Waste Food Oils as Components of Eco-Friendly Grease
dc.citation.epage | 437 | |
dc.citation.issue | 2 | |
dc.citation.spage | 431 | |
dc.contributor.affiliation | V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine | |
dc.contributor.author | Papeikin, Oleksii | |
dc.contributor.author | Bodachivska, Larysa | |
dc.contributor.author | Venger, Iryna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:38Z | |
dc.date.available | 2024-02-12T08:30:38Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Продемонстровано можливість одержання на основі відходів – відпрацьованих харчових олій екологічно безпечних поверхнево-активних речовин і високотемпературної дисперсної фази тиксотропних пластичних систем. ІЧ- та 1H ЯМР-спектрометрією підтверджено будову синтезованих алканоламідів жирних кислот. Методом термогравіметричного аналізу визначено, що верхня температурна межа застосування синтезованих алканоламідів жирних кислот і комплексного кальцієвого мастила перевищує 463 K. Встановлено, що введення до складу високотемпературного мастила алканоламідів жирних кислот поліпшує його змащувальні, антиокиснювальні й екологічні характеристики. | |
dc.description.abstract | The possibility of obtaining eco-safety surfactants and high-temperature dispersed phase of thixotropic plastic systems based on waste food oils were demonstrated. The structure of the synthesized fatty acid alkanolamides was confirmed by IR and 1H NMR spectroscopy. The upper temperature limit (above 463 К) for the use of synthesized fatty acids alkanolamides and complex calcium grease was determined by thermogravimetric analysis. The introduction of fatty acid alkanolamides to the high-temperature composition of grease improves its tribological, anti-oxidant and environmental characteristics | |
dc.format.extent | 431-437 | |
dc.format.pages | 7 | |
dc.identifier.citation | Papeikin O. Waste Food Oils as Components of Eco-Friendly Grease / Oleksii Papeikin, Larysa Bodachivska, Iryna Venger // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 431–437. | |
dc.identifier.citationen | Papeikin O. Waste Food Oils as Components of Eco-Friendly Grease / Oleksii Papeikin, Larysa Bodachivska, Iryna Venger // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 431–437. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.431 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61247 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Pinheiro, C.T.; Quina, M.J.; Gando-Ferreira, L.M. Management of Waste Lubricant Oil in Europe: A Circular Economy Approach. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2015-2050. https://doi.org/10.1080/10643389.2020.1771887 | |
dc.relation.references | [2] Monier, V.; Labouze, E. Critical Review of Existing Studies and Life Cycle Analysis on the Regeneration and Incineration of Waste Oils. European Commission. DG Environment A2 – Sustainable Resources Consumption and Waste. France, 2001. https://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf (accessed 2022-04-21). | |
dc.relation.references | [3] Stahl, H.; Merz C. Study to Support the Commission in Gathering Structured Information and Defining of Reporting Obligations on Waste Oils and Other Hazardous Waste. Luxembourg: Publications Office of the European Union, 2020. https://doi.org/10.2779/14834. https://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f... (accessed 2022-04-21). | |
dc.relation.references | [4] Bodachivska, L.Yu.; Verba, A.Yu.; Safronov, O.I.; Davitadze, D.Z.; Papeikin, O.O.; Venger, I.O. Surfactants Based on Lipoid Biomass and their Use in Technological Systems for Gas and Crude Oil Production. Catalysis and Petrochemistry 2019, 28, 1-19. https://doi.org/10.15407/kataliz2019.28.001 | |
dc.relation.references | [5] Li, W.; Wang, X. Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties J. Oleo Sci. 2015, 64, 367-374. https://doi.org/10.5650/jos.ess14235 | |
dc.relation.references | [6] Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of Homogeneous Catalysts on Ring Opening Reactions of Epoxidized Cooking Oils. J. Clean. Prod. 2019, 230, 162-169. https://doi.org/10.1016/j.jclepro.2019.05.096 | |
dc.relation.references | [7] Kukana, R.; Jakhar, O.P. An Appraisal on Enablers for Enhancement of Waste Cooking Oil-Based Biodiesel Production Facilities Using the Interpretative Structural Modeling Approach. Biotechnol. Biofuels Bioprod. 2021, 14, 213. https://doi.org/10.1186/s13068-021-02061-2 | |
dc.relation.references | [8] Orjuela, A; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. https://doi.org/10.1016/j.cogsc.2020.100369 | |
dc.relation.references | [9] Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. https://doi.org/10.3390/pr8030366 | |
dc.relation.references | [10] Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning Waste Cooking Oils into Biofuels—Valorization Technologies: A Review. Energies 2022, 15, 116. https://doi.org/10.3390/en15010116 | |
dc.relation.references | [11] Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K., Jhalani, A. A Comprehensive Review of Biodiesel Production from Waste Cooking Oil and its Use as Fuel in Compression Ignition Engines: 3rd Generation Cleaner Feedstock. J. Clean. Prod. 2021, 307, 127299. https://doi.org/10.1016/j.jclepro.2021.127299 | |
dc.relation.references | [12] Sharma, P.; Usman, M.; Salama, E.-S.; Redina, M.; Thakur, N.; Li, X. Evaluation of Various Waste Cooking Oils for Biodiesel Production: A Comprehensive Analysis of Feedstock. Waste Man-age. 2021, 136, 219-229. https://doi.org/10.1016/j.wasman.2021.10.022 | |
dc.relation.references | [13] Hosseinzadeh-Bandbafha, H.; Li, Ch.; Chen, X.; Peng, W.; Aghbashlo, M.; Lam, S.Sh.; Tabatabaei, M. Managing the Hazardous Waste Cooking Oil by Conversion into Bioenergy Through the Application of Waste-Derived Green Catalysts: A Review. J. Hazard. Mater. 2022, 424, 127636. https://doi.org/10.1016/j.jhazmat.2021.127636 | |
dc.relation.references | [14] Buchori, L.; Anggoro, D.D.; Ma’ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583 | |
dc.relation.references | [15] Lubricant Substance Classification list (LuSC-list). Version date: 17/02/2022. https://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200... (accessed 2022-04-21). | |
dc.relation.references | [16] Ardai, R. Environmentally Acceptable Lithium Complex Grease for a Wide Temperature Range. NLGI Spokesman 2020, 84, 12-26. | |
dc.relation.references | [17] Meza, A. Guidelines for Selecting High-temperature Lubricants. Machinery Lubrication 2016, November - December, 28-32. https://www.machinerylubrication.com/Read/30674/high-temperature-lubricants | |
dc.relation.references | [18] Ischuk, Yu.L. Sostav, struktura i svoistva plastichnykh smazok; Naukova dumka: Kyiv, 1996. | |
dc.relation.references | [19] Badertscher, M.; Bühlmann, Ph.; Pretsch, E. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer Berlin: Heidelberg, 2009. | |
dc.relation.references | [20] Klamann, D.; Rost, R.R. Lubricants and related products. Synthesis, properties, applications, international standards; Verlag Chemie: Weinheim, 1984. | |
dc.relation.references | [21] Lubricants and Lubrication; Mang, T.; Dresel, W., Eds.; Wiley-VCH, 2017. | |
dc.relation.references | [22] Canter, N. Biodegradable Lubricants: Working Definitions, Review of Key Applications and Prospects for Growth. Tribol. Lubr. Technol. 2020, December, 34-47. | |
dc.relation.references | [23] Papeikin, O.; Safronov, O.; Bodachivska, L.; Venger, I. Synthesis and Properties of Urea Greases Based on Aminoamides of Plant Oil Phosphatides. East.-Eur. J. Enterp. Technol. 2020, 4, 54-60. https://doi.org/10.15587/1729-4061.2020.210043 | |
dc.relation.referencesen | [1] Pinheiro, C.T.; Quina, M.J.; Gando-Ferreira, L.M. Management of Waste Lubricant Oil in Europe: A Circular Economy Approach. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2015-2050. https://doi.org/10.1080/10643389.2020.1771887 | |
dc.relation.referencesen | [2] Monier, V.; Labouze, E. Critical Review of Existing Studies and Life Cycle Analysis on the Regeneration and Incineration of Waste Oils. European Commission. DG Environment A2 – Sustainable Resources Consumption and Waste. France, 2001. https://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf (accessed 2022-04-21). | |
dc.relation.referencesen | [3] Stahl, H.; Merz C. Study to Support the Commission in Gathering Structured Information and Defining of Reporting Obligations on Waste Oils and Other Hazardous Waste. Luxembourg: Publications Office of the European Union, 2020. https://doi.org/10.2779/14834. https://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f... (accessed 2022-04-21). | |
dc.relation.referencesen | [4] Bodachivska, L.Yu.; Verba, A.Yu.; Safronov, O.I.; Davitadze, D.Z.; Papeikin, O.O.; Venger, I.O. Surfactants Based on Lipoid Biomass and their Use in Technological Systems for Gas and Crude Oil Production. Catalysis and Petrochemistry 2019, 28, 1-19. https://doi.org/10.15407/kataliz2019.28.001 | |
dc.relation.referencesen | [5] Li, W.; Wang, X. Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties J. Oleo Sci. 2015, 64, 367-374. https://doi.org/10.5650/jos.ess14235 | |
dc.relation.referencesen | [6] Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of Homogeneous Catalysts on Ring Opening Reactions of Epoxidized Cooking Oils. J. Clean. Prod. 2019, 230, 162-169. https://doi.org/10.1016/j.jclepro.2019.05.096 | |
dc.relation.referencesen | [7] Kukana, R.; Jakhar, O.P. An Appraisal on Enablers for Enhancement of Waste Cooking Oil-Based Biodiesel Production Facilities Using the Interpretative Structural Modeling Approach. Biotechnol. Biofuels Bioprod. 2021, 14, 213. https://doi.org/10.1186/s13068-021-02061-2 | |
dc.relation.referencesen | [8] Orjuela, A; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. https://doi.org/10.1016/j.cogsc.2020.100369 | |
dc.relation.referencesen | [9] Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. https://doi.org/10.3390/pr8030366 | |
dc.relation.referencesen | [10] Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning Waste Cooking Oils into Biofuels-Valorization Technologies: A Review. Energies 2022, 15, 116. https://doi.org/10.3390/en15010116 | |
dc.relation.referencesen | [11] Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K., Jhalani, A. A Comprehensive Review of Biodiesel Production from Waste Cooking Oil and its Use as Fuel in Compression Ignition Engines: 3rd Generation Cleaner Feedstock. J. Clean. Prod. 2021, 307, 127299. https://doi.org/10.1016/j.jclepro.2021.127299 | |
dc.relation.referencesen | [12] Sharma, P.; Usman, M.; Salama, E.-S.; Redina, M.; Thakur, N.; Li, X. Evaluation of Various Waste Cooking Oils for Biodiesel Production: A Comprehensive Analysis of Feedstock. Waste Man-age. 2021, 136, 219-229. https://doi.org/10.1016/j.wasman.2021.10.022 | |
dc.relation.referencesen | [13] Hosseinzadeh-Bandbafha, H.; Li, Ch.; Chen, X.; Peng, W.; Aghbashlo, M.; Lam, S.Sh.; Tabatabaei, M. Managing the Hazardous Waste Cooking Oil by Conversion into Bioenergy Through the Application of Waste-Derived Green Catalysts: A Review. J. Hazard. Mater. 2022, 424, 127636. https://doi.org/10.1016/j.jhazmat.2021.127636 | |
dc.relation.referencesen | [14] Buchori, L.; Anggoro, D.D.; Ma’ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583 | |
dc.relation.referencesen | [15] Lubricant Substance Classification list (LuSC-list). Version date: 17/02/2022. https://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200... (accessed 2022-04-21). | |
dc.relation.referencesen | [16] Ardai, R. Environmentally Acceptable Lithium Complex Grease for a Wide Temperature Range. NLGI Spokesman 2020, 84, 12-26. | |
dc.relation.referencesen | [17] Meza, A. Guidelines for Selecting High-temperature Lubricants. Machinery Lubrication 2016, November - December, 28-32. https://www.machinerylubrication.com/Read/30674/high-temperature-lubricants | |
dc.relation.referencesen | [18] Ischuk, Yu.L. Sostav, struktura i svoistva plastichnykh smazok; Naukova dumka: Kyiv, 1996. | |
dc.relation.referencesen | [19] Badertscher, M.; Bühlmann, Ph.; Pretsch, E. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer Berlin: Heidelberg, 2009. | |
dc.relation.referencesen | [20] Klamann, D.; Rost, R.R. Lubricants and related products. Synthesis, properties, applications, international standards; Verlag Chemie: Weinheim, 1984. | |
dc.relation.referencesen | [21] Lubricants and Lubrication; Mang, T.; Dresel, W., Eds.; Wiley-VCH, 2017. | |
dc.relation.referencesen | [22] Canter, N. Biodegradable Lubricants: Working Definitions, Review of Key Applications and Prospects for Growth. Tribol. Lubr. Technol. 2020, December, 34-47. | |
dc.relation.referencesen | [23] Papeikin, O.; Safronov, O.; Bodachivska, L.; Venger, I. Synthesis and Properties of Urea Greases Based on Aminoamides of Plant Oil Phosphatides. East.-Eur. J. Enterp. Technol. 2020, 4, 54-60. https://doi.org/10.15587/1729-4061.2020.210043 | |
dc.relation.uri | https://doi.org/10.1080/10643389.2020.1771887 | |
dc.relation.uri | https://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf | |
dc.relation.uri | https://doi.org/10.2779/14834 | |
dc.relation.uri | https://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f.. | |
dc.relation.uri | https://doi.org/10.15407/kataliz2019.28.001 | |
dc.relation.uri | https://doi.org/10.5650/jos.ess14235 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2019.05.096 | |
dc.relation.uri | https://doi.org/10.1186/s13068-021-02061-2 | |
dc.relation.uri | https://doi.org/10.1016/j.cogsc.2020.100369 | |
dc.relation.uri | https://doi.org/10.3390/pr8030366 | |
dc.relation.uri | https://doi.org/10.3390/en15010116 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2021.127299 | |
dc.relation.uri | https://doi.org/10.1016/j.wasman.2021.10.022 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2021.127636 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.583 | |
dc.relation.uri | https://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200.. | |
dc.relation.uri | https://www.machinerylubrication.com/Read/30674/high-temperature-lubricants | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2020.210043 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Papeikin O., Bodachivska L., Venger I., 2023 | |
dc.subject | відпрацьована харчова олія | |
dc.subject | алканоламіди жирних кислот | |
dc.subject | високотемпературне мастило | |
dc.subject | waste food oils | |
dc.subject | fatty acids alkanolamides | |
dc.subject | high-temperature grease | |
dc.title | Waste Food Oils as Components of Eco-Friendly Grease | |
dc.title.alternative | Екобезпечні мастила на основі відпрацьованих харчових олій | |
dc.type | Article |
Files
License bundle
1 - 1 of 1