Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review

dc.citation.epage34
dc.citation.issue2
dc.citation.spage25
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЗозуля, Г. І.
dc.contributor.authorКунтий, Орест Іванович
dc.contributor.authorZozulia, H. I.
dc.contributor.authorKuntyi, O. I.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T09:14:44Z
dc.date.available2020-03-02T09:14:44Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractРозкрито можливості методу гальванічного заміщення в формуванні металевої нано- структурованої поверхні для електрокаталітичних процесів. Ґрунтуючись на електрохімічному механізмі процесу та враховуючи тип підкладки, наведено такі напрями застосування цього методу: синтез металевих наноструктур та модифікація поверхні металів. Серед успіхів у напрямі модифікації поверхні продемонстровано ефективність осадження наноструктурних металів галь- ванічним заміщенням у середовищі органічних апротонних розчинників та іонних рідин. Відзначено роль середовища у керованому формуванні геометрії наночастинок металевого осаду.
dc.description.abstractThe possibilities of the galvanic replacement method in the formation of a metallic nanostructured surface for electrocatalytic processes are revealed. Based on the electrochemical mechanism of the process and taking into account the type of substrate, the following directions of application of this method are presented: synthesis of metal nanostructures and modification of metal surfaces. Among the successes in the direction of surface modification, the efficiency of deposition of nanostructured metals by galvanic replacement in the environment of organic aprotic solvents and ionic liquids has been demonstrated. The role of the medium in the controlled formation of the geometry of the metal sediment nanoparticles is noted.
dc.format.extent25-34
dc.format.pages10
dc.identifier.citationZozulia H. I. Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review / H. I. Zozulia, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 25–34.
dc.identifier.citationenZozulia H. I. Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review / H. I. Zozulia, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 25–34.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46408
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (2), 2019
dc.relation.references1. Yae, S., Morii, Y., Fukumuro, N., Matsuda, H. (2012). Catalytic activity of noble metals for metalassisted chemical etching of silicon. Nanoscale Research Letters, 7, 352.
dc.relation.references2. Chen, L., Jing, Q., Chen, J., Wang, B., Huang, J., Liu, Y. (2013). Silver nanocrystals of various morphologies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering. Materials characterization, 85, 48-56.
dc.relation.references3. Russo, L., Merkoci, F., Patarroyo, J., Piella, J., Merkoc, A., Bastus, N. G., Puntes, V. (2018). Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis. Chemistry of Materials, 30, 5098-5107.
dc.relation.references4. Katas, H., Moden, N. Z., Lim, C. S., Celesistinus, T., Chan, J. Y., Ganasan, P., Abdalla, S. (2018). Biosynthesis and Potential Applications of Silver and Gold Nanoparticles and Their Chitosan-Based Nanocomposites in Nanomedicine. Journal of Nanotechnology, 4290705, 13.
dc.relation.references5. Papaderakis, A., Mintsouli, I., Georgieva, J., Sotiropoulos, S. (2017). Electrocatalysts Prepared by Galvanic Replacement. Journal of Catalysis, 80, 34.
dc.relation.references6. Reis Machado, A. S., Nunes da Ponte, M. (2018). CO2 capture and electrochemical conversion. Green and Sustainable Chemistry, 11, 86-90.
dc.relation.references7. Кунтий, О. І. (2008). Електрохімія і морфологія дисперсних металів. Монографія. Львів: НУ ”ЛП”, 208.
dc.relation.references8. Zhang, X., Zhou, Y., Zhang, B., Zhan, J. (2017). An improved galvanic replacement deposition method for synthesis of compact palladium coatings on copper substrates. Materials Letters, 15, 75-78.
dc.relation.references9. Xia, X., Wang, Y., Ruditskiy, A., Xia, Y. (2013). 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Advanced Materials, 25, 6313-6333.
dc.relation.references10. Papaderakis, A., Pliatsikas, N., Prochaska, C., Papazisi, K. M., Balomenou, S. P., Tsiplakides, D., Patsalas, P., Sotiropoulos, S. (2014). Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement. Frontiers in Chemistry, 2, 29.
dc.relation.references11. Papaderakis, A., Pliatsikas, N., Prochaska, C., Vourlias, G., Patsalas, P., Tsiplakides, D., Balomenou, S., Sotiropoulos, S. (2016). Oxygen evolution at IrO2 shell-Ir- Ni core electrodes prepared by galvanic replacement. The Journal of Physical Chemistry C, 120, 19995-20005.
dc.relation.references12. Brankovic, S. R., Wang, J.X., Adži´c, R. R. (2001). Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surface Science, 474, L173-L179.
dc.relation.references13. Brankovic, S.R., McBreen, J., Adži´c, R. R. (2001). Spontaneous deposition of Pt on the Ru(0001) surface. Journal of Electroanalytical Chemistry, 503, 99-104.
dc.relation.references14. Kokkinidis, G., Stoychev, D., Lazarov, V., Papoutsis, A., Milchev, A. (2001). Electroless deposition of Pt on Ti: Part II. Catalytic activity for oxygen reduction. Journal of Electroanalytical Chemistry, 511, 20-30.
dc.relation.references15. Van Brussel, M., Kokkinidis, G., Hubin, A., Buess-Herman, C. (2003). Oxygen reduction at platinum modified gold electrodes. Electrochimica Acta, 48, 3909-3919.
dc.relation.references16. Rezaei, B., Saeidi-Boroujeni, S., Havakeshian, E., Ensafi, A. A. (2016). Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using galvanic replacement. Electrochimica Acta, 203, 41-50.
dc.relation.references17. Kang, Y., Chen. F. (2013). Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677.
dc.relation.references18. Balkis, A., Crawford, J., O’Mullane, A. P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion. Nanomaterials. 8, 756.
dc.relation.references19. Rezaei, B., Mokhtarianpour, M., Ensafi, A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. Hydrogen energy, 1-9.
dc.relation.references20. Podlovchenko, B. I., Maksimov, Yu. M., Maslakov, K. I., Volkov, D. S., Evlashin, S. A. (2017). Galvanic displacement and electrochemical leaching for synthesizing Pd-Ag catalysts highly active in FAOR. Electroanalytical Chemistry, 788, 217-224.
dc.relation.references21. Chena, C., Zhangb, B., Zhongb, J., Cheng Z. (2017). Selective electrochemical CO2 reduction over highly porous gold films. Materials Chemistry A, 5,21955-21964.
dc.relation.references22. Papaderakis, A., Prochaska, C., Pliatsikas, N., Patsalas, P. (2016). Oxygen Evolution at IrO2 Shell−Ir−Ni Core Electrodes Prepared by Galvanic Replacement. The Journal of Physical Chemistry C, 120, 19995-20005.
dc.relation.references23. Rong, Z. J., Zhang, Q., Siwal, S. S. (2019). Galvanic Replacement-Mediated Synthesis of Ni- Supported Pd Nanoparticles with Strong Metal-Support Interaction for Methanol Electro-oxidation. Small.
dc.relation.references24. Niu, X., Xiong, Q., Li, X., Zhang, W. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, 651-657.
dc.relation.references25. Hosseini, G., Abdolmaleki, M., Daneshvari Esfahlan, V. (2017). Porous Co/Co–Ni–Pt nanostructures prepared by galvanic replacement towards methanol electro-oxidation. Porous Materials, 24, 305-313.
dc.relation.references26. Bansal, V., O’Mullane, A. P., S.K. Bhargava, S. K. (2009). Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: Significance of residual Ag for the H2 evolution reaction. Electrochemistry Communications, 11, 1639-1642.
dc.relation.references27. Li, Q., Wu, G., Xu, P., Zhao, H. (2013). Selfsupported Pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts. Nanoscale, 5, 7397–7402.
dc.relation.references28. Mintsouli, I., Georgieva, J., Papaderakis, A., Armyanov, S. (2016). Methanol oxidation at platinized copper particles prepared by galvanic replacement. Journal of Electrochemical Science and Engineering, 6(1), 17-28.
dc.relation.references29. Mathurin, L. E., Benamara, M., Tao, J., Zhu, Y. (2018). Tailoring the Surface Structures of CuPt and CuPtRu 1D Nanostructures by Coupling Coreduction with Galvanic Replacement. Particle Systems Characterization, 35.
dc.relation.references30. Mintsouli, I., Georgieva, J., Armyanov, S., Valova, E. (2013). Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors. Catalysis B: Environmental, 136-137, 160–167.
dc.relation.references31. Podlovchenko, B. I., Krivchenko, V. A., Maksimov, Y. M., Gladysheva, T. D. Specific features of the formation of Pt(Cu) catalysts by galvanic displacement with carbon nanowalls used as support. Electrochimica Acta, 76, 137-144.
dc.relation.references32. Geboes, B., Mintsouli, I., Wouters, B., Georgieva, J. (2014). Surface and electrochemical characterisation of a Pt-Cu/C nano-structured electrocatalyst, prepared by galvanic displacement. Applied Catalysis B: Environmental, 150-151, 249-256.
dc.relation.references33. Zhou, J., Lan, D., Yang, S., Guo, Y. (2018). Thinwall hollow Au-Cu nanostructures with high efficiency in electrochemical reduction of CO2 to CO. Inorganic Chemistry Frontiers, 5, 1524-1532.
dc.relation.references34. Farsadrooh, M., Noroozifar, M., Modarresi-Alam, A., Saravani, H. (2019). Sonochemical synthesis of highperformance Pd@CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media. Ultrasonics Sonochemistry, 51, 478-486.
dc.relation.references35. Maitya, S., Harisha, S., Eswaramoorthy, M. (2019). Controlled galvanic replacement of Ni in Ni(OH)2 by Pd: A method to quantify metallic Ni and to synthesize bimetallic catalysts for methanol oxidation. Materials Chemistry and Physics, 221, 377-381.
dc.relation.references36. Van Vinh, P., Ta, V. (2017). Synthesis of NiPt alloy nanoparticles by galvanic replacement method for direct ethanol fuel cell. Hydrogen energy, 42, 13192-13197.
dc.relation.references37. Hu, S., Ribeiro, E., Tian, M., Mukherjee, D. (2016). Tandem laser ablation synthesis in solutiongalvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts. Journal of Power Sources, 306, 413-423.
dc.relation.references38. Hu, S., Goenaga, G., Melton, C., Zawodzinski, T. (2016). PtCo/CoOx Nanocomposites: Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Synthesized via Tandem Laser Ablation Synthesis in Solution-Galvanic Replacement Reactions. Catalysis B: Environmental, 182, 286-296.
dc.relation.references39. Hsu, C., Huang, C., Hao, Y., Liu, F. (2012). Au/Pd core–shell nanoparticles for enhanced electrocatalytic activity and durability. Electrochemistry Communications, 23, 133–136.
dc.relation.references40. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., Korniy, S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & Chemical Technology, 12, 305–309.
dc.relation.references41. Dobrovets’ka, O., Kuntyi, O., Zozulya, G., Saldan, I., Reshetnyak, O. (2015). Galvanic deposition of gold and palladium on magnesium by the method of substitution. Materials Science, 51, 418–423.
dc.relation.references42. Kuntyi, О., Zozulya, G., Shepida, M., Nichkalo, S.(2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 124(3),74–82.
dc.relation.references43. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13.
dc.relation.referencesen1. Yae, S., Morii, Y., Fukumuro, N., Matsuda, H. (2012). Catalytic activity of noble metals for metalassisted chemical etching of silicon. Nanoscale Research Letters, 7, 352.
dc.relation.referencesen2. Chen, L., Jing, Q., Chen, J., Wang, B., Huang, J., Liu, Y. (2013). Silver nanocrystals of various morphologies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering. Materials characterization, 85, 48-56.
dc.relation.referencesen3. Russo, L., Merkoci, F., Patarroyo, J., Piella, J., Merkoc, A., Bastus, N. G., Puntes, V. (2018). Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis. Chemistry of Materials, 30, 5098-5107.
dc.relation.referencesen4. Katas, H., Moden, N. Z., Lim, C. S., Celesistinus, T., Chan, J. Y., Ganasan, P., Abdalla, S. (2018). Biosynthesis and Potential Applications of Silver and Gold Nanoparticles and Their Chitosan-Based Nanocomposites in Nanomedicine. Journal of Nanotechnology, 4290705, 13.
dc.relation.referencesen5. Papaderakis, A., Mintsouli, I., Georgieva, J., Sotiropoulos, S. (2017). Electrocatalysts Prepared by Galvanic Replacement. Journal of Catalysis, 80, 34.
dc.relation.referencesen6. Reis Machado, A. S., Nunes da Ponte, M. (2018). CO2 capture and electrochemical conversion. Green and Sustainable Chemistry, 11, 86-90.
dc.relation.referencesen7. Kuntyi, O. I. (2008). Elektrokhimiia i morfolohiia dyspersnykh metaliv. monograph. Lviv: NU "LP", 208.
dc.relation.referencesen8. Zhang, X., Zhou, Y., Zhang, B., Zhan, J. (2017). An improved galvanic replacement deposition method for synthesis of compact palladium coatings on copper substrates. Materials Letters, 15, 75-78.
dc.relation.referencesen9. Xia, X., Wang, Y., Ruditskiy, A., Xia, Y. (2013). 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Advanced Materials, 25, 6313-6333.
dc.relation.referencesen10. Papaderakis, A., Pliatsikas, N., Prochaska, C., Papazisi, K. M., Balomenou, S. P., Tsiplakides, D., Patsalas, P., Sotiropoulos, S. (2014). Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement. Frontiers in Chemistry, 2, 29.
dc.relation.referencesen11. Papaderakis, A., Pliatsikas, N., Prochaska, C., Vourlias, G., Patsalas, P., Tsiplakides, D., Balomenou, S., Sotiropoulos, S. (2016). Oxygen evolution at IrO2 shell-Ir- Ni core electrodes prepared by galvanic replacement. The Journal of Physical Chemistry C, 120, 19995-20005.
dc.relation.referencesen12. Brankovic, S. R., Wang, J.X., Adži´c, R. R. (2001). Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surface Science, 474, L173-L179.
dc.relation.referencesen13. Brankovic, S.R., McBreen, J., Adži´c, R. R. (2001). Spontaneous deposition of Pt on the Ru(0001) surface. Journal of Electroanalytical Chemistry, 503, 99-104.
dc.relation.referencesen14. Kokkinidis, G., Stoychev, D., Lazarov, V., Papoutsis, A., Milchev, A. (2001). Electroless deposition of Pt on Ti: Part II. Catalytic activity for oxygen reduction. Journal of Electroanalytical Chemistry, 511, 20-30.
dc.relation.referencesen15. Van Brussel, M., Kokkinidis, G., Hubin, A., Buess-Herman, C. (2003). Oxygen reduction at platinum modified gold electrodes. Electrochimica Acta, 48, 3909-3919.
dc.relation.referencesen16. Rezaei, B., Saeidi-Boroujeni, S., Havakeshian, E., Ensafi, A. A. (2016). Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using galvanic replacement. Electrochimica Acta, 203, 41-50.
dc.relation.referencesen17. Kang, Y., Chen. F. (2013). Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677.
dc.relation.referencesen18. Balkis, A., Crawford, J., O’Mullane, A. P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion. Nanomaterials. 8, 756.
dc.relation.referencesen19. Rezaei, B., Mokhtarianpour, M., Ensafi, A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. Hydrogen energy, 1-9.
dc.relation.referencesen20. Podlovchenko, B. I., Maksimov, Yu. M., Maslakov, K. I., Volkov, D. S., Evlashin, S. A. (2017). Galvanic displacement and electrochemical leaching for synthesizing Pd-Ag catalysts highly active in FAOR. Electroanalytical Chemistry, 788, 217-224.
dc.relation.referencesen21. Chena, C., Zhangb, B., Zhongb, J., Cheng Z. (2017). Selective electrochemical CO2 reduction over highly porous gold films. Materials Chemistry A, 5,21955-21964.
dc.relation.referencesen22. Papaderakis, A., Prochaska, C., Pliatsikas, N., Patsalas, P. (2016). Oxygen Evolution at IrO2 Shell−Ir−Ni Core Electrodes Prepared by Galvanic Replacement. The Journal of Physical Chemistry C, 120, 19995-20005.
dc.relation.referencesen23. Rong, Z. J., Zhang, Q., Siwal, S. S. (2019). Galvanic Replacement-Mediated Synthesis of Ni- Supported Pd Nanoparticles with Strong Metal-Support Interaction for Methanol Electro-oxidation. Small.
dc.relation.referencesen24. Niu, X., Xiong, Q., Li, X., Zhang, W. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, 651-657.
dc.relation.referencesen25. Hosseini, G., Abdolmaleki, M., Daneshvari Esfahlan, V. (2017). Porous Co/Co–Ni–Pt nanostructures prepared by galvanic replacement towards methanol electro-oxidation. Porous Materials, 24, 305-313.
dc.relation.referencesen26. Bansal, V., O’Mullane, A. P., S.K. Bhargava, S. K. (2009). Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: Significance of residual Ag for the H2 evolution reaction. Electrochemistry Communications, 11, 1639-1642.
dc.relation.referencesen27. Li, Q., Wu, G., Xu, P., Zhao, H. (2013). Selfsupported Pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts. Nanoscale, 5, 7397–7402.
dc.relation.referencesen28. Mintsouli, I., Georgieva, J., Papaderakis, A., Armyanov, S. (2016). Methanol oxidation at platinized copper particles prepared by galvanic replacement. Journal of Electrochemical Science and Engineering, 6(1), 17-28.
dc.relation.referencesen29. Mathurin, L. E., Benamara, M., Tao, J., Zhu, Y. (2018). Tailoring the Surface Structures of CuPt and CuPtRu 1D Nanostructures by Coupling Coreduction with Galvanic Replacement. Particle Systems Characterization, 35.
dc.relation.referencesen30. Mintsouli, I., Georgieva, J., Armyanov, S., Valova, E. (2013). Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors. Catalysis B: Environmental, 136-137, 160–167.
dc.relation.referencesen31. Podlovchenko, B. I., Krivchenko, V. A., Maksimov, Y. M., Gladysheva, T. D. Specific features of the formation of Pt(Cu) catalysts by galvanic displacement with carbon nanowalls used as support. Electrochimica Acta, 76, 137-144.
dc.relation.referencesen32. Geboes, B., Mintsouli, I., Wouters, B., Georgieva, J. (2014). Surface and electrochemical characterisation of a Pt-Cu/C nano-structured electrocatalyst, prepared by galvanic displacement. Applied Catalysis B: Environmental, 150-151, 249-256.
dc.relation.referencesen33. Zhou, J., Lan, D., Yang, S., Guo, Y. (2018). Thinwall hollow Au-Cu nanostructures with high efficiency in electrochemical reduction of CO2 to CO. Inorganic Chemistry Frontiers, 5, 1524-1532.
dc.relation.referencesen34. Farsadrooh, M., Noroozifar, M., Modarresi-Alam, A., Saravani, H. (2019). Sonochemical synthesis of highperformance Pd@CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media. Ultrasonics Sonochemistry, 51, 478-486.
dc.relation.referencesen35. Maitya, S., Harisha, S., Eswaramoorthy, M. (2019). Controlled galvanic replacement of Ni in Ni(OH)2 by Pd: A method to quantify metallic Ni and to synthesize bimetallic catalysts for methanol oxidation. Materials Chemistry and Physics, 221, 377-381.
dc.relation.referencesen36. Van Vinh, P., Ta, V. (2017). Synthesis of NiPt alloy nanoparticles by galvanic replacement method for direct ethanol fuel cell. Hydrogen energy, 42, 13192-13197.
dc.relation.referencesen37. Hu, S., Ribeiro, E., Tian, M., Mukherjee, D. (2016). Tandem laser ablation synthesis in solutiongalvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts. Journal of Power Sources, 306, 413-423.
dc.relation.referencesen38. Hu, S., Goenaga, G., Melton, C., Zawodzinski, T. (2016). PtCo/CoOx Nanocomposites: Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Synthesized via Tandem Laser Ablation Synthesis in Solution-Galvanic Replacement Reactions. Catalysis B: Environmental, 182, 286-296.
dc.relation.referencesen39. Hsu, C., Huang, C., Hao, Y., Liu, F. (2012). Au/Pd core–shell nanoparticles for enhanced electrocatalytic activity and durability. Electrochemistry Communications, 23, 133–136.
dc.relation.referencesen40. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., Korniy, S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & Chemical Technology, 12, 305–309.
dc.relation.referencesen41. Dobrovets’ka, O., Kuntyi, O., Zozulya, G., Saldan, I., Reshetnyak, O. (2015). Galvanic deposition of gold and palladium on magnesium by the method of substitution. Materials Science, 51, 418–423.
dc.relation.referencesen42. Kuntyi, O., Zozulya, G., Shepida, M., Nichkalo, S.(2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 124(3),74–82.
dc.relation.referencesen43. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13.
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.subjectелектрокаталізатори
dc.subjectгальванічне заміщення
dc.subjectметалеві наноструктури
dc.subjectмодифікація поверхні
dc.subjectelectrocatalysts
dc.subjectgalvanic replacement
dc.subjectmetal nanostructures
dc.subjectmodification of the surface
dc.titlePreparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review
dc.title.alternativeОдержання металевої електрокаталітичної наноструктурованої поверхні методом гальванічного заміщення. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v2n2_Zozulia_H_I-Preparing_of_metallic_electrocatalytic_25-34.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v2n2_Zozulia_H_I-Preparing_of_metallic_electrocatalytic_25-34__COVER.png
Size:
436.72 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Plain Text
Description: