was established that drivers individually choose the trajectories of changing the traffic lane by the speed of movement. In addition, each driver subjectively decides to start changing the traffic lane at his discretion when an obstacle occurs at a certain distance. Angular velocity was used as an indicator of the probability of finding an obstacle object in a dangerous state. Angular speed is the main parameter in the orientation of the driver and signals the danger. When the angular velocity was 0.015–0.03 rad/c, drivers tried to complete the maneuver and leave a certain distance from the obstacle (safety gap). It indicates some interval of angular velocity in relation to the perception of an obstacle object in space and the sense of danger. The resulting patterns of changing lanes by drivers allow for determining the safe distance to parking and ensuring traffic safety by using appropriate markings and road signs.
dc.format.extent1-11
dc.format.pages11
dc.identifier.citationPrasolenko O. Regularities of the traffic lane change by the driver when interacting with car-obstacle / Oleksii Prasolenko, Vitalii Chumachenko // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 1. — P. 1–11.
dc.identifier.citationenPrasolenko O., Chumachenko V. (2023) Regularities of the traffic lane change by the driver when interacting with car-obstacle. Transport Technologies (Lviv), vol. 4, no 1, pp. 1-11.
dc.identifier.doihttps://doi.org/10.23939/tt2023.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59379
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTransport Technologies, 1 (4), 2023
dc.relation.references1. Zhao, C., Zhao, X., Li, Z., & Zhang, Q. (2022). XGBoost-DNN Mixed Model for Predicting Driver’s Estimation on the Relative Motion States during Lane-Changing Decisions: A Real Driving Study on the Highway. Sustainability, 14(11), 6829. doi: 10.3390/su14116829 (in English).
dc.relation.references2. Xu, C., Wang, X., Yang, H., Xie, K., & Chen, X. (2019). Exploring the impacts of speed variances on safety performance of urban elevated expressways using GPS data. Accident Analysis & Prevention, 123, 29–38. doi: 10.1016/j.aap.2018.11.012 (in English).
dc.relation.references3. Yang, Q., Lu, F., Wang, J., Zhao, D., & Yu, L. (2020). Analysis of the Insertion Angle of Lane-Changing Vehicles in Nearly Saturated Fast Road Segments. Sustainability, 12(3), 1013. doi: 10.3390/su12031013 (in English).
dc.relation.references4. Ramezani-Khansari, E., Tabibi, M., & Moghadas Nejad, F. (2021). Estimating Lane Change Duration for Overtaking in Nonlane-Based Driving Behavior by Local Linear Model Trees (LOLIMOT). Mathematical Problems in Engineering, 2021, 1–7. doi: 10.1155/2021/4388776 (in English).
dc.relation.references5. Sun, K., Zhao, X., Gong, S., & Wu, X. (2023). A Cooperative Lane Change Control Strategy for Connected and Automated Vehicles by Considering Preceding Vehicle Switching. Applied Sciences, 13(4), 2193. doi: 10.3390/app13042193 (in English).
dc.relation.references6. Ataelmanan, H., Puan, O. C., & Hassan, S. A. (2021), May). Examination of lane changing duration time on expressway. In IOP Conference Series: Materials Science and Engineering, 1144(1), (pp. 012078). doi: 10.1088/1757-899X/1144/1/012078 (in English).
dc.relation.references7. Li, Y., Li, L., Ni, D., & Zhang, Y. (2021). Comprehensive survival analysis of lane-changing duration. Measurement, 182, 109707. doi: 10.1016/j.measurement.2021.109707 (in English).
dc.relation.references8. Wang, Y., Cao, X., & Ma, X. (2022). Evaluation of automatic lane-change model based on vehicle cluster generalized dynamic system. Automotive Innovation, 5(1), 91–104. doi: 10.1007/s42154-021-00171-z (in English).
dc.relation.references9. Lancelot, J., Rimal, B. P., & Dennis, E. M. (2023). Performance Evaluation of a Lane Correction Module Stress Test: A Field Test of Tesla Model 3. Future Internet, 15(4), 138. doi: 10.3390/fi15040138 (in English).
dc.relation.references10. Meesit, R., Kanitpong, K., & Jiwattanakulpaisarn, P. (2020). Investigating the influence of highway median design on driver stress. Transportation research interdisciplinary perspectives, 4, 100098. doi:10.1016/j.trip.2020.100098 (in English).
dc.relation.references11. Goncalves, R. C., Louw, T. L., Madigan, R., Quaresma, M., Romano, R., & Merat, N. (2022). The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving. Accident Analysis & Prevention, 174, 106726. doi: 10.1016/j.aap.2022.106726 (in English).
dc.relation.references12. Haar, A., Haeske, A. B., Kleen, A., Schmettow, M., & Verwey, W. B. (2022). Improving clarity, cooperation and driver experience in lane change manoeuvres. Transportation research interdisciplinary perspectives, 13, 100553. doi: 10.1016/j.trip.2022.100553 (in English).
dc.relation.references13. Wei, W., Fu, X., Zhong, S., & Ge, H. (2023). Driver's mental workload classification using physiological, traffic flow and environmental factors. Transportation research part F: traffic psychology and behaviour, 94, 151–169. doi: 10.1016/j.trf.2023.02.004 (in English).
dc.relation.references14. Yamina, H., Mébarek, D., Mohammed, B., & Saadia, S. (2023). Contribution to the analysis of driver behavioral deviations leading to road crashes at work. IATSS Research. doi: 10.1016/j.iatssr.2023.03.003 (in English).
dc.relation.references15. Chen, Z., Qin, X., & Shaon, M. R. R. (2018). Modeling lane-change-related crashes with lane-specific real-time traffic and weather data. Journal of Intelligent Transportation Systems, 22(4), 291–300. doi: 10.1080/15472450.2017.1309529 (in English).
dc.relation.references16. Ding, T., Li, X., Zheng, L., & Hao, Z. (2019). Research on safety lane change warning method based on potential angle collision point. Journal of advanced transportation, 2019. 1–15 doi: 10.1155/2019/1281425 (in English).
dc.relation.references17. Liu, H., Song, X., Liu, B., Liu, J., Gao, H., & Liang, Y. (2023). A dynamic lane-changing driving strategy for CAV in diverging areas based on MPC system. Sensors, 23(2), 559. doi: 10.3390/s23020559 (in English).
dc.relation.references18. Pan, J., & Shen, Y. (2022). Assessing driving risk at the second phase of overtaking on two-lane highways for young novice drivers based on driving simulation. International journal of environmental research and public health, 19(5), 2691. doi: 10.3390/ijerph19052691 (in English).
dc.relation.references19. Xie, H., Ren, Q. & Lei, Z. (2022). Influence of Lane-Changing Behavior on Traffic Flow Velocity in Mixed Traffic Environment. Journal of Advanced Transportation, 2022, 1–26. doi: 10.1155/2022/8150617 (in English).
dc.relation.references20. Fornalchyk, Y., Kernytskyy, I., Hrytsun, O., & Royko, Y. (2021). Choice of the rational regimes of traffic light control for traffic and pedestrian flows. Scientific Review Engineering and Environmental Studies (SREES), 30(1), 38–50. doi: 10.22630/PNIKS.2021.30.1.4 (in English).
dc.relation.references21. Lynnyk, I., Chepurna, S., Vakulenko, K. & Kulbashna, N. (2022). Informational Characteristics of Objects to the Driver’s Perception Field in Urban and Suburban Conditions. In Smart Technologies in Urban Engineering: Proceedings of STUE-2022 (pp. 695–706). doi: 10.1007/978-3-031-20141-7_62 (in English).
dc.relation.references22. Chebanyuk, K., Prasolenko, O., Burko, D., Galkin, A., Lobashov, O., Shevchenko, A., ... & Persia, L. (2020). Pedestrians influence on the traffic flow parameters and road safety indicators at the pedestrian crossing. Transportation research procedia, 45, 858–865. doi: 10.1016/j.trpro.2020.02.083 (in English).
dc.relation.referencesen1. Zhao, C., Zhao, X., Li, Z., & Zhang, Q. (2022). XGBoost-DNN Mixed Model for Predicting Driver’s Estimation on the Relative Motion States during Lane-Changing Decisions: A Real Driving Study on the Highway. Sustainability, 14(11), 6829. doi: 10.3390/su14116829 (in English).
dc.relation.referencesen2. Xu, C., Wang, X., Yang, H., Xie, K., & Chen, X. (2019). Exploring the impacts of speed variances on safety performance of urban elevated expressways using GPS data. Accident Analysis & Prevention, 123, 29–38. doi: 10.1016/j.aap.2018.11.012 (in English).
dc.relation.referencesen3. Yang, Q., Lu, F., Wang, J., Zhao, D., & Yu, L. (2020). Analysis of the Insertion Angle of Lane-Changing Vehicles in Nearly Saturated Fast Road Segments. Sustainability, 12(3), 1013. doi: 10.3390/su12031013 (in English).
dc.relation.referencesen4. Ramezani-Khansari, E., Tabibi, M., & Moghadas Nejad, F. (2021). Estimating Lane Change Duration for Overtaking in Nonlane-Based Driving Behavior by Local Linear Model Trees (LOLIMOT). Mathematical Problems in Engineering, 2021, 1–7. doi: 10.1155/2021/4388776 (in English).
dc.relation.referencesen5. Sun, K., Zhao, X., Gong, S., & Wu, X. (2023). A Cooperative Lane Change Control Strategy for Connected and Automated Vehicles by Considering Preceding Vehicle Switching. Applied Sciences, 13(4), 2193. doi: 10.3390/app13042193 (in English).
dc.relation.referencesen6. Ataelmanan, H., Puan, O. C., & Hassan, S. A. (2021), May). Examination of lane changing duration time on expressway. In IOP Conference Series: Materials Science and Engineering, 1144(1), (pp. 012078). doi: 10.1088/1757-899X/1144/1/012078 (in English).
dc.relation.referencesen7. Li, Y., Li, L., Ni, D., & Zhang, Y. (2021). Comprehensive survival analysis of lane-changing duration. Measurement, 182, 109707. doi: 10.1016/j.measurement.2021.109707 (in English).
dc.relation.referencesen8. Wang, Y., Cao, X., & Ma, X. (2022). Evaluation of automatic lane-change model based on vehicle cluster generalized dynamic system. Automotive Innovation, 5(1), 91–104. doi: 10.1007/s42154-021-00171-z (in English).
dc.relation.referencesen9. Lancelot, J., Rimal, B. P., & Dennis, E. M. (2023). Performance Evaluation of a Lane Correction Module Stress Test: A Field Test of Tesla Model 3. Future Internet, 15(4), 138. doi: 10.3390/fi15040138 (in English).
dc.relation.referencesen10. Meesit, R., Kanitpong, K., & Jiwattanakulpaisarn, P. (2020). Investigating the influence of highway median design on driver stress. Transportation research interdisciplinary perspectives, 4, 100098. doi:10.1016/j.trip.2020.100098 (in English).
dc.relation.referencesen11. Goncalves, R. C., Louw, T. L., Madigan, R., Quaresma, M., Romano, R., & Merat, N. (2022). The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving. Accident Analysis & Prevention, 174, 106726. doi: 10.1016/j.aap.2022.106726 (in English).
dc.relation.referencesen12. Haar, A., Haeske, A. B., Kleen, A., Schmettow, M., & Verwey, W. B. (2022). Improving clarity, cooperation and driver experience in lane change manoeuvres. Transportation research interdisciplinary perspectives, 13, 100553. doi: 10.1016/j.trip.2022.100553 (in English).
dc.relation.referencesen13. Wei, W., Fu, X., Zhong, S., & Ge, H. (2023). Driver's mental workload classification using physiological, traffic flow and environmental factors. Transportation research part F: traffic psychology and behaviour, 94, 151–169. doi: 10.1016/j.trf.2023.02.004 (in English).
dc.relation.referencesen14. Yamina, H., Mébarek, D., Mohammed, B., & Saadia, S. (2023). Contribution to the analysis of driver behavioral deviations leading to road crashes at work. IATSS Research. doi: 10.1016/j.iatssr.2023.03.003 (in English).
dc.relation.referencesen15. Chen, Z., Qin, X., & Shaon, M. R. R. (2018). Modeling lane-change-related crashes with lane-specific real-time traffic and weather data. Journal of Intelligent Transportation Systems, 22(4), 291–300. doi: 10.1080/15472450.2017.1309529 (in English).
dc.relation.referencesen16. Ding, T., Li, X., Zheng, L., & Hao, Z. (2019). Research on safety lane change warning method based on potential angle collision point. Journal of advanced transportation, 2019. 1–15 doi: 10.1155/2019/1281425 (in English).
dc.relation.referencesen17. Liu, H., Song, X., Liu, B., Liu, J., Gao, H., & Liang, Y. (2023). A dynamic lane-changing driving strategy for CAV in diverging areas based on MPC system. Sensors, 23(2), 559. doi: 10.3390/s23020559 (in English).
dc.relation.referencesen18. Pan, J., & Shen, Y. (2022). Assessing driving risk at the second phase of overtaking on two-lane highways for young novice drivers based on driving simulation. International journal of environmental research and public health, 19(5), 2691. doi: 10.3390/ijerph19052691 (in English).
dc.relation.referencesen19. Xie, H., Ren, Q. & Lei, Z. (2022). Influence of Lane-Changing Behavior on Traffic Flow Velocity in Mixed Traffic Environment. Journal of Advanced Transportation, 2022, 1–26. doi: 10.1155/2022/8150617 (in English).
dc.relation.referencesen20. Fornalchyk, Y., Kernytskyy, I., Hrytsun, O., & Royko, Y. (2021). Choice of the rational regimes of traffic light control for traffic and pedestrian flows. Scientific Review Engineering and Environmental Studies (SREES), 30(1), 38–50. doi: 10.22630/PNIKS.2021.30.1.4 (in English).
dc.relation.referencesen21. Lynnyk, I., Chepurna, S., Vakulenko, K. & Kulbashna, N. (2022). Informational Characteristics of Objects to the Driver’s Perception Field in Urban and Suburban Conditions. In Smart Technologies in Urban Engineering: Proceedings of STUE-2022 (pp. 695–706). doi: 10.1007/978-3-031-20141-7_62 (in English).
dc.relation.referencesen22. Chebanyuk, K., Prasolenko, O., Burko, D., Galkin, A., Lobashov, O., Shevchenko, A., ... & Persia, L. (2020). Pedestrians influence on the traffic flow parameters and road safety indicators at the pedestrian crossing. Transportation research procedia, 45, 858–865. doi: 10.1016/j.trpro.2020.02.083 (in English).
dc.rights.holder© Національний університет „Львівська політехніка“, 2023
dc.rights.holder© O. Prasolenko, V. Chumachenko, 2023
dc.subjectпаркування
dc.subjectчас реакції водія
dc.subjectкутова швидкість
dc.subjectгальмівний шлях
dc.subjectбезпека руху
dc.subjectполе зору водія
dc.subjectфункціональний стан водія
dc.subjectparking
dc.subjectdriver’s reaction time
dc.subjectangular velocity
dc.subjectbraking distance
dc.subjectroad safety
dc.subjectdriver's field of vision
dc.subjectdriver’s functional state
dc.titleRegularities of the traffic lane change by the driver when interacting with car-obstacle
dc.title.alternativeЗакономірності зміни смуги руху водієм при взаємодії з автомобілем перешкодою
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2023v4n1_Prasolenko_O-Regularities_of_the_traffic_1-11.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: