Waste Food Oils as Components of Eco-Friendly Grease

dc.citation.epage437
dc.citation.issue2
dc.citation.spage431
dc.contributor.affiliationV. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
dc.contributor.authorPapeikin, Oleksii
dc.contributor.authorBodachivska, Larysa
dc.contributor.authorVenger, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:38Z
dc.date.available2024-02-12T08:30:38Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractПродемонстровано можливість одержання на основі відходів – відпрацьованих харчових олій екологічно безпечних поверхнево-активних речовин і високотемпературної дисперсної фази тиксотропних пластичних систем. ІЧ- та 1H ЯМР-спектрометрією підтверджено будову синтезованих алканоламідів жирних кислот. Методом термогравіметричного аналізу визначено, що верхня температурна межа застосування синтезованих алканоламідів жирних кислот і комплексного кальцієвого мастила перевищує 463 K. Встановлено, що введення до складу високотемпературного мастила алканоламідів жирних кислот поліпшує його змащувальні, антиокиснювальні й екологічні характеристики.
dc.description.abstractThe possibility of obtaining eco-safety surfactants and high-temperature dispersed phase of thixotropic plastic systems based on waste food oils were demonstrated. The structure of the synthesized fatty acid alkanolamides was confirmed by IR and 1H NMR spectroscopy. The upper temperature limit (above 463 К) for the use of synthesized fatty acids alkanolamides and complex calcium grease was determined by thermogravimetric analysis. The introduction of fatty acid alkanolamides to the high-temperature composition of grease improves its tribological, anti-oxidant and environmental characteristics
dc.format.extent431-437
dc.format.pages7
dc.identifier.citationPapeikin O. Waste Food Oils as Components of Eco-Friendly Grease / Oleksii Papeikin, Larysa Bodachivska, Iryna Venger // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 431–437.
dc.identifier.citationenPapeikin O. Waste Food Oils as Components of Eco-Friendly Grease / Oleksii Papeikin, Larysa Bodachivska, Iryna Venger // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 431–437.
dc.identifier.doidoi.org/10.23939/chcht17.02.431
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61247
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Pinheiro, C.T.; Quina, M.J.; Gando-Ferreira, L.M. Management of Waste Lubricant Oil in Europe: A Circular Economy Approach. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2015-2050. https://doi.org/10.1080/10643389.2020.1771887
dc.relation.references[2] Monier, V.; Labouze, E. Critical Review of Existing Studies and Life Cycle Analysis on the Regeneration and Incineration of Waste Oils. European Commission. DG Environment A2 – Sustainable Resources Consumption and Waste. France, 2001. https://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf (accessed 2022-04-21).
dc.relation.references[3] Stahl, H.; Merz C. Study to Support the Commission in Gathering Structured Information and Defining of Reporting Obligations on Waste Oils and Other Hazardous Waste. Luxembourg: Publications Office of the European Union, 2020. https://doi.org/10.2779/14834. https://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f... (accessed 2022-04-21).
dc.relation.references[4] Bodachivska, L.Yu.; Verba, A.Yu.; Safronov, O.I.; Davitadze, D.Z.; Papeikin, O.O.; Venger, I.O. Surfactants Based on Lipoid Biomass and their Use in Technological Systems for Gas and Crude Oil Production. Catalysis and Petrochemistry 2019, 28, 1-19. https://doi.org/10.15407/kataliz2019.28.001
dc.relation.references[5] Li, W.; Wang, X. Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties J. Oleo Sci. 2015, 64, 367-374. https://doi.org/10.5650/jos.ess14235
dc.relation.references[6] Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of Homogeneous Catalysts on Ring Opening Reactions of Epoxidized Cooking Oils. J. Clean. Prod. 2019, 230, 162-169. https://doi.org/10.1016/j.jclepro.2019.05.096
dc.relation.references[7] Kukana, R.; Jakhar, O.P. An Appraisal on Enablers for Enhancement of Waste Cooking Oil-Based Biodiesel Production Facilities Using the Interpretative Structural Modeling Approach. Biotechnol. Biofuels Bioprod. 2021, 14, 213. https://doi.org/10.1186/s13068-021-02061-2
dc.relation.references[8] Orjuela, A; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. https://doi.org/10.1016/j.cogsc.2020.100369
dc.relation.references[9] Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. https://doi.org/10.3390/pr8030366
dc.relation.references[10] Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning Waste Cooking Oils into Biofuels—Valorization Technologies: A Review. Energies 2022, 15, 116. https://doi.org/10.3390/en15010116
dc.relation.references[11] Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K., Jhalani, A. A Comprehensive Review of Biodiesel Production from Waste Cooking Oil and its Use as Fuel in Compression Ignition Engines: 3rd Generation Cleaner Feedstock. J. Clean. Prod. 2021, 307, 127299. https://doi.org/10.1016/j.jclepro.2021.127299
dc.relation.references[12] Sharma, P.; Usman, M.; Salama, E.-S.; Redina, M.; Thakur, N.; Li, X. Evaluation of Various Waste Cooking Oils for Biodiesel Production: A Comprehensive Analysis of Feedstock. Waste Man-age. 2021, 136, 219-229. https://doi.org/10.1016/j.wasman.2021.10.022
dc.relation.references[13] Hosseinzadeh-Bandbafha, H.; Li, Ch.; Chen, X.; Peng, W.; Aghbashlo, M.; Lam, S.Sh.; Tabatabaei, M. Managing the Hazardous Waste Cooking Oil by Conversion into Bioenergy Through the Application of Waste-Derived Green Catalysts: A Review. J. Hazard. Mater. 2022, 424, 127636. https://doi.org/10.1016/j.jhazmat.2021.127636
dc.relation.references[14] Buchori, L.; Anggoro, D.D.; Ma’ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583
dc.relation.references[15] Lubricant Substance Classification list (LuSC-list). Version date: 17/02/2022. https://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200... (accessed 2022-04-21).
dc.relation.references[16] Ardai, R. Environmentally Acceptable Lithium Complex Grease for a Wide Temperature Range. NLGI Spokesman 2020, 84, 12-26.
dc.relation.references[17] Meza, A. Guidelines for Selecting High-temperature Lubricants. Machinery Lubrication 2016, November - December, 28-32. https://www.machinerylubrication.com/Read/30674/high-temperature-lubricants
dc.relation.references[18] Ischuk, Yu.L. Sostav, struktura i svoistva plastichnykh smazok; Naukova dumka: Kyiv, 1996.
dc.relation.references[19] Badertscher, M.; Bühlmann, Ph.; Pretsch, E. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer Berlin: Heidelberg, 2009.
dc.relation.references[20] Klamann, D.; Rost, R.R. Lubricants and related products. Synthesis, properties, applications, international standards; Verlag Chemie: Weinheim, 1984.
dc.relation.references[21] Lubricants and Lubrication; Mang, T.; Dresel, W., Eds.; Wiley-VCH, 2017.
dc.relation.references[22] Canter, N. Biodegradable Lubricants: Working Definitions, Review of Key Applications and Prospects for Growth. Tribol. Lubr. Technol. 2020, December, 34-47.
dc.relation.references[23] Papeikin, O.; Safronov, O.; Bodachivska, L.; Venger, I. Synthesis and Properties of Urea Greases Based on Aminoamides of Plant Oil Phosphatides. East.-Eur. J. Enterp. Technol. 2020, 4, 54-60. https://doi.org/10.15587/1729-4061.2020.210043
dc.relation.referencesen[1] Pinheiro, C.T.; Quina, M.J.; Gando-Ferreira, L.M. Management of Waste Lubricant Oil in Europe: A Circular Economy Approach. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2015-2050. https://doi.org/10.1080/10643389.2020.1771887
dc.relation.referencesen[2] Monier, V.; Labouze, E. Critical Review of Existing Studies and Life Cycle Analysis on the Regeneration and Incineration of Waste Oils. European Commission. DG Environment A2 – Sustainable Resources Consumption and Waste. France, 2001. https://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf (accessed 2022-04-21).
dc.relation.referencesen[3] Stahl, H.; Merz C. Study to Support the Commission in Gathering Structured Information and Defining of Reporting Obligations on Waste Oils and Other Hazardous Waste. Luxembourg: Publications Office of the European Union, 2020. https://doi.org/10.2779/14834. https://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f... (accessed 2022-04-21).
dc.relation.referencesen[4] Bodachivska, L.Yu.; Verba, A.Yu.; Safronov, O.I.; Davitadze, D.Z.; Papeikin, O.O.; Venger, I.O. Surfactants Based on Lipoid Biomass and their Use in Technological Systems for Gas and Crude Oil Production. Catalysis and Petrochemistry 2019, 28, 1-19. https://doi.org/10.15407/kataliz2019.28.001
dc.relation.referencesen[5] Li, W.; Wang, X. Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties J. Oleo Sci. 2015, 64, 367-374. https://doi.org/10.5650/jos.ess14235
dc.relation.referencesen[6] Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of Homogeneous Catalysts on Ring Opening Reactions of Epoxidized Cooking Oils. J. Clean. Prod. 2019, 230, 162-169. https://doi.org/10.1016/j.jclepro.2019.05.096
dc.relation.referencesen[7] Kukana, R.; Jakhar, O.P. An Appraisal on Enablers for Enhancement of Waste Cooking Oil-Based Biodiesel Production Facilities Using the Interpretative Structural Modeling Approach. Biotechnol. Biofuels Bioprod. 2021, 14, 213. https://doi.org/10.1186/s13068-021-02061-2
dc.relation.referencesen[8] Orjuela, A; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. https://doi.org/10.1016/j.cogsc.2020.100369
dc.relation.referencesen[9] Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. https://doi.org/10.3390/pr8030366
dc.relation.referencesen[10] Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning Waste Cooking Oils into Biofuels-Valorization Technologies: A Review. Energies 2022, 15, 116. https://doi.org/10.3390/en15010116
dc.relation.referencesen[11] Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K., Jhalani, A. A Comprehensive Review of Biodiesel Production from Waste Cooking Oil and its Use as Fuel in Compression Ignition Engines: 3rd Generation Cleaner Feedstock. J. Clean. Prod. 2021, 307, 127299. https://doi.org/10.1016/j.jclepro.2021.127299
dc.relation.referencesen[12] Sharma, P.; Usman, M.; Salama, E.-S.; Redina, M.; Thakur, N.; Li, X. Evaluation of Various Waste Cooking Oils for Biodiesel Production: A Comprehensive Analysis of Feedstock. Waste Man-age. 2021, 136, 219-229. https://doi.org/10.1016/j.wasman.2021.10.022
dc.relation.referencesen[13] Hosseinzadeh-Bandbafha, H.; Li, Ch.; Chen, X.; Peng, W.; Aghbashlo, M.; Lam, S.Sh.; Tabatabaei, M. Managing the Hazardous Waste Cooking Oil by Conversion into Bioenergy Through the Application of Waste-Derived Green Catalysts: A Review. J. Hazard. Mater. 2022, 424, 127636. https://doi.org/10.1016/j.jhazmat.2021.127636
dc.relation.referencesen[14] Buchori, L.; Anggoro, D.D.; Ma’ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583
dc.relation.referencesen[15] Lubricant Substance Classification list (LuSC-list). Version date: 17/02/2022. https://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200... (accessed 2022-04-21).
dc.relation.referencesen[16] Ardai, R. Environmentally Acceptable Lithium Complex Grease for a Wide Temperature Range. NLGI Spokesman 2020, 84, 12-26.
dc.relation.referencesen[17] Meza, A. Guidelines for Selecting High-temperature Lubricants. Machinery Lubrication 2016, November - December, 28-32. https://www.machinerylubrication.com/Read/30674/high-temperature-lubricants
dc.relation.referencesen[18] Ischuk, Yu.L. Sostav, struktura i svoistva plastichnykh smazok; Naukova dumka: Kyiv, 1996.
dc.relation.referencesen[19] Badertscher, M.; Bühlmann, Ph.; Pretsch, E. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer Berlin: Heidelberg, 2009.
dc.relation.referencesen[20] Klamann, D.; Rost, R.R. Lubricants and related products. Synthesis, properties, applications, international standards; Verlag Chemie: Weinheim, 1984.
dc.relation.referencesen[21] Lubricants and Lubrication; Mang, T.; Dresel, W., Eds.; Wiley-VCH, 2017.
dc.relation.referencesen[22] Canter, N. Biodegradable Lubricants: Working Definitions, Review of Key Applications and Prospects for Growth. Tribol. Lubr. Technol. 2020, December, 34-47.
dc.relation.referencesen[23] Papeikin, O.; Safronov, O.; Bodachivska, L.; Venger, I. Synthesis and Properties of Urea Greases Based on Aminoamides of Plant Oil Phosphatides. East.-Eur. J. Enterp. Technol. 2020, 4, 54-60. https://doi.org/10.15587/1729-4061.2020.210043
dc.relation.urihttps://doi.org/10.1080/10643389.2020.1771887
dc.relation.urihttps://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf
dc.relation.urihttps://doi.org/10.2779/14834
dc.relation.urihttps://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f..
dc.relation.urihttps://doi.org/10.15407/kataliz2019.28.001
dc.relation.urihttps://doi.org/10.5650/jos.ess14235
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2019.05.096
dc.relation.urihttps://doi.org/10.1186/s13068-021-02061-2
dc.relation.urihttps://doi.org/10.1016/j.cogsc.2020.100369
dc.relation.urihttps://doi.org/10.3390/pr8030366
dc.relation.urihttps://doi.org/10.3390/en15010116
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2021.127299
dc.relation.urihttps://doi.org/10.1016/j.wasman.2021.10.022
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2021.127636
dc.relation.urihttps://doi.org/10.23939/chcht15.04.583
dc.relation.urihttps://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200..
dc.relation.urihttps://www.machinerylubrication.com/Read/30674/high-temperature-lubricants
dc.relation.urihttps://doi.org/10.15587/1729-4061.2020.210043
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Papeikin O., Bodachivska L., Venger I., 2023
dc.subjectвідпрацьована харчова олія
dc.subjectалканоламіди жирних кислот
dc.subjectвисокотемпературне мастило
dc.subjectwaste food oils
dc.subjectfatty acids alkanolamides
dc.subjecthigh-temperature grease
dc.titleWaste Food Oils as Components of Eco-Friendly Grease
dc.title.alternativeЕкобезпечні мастила на основі відпрацьованих харчових олій
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Papeikin_O-Waste_Food_Oils_as_Components_431-437.pdf
Size:
412.93 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Papeikin_O-Waste_Food_Oils_as_Components_431-437__COVER.png
Size:
510.47 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: