Effects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound
dc.citation.epage | 158 | |
dc.citation.issue | 1 | |
dc.citation.spage | 150 | |
dc.contributor.affiliation | Shahid Bahonar University of Kerman | |
dc.contributor.affiliation | Compound Development Manager, Barez Tyre Co. | |
dc.contributor.author | Dortaj, Narjes | |
dc.contributor.author | Mohebbi, Ali | |
dc.contributor.author | Bagheri, Hamidreza | |
dc.contributor.author | Aman-Alikhani, Majid | |
dc.contributor.author | Yazdi, Maryamossadat Rohani | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T10:41:31Z | |
dc.date.available | 2024-01-22T10:41:31Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Вивчено вплив наночастинок гідрофільного кремнезему як нанонаповнювача на властивості протектора шин. Методом змішування розплаву виготовлено чотири сполуки, з кількістю нанонаповнювача 0, 1, 3 та 5 phr (частин наповнювача на сто частин гуми). Визначено фізико-механічні властивості одержаних сполук. За допомогою скануючої електронної мікроскопії з польовою емісією (Fe-SEM) встановлено структуру та морфологію поверхні. Доведено, що зразок, який містить 3 phr нанонаповнювача, має найкращі властивості. Це зумовлене вищою взаємодією між нанонаповнювачем та полімерними макромолекулами, що спричиняє кращу дисперсію наночастинок у полімерній матриці. | |
dc.description.abstract | This research aimed to study the effects of adding hydrophilic silica nanoparticles as nanofiller on tread properties of a typical tyre compound. In this respect, four compounds were prepared as a representative of the tread of the tyre. The amount of 0, 1, 3, and 5 phr (parts of filler per hundred parts of rubber) of nanofiller were added by melt mixing method. Physical and mechanical properties of compounds were measured. The structure and morphology of the fractured surface of the compounds were characterized using field emission scanning electron microscopy (Fe-SEM). The results of cure and mechanical analysis of the compound series showed that the sample containing 3 phr of nanofiller possesses better properties. This observation is due to higher interaction between nanofiller and polymer macromolecules that causes better dispersion of the nanoparticles in polymer matrix. | |
dc.format.extent | 150-158 | |
dc.format.pages | 9 | |
dc.identifier.citation | Effects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound / Narjes Dortaj, Ali Mohebbi, Hamidreza Bagheri, Majid Aman-Alikhani, Maryamossadat Rohani Yazdi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 150–158. | |
dc.identifier.citationen | Effects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound / Narjes Dortaj, Ali Mohebbi, Hamidreza Bagheri, Majid Aman-Alikhani, Maryamossadat Rohani Yazdi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 150–158. | |
dc.identifier.doi | doi.org/10.23939/chcht16.01.150 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60952 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (16), 2022 | |
dc.relation.references | [1] Rajarao, R.; Farzana, R., Khanna R.; Sahajwalla, V. Synthesis of SiC/Si3N4 Nanocomposite by Using Automotive Waste Tyres as Resource. J. Ind. Eng. Chem. 2015, 29, 35-38. https://doi.org/10.1016/j.jiec.2015.04.006 | |
dc.relation.references | [2] Tullo, A. Chemical Companies Hope Their Innovations Can Improve the Environmental Performance of Tires without Sacrificing Safety and Durability. Chem. Eng. News. 2009, 87, 10. https://doi.org/10.1021/cen-v087n046.p010 | |
dc.relation.references | [3] Marković, G.; Radovanović, B.; Marinović-Cincović, M.; Budinski-Simendić, J. The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Mater. Manuf. Process. 2009, 24, 1224-1228. https://doi.org/10.1080/10426910902967087 | |
dc.relation.references | [4] Paul, D.; Robeson, L. Polymer Nanotechnology: Nanocomposites. Polymer. 2008, 49, 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017 | |
dc.relation.references | [5] Chawla, V.; Prakash, S.; Sidhu B. State of the Art: Applications of Mechanically Alloyed Nanomaterials – A Review. Mater. Manuf. Process. 2007, 22, 469-473. https://doi.org/10.1080/10426910701235900 | |
dc.relation.references | [6] Abdul Salim, Z.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57, 523-539. https://doi.org/10.1080/03602559.2017.1329432 | |
dc.relation.references | [7] Bagheri, H.; Hashemipour, H.; Ghader, S. Population Balance Modeling: Application in Nanoparticle Formation Through Rapid Expansion of Supercritical Solution. Comput. Part. Mech. 2019, 6, 721-737. https://doi.org/10.1007/s40571-019-00257-w | |
dc.relation.references | [8] Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on Hydrodynamic and Formation of Nano Particle by RESS Process: The Numerical Study. J. Mol. Liq. 2019, 281, 490-505. https://doi.org/10.1016/j.molliq.2019.02.108 | |
dc.relation.references | [9] Bagheri, H.; Mansoori, G.; Hashemipour, H. A Novel Approach to Predict Drugs Solubility in Supercritical Solvents for RESS Process Using Various Cubic Eos-Mixing Rule. J. Mol. Liq. 2018, 261, 174-188. https://doi.org/10.1016/j.molliq.2018.03.081 | |
dc.relation.references | [10] Rubber Technologist’s Handbook, Vol. 2; De, S.; Naskar, K.; White, J., Eds.; Smithers Rapra Technology: Shawbury, UK, 2009. | |
dc.relation.references | [11] Ahn, S.; Kim, S.; Kim, B. et al. Mechanical Properties of Silica Nanoparticle Reinforced Poly(ethylene2,6-naphthalate). Macromol. Res., 2004, 12, 293-302. https://doi.org/10.1007/BF03218403 | |
dc.relation.references | [12] Ekengwu, I.; Utu, O.; Okafor, C. Nanotechnology in Automotive Industry: The Potential of Graphene. Iconic Res. Eng. J., 2019, 3, 31-37. https://irejournals.com/formatedpaper/1701322.pdf | |
dc.relation.references | [13] Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon. 2020. https://doi.org/10.1007/s12633-020-00792-9 | |
dc.relation.references | [14] White, J.; Kim, K. Thermoplastic and Rubber Compounds. Technology and Physical Chemistry; Hanser Publications: Ohio, 2012. | |
dc.relation.references | [15] Bhattacharya, M.; Bhowmick A. Synergy in Carbon Black-Filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45, 6126-6138. https://doi.org/10.1007/s10853-010-4699-6 | |
dc.relation.references | [16] Ten Brinke, A. Silica Reinforced Tyre Rubbers. PhD thesis, University of Twente, the Netherlands, 2002. | |
dc.relation.references | [17] Kumbul, A.; Gokturk, E.; Sahmetlioglu, E. Synthesis, Characterization, Thermal Stability and Electrochemical Properties of Ortho-Imine-Functionalized Oligophenol via Enzymatic Oxidative Polycondensation. J. Polym. Res. 2016, 23, 52. https://doi.org/10.1007/s10965-016-0953-1 | |
dc.relation.references | [18] Pal, K.; Rajasekar, R.; Kang, D. et al. Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear. Mater. Des. 2010, 31, 677-686. https://doi.org/10.1016/j.matdes.2009.08.014 | |
dc.relation.references | [19] Kaewsakul, W. Silica-Reinforced Natural Rubber for Low Rolling Resistance, Energy-Saving Tires: Aspects of Mixing, Formulation and Compatibilization. PhD thesis, University of Twente, the Netherlands, 2013. | |
dc.relation.references | [20] Xia, L.; Song, J.; Wang, H.; Kan, Z. Silica Nanoparticles Reinforced Natural Rubber Latex Composites: The Effects of Silica Dimension and Polydispersity on Performance. J. Appl. Polym. Sci., 2019, 136, 47449. https://doi.org/10.1002/app.47449 | |
dc.relation.references | [21] Tancharernrat, T.; Rempel, G.; Prasassarakich, P. Preparation of Styrene Butadiene Copolymer-Silica Nanocomposites via Differential Microemulsion Polymerization and NR/SBR–SiO2 Membranes for Pervaporation of Water-Ethanol Mixtures. Chem. Eng. J. 2014, 258, 290-300. https://doi.org/10.1016/j.cej.2014.05.151 | |
dc.relation.references | [22] Rubber Nanocomposites: Preparation, Properties, and Applications; Thomas, S., Stephen, R., Eds.; John Wiley & Sons, 2010. https://doi.org/10.1002/9780470823477 | |
dc.relation.references | [23] Park, S.; Jin, S.; Kaang, S. Influence of Thermal Treatment of Nano-Scaled Silica on Interfacial Adhesion Properties of the Silica/Rubber Compounding. Mater. Sci. Eng. A. 2005, 398, 137-141. https://doi.org/10.1016/j.msea.2005.03.012 | |
dc.relation.references | [24] Chen, Y.; Peng, Z.; Kong, L. et al. Natural Rubber Nanocomposite Reinforced with Nano Silica. Polym. Eng. Sci. 2008, 48, 1674-1677. https://doi.org/10.1002/pen.20997 | |
dc.relation.references | [25] Mathew, L.; Narayanankutty, S. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite. J. Appl. Polym. Sci. 2009, 112, 2203-2212. https://doi.org/10.1002/app.29718 | |
dc.relation.references | [26] Meera, A.; Said, S.; Grohens, Y. et al. Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 2009, 48, 3410-3416. https://doi.org/10.1021/ie801494s | |
dc.relation.references | [27] Chayan, D.; Kapgate Bharat, P. Preparation and Studies of Nitrile Rubber Nanocomposites with Silane Modified Silica Nanoparticles. Res. J. Recent Sci. 2012, 1, 357-360. http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf | |
dc.relation.references | [28] Yusof, N.; Noguchi, K.; Fukuhara, L. et al. Preparation and Properties of Natural Rubber with Filler Nanomatrix Structure. Colloid Polym. Sci. 2015, 293, 2249-2256. https://doi.org/10.1007/s00396-015-3615-7 | |
dc.relation.references | [29] Ahmed, J.; Al-Maamori, M.; Ali, H. Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite. Int. J. Mater. Sci. Appl., 2015, 4, 15-20. https://doi.org/10.11648/j.ijmsa.s.2015040201.14 | |
dc.relation.references | [30] Advanced Rubber Composites; Heinrich, G., Ed.; Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-19504-4 | |
dc.relation.references | [31] Dileep, P.; Narayanankutty, S. Styrenated Phenol Modified Nanosilica for Improved Thermo-Oxidative and Mechanical Properties of Natural Rubber. Polym. Test., 2020, 82, 106302. https://doi.org/10.1016/j.polymertesting.2019.106302 | |
dc.relation.references | [32] Dileep, P.; Narayanankutty, S. A Novel Method for Preparation of Nanosilica from Bamboo Leaves and Its Green Modification as a Multi-Functional Additive in Styrene Butadiene Rubber. Mater. Today Commun. 2020, 24, 100957. https://doi.org/10.1016/j.mtcomm.2020.100957 | |
dc.relation.references | [33] Hawleyown, S. Physical Testing of Rubber-Third Edition: By R. P. Brown. Chapman and Hall, London, 1996. 352 pp. ISBN 0-412-60890-1. Polym. Test. 1996, 5, 501-502. https://doi.org/10.1016/0142-9418(96)00024-4 | |
dc.relation.references | [34] Ramarad, S.; Khalid, M.; Ratnam, C. et al. Waste Tire Rubber in Polymer Blends: a Review on the Evolution, Properties and Future. Prog. Mater. Sci. 2015, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004 | |
dc.relation.referencesen | [1] Rajarao, R.; Farzana, R., Khanna R.; Sahajwalla, V. Synthesis of SiC/Si3N4 Nanocomposite by Using Automotive Waste Tyres as Resource. J. Ind. Eng. Chem. 2015, 29, 35-38. https://doi.org/10.1016/j.jiec.2015.04.006 | |
dc.relation.referencesen | [2] Tullo, A. Chemical Companies Hope Their Innovations Can Improve the Environmental Performance of Tires without Sacrificing Safety and Durability. Chem. Eng. News. 2009, 87, 10. https://doi.org/10.1021/cen-v087n046.p010 | |
dc.relation.referencesen | [3] Marković, G.; Radovanović, B.; Marinović-Cincović, M.; Budinski-Simendić, J. The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Mater. Manuf. Process. 2009, 24, 1224-1228. https://doi.org/10.1080/10426910902967087 | |
dc.relation.referencesen | [4] Paul, D.; Robeson, L. Polymer Nanotechnology: Nanocomposites. Polymer. 2008, 49, 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017 | |
dc.relation.referencesen | [5] Chawla, V.; Prakash, S.; Sidhu B. State of the Art: Applications of Mechanically Alloyed Nanomaterials – A Review. Mater. Manuf. Process. 2007, 22, 469-473. https://doi.org/10.1080/10426910701235900 | |
dc.relation.referencesen | [6] Abdul Salim, Z.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57, 523-539. https://doi.org/10.1080/03602559.2017.1329432 | |
dc.relation.referencesen | [7] Bagheri, H.; Hashemipour, H.; Ghader, S. Population Balance Modeling: Application in Nanoparticle Formation Through Rapid Expansion of Supercritical Solution. Comput. Part. Mech. 2019, 6, 721-737. https://doi.org/10.1007/s40571-019-00257-w | |
dc.relation.referencesen | [8] Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on Hydrodynamic and Formation of Nano Particle by RESS Process: The Numerical Study. J. Mol. Liq. 2019, 281, 490-505. https://doi.org/10.1016/j.molliq.2019.02.108 | |
dc.relation.referencesen | [9] Bagheri, H.; Mansoori, G.; Hashemipour, H. A Novel Approach to Predict Drugs Solubility in Supercritical Solvents for RESS Process Using Various Cubic Eos-Mixing Rule. J. Mol. Liq. 2018, 261, 174-188. https://doi.org/10.1016/j.molliq.2018.03.081 | |
dc.relation.referencesen | [10] Rubber Technologist’s Handbook, Vol. 2; De, S.; Naskar, K.; White, J., Eds.; Smithers Rapra Technology: Shawbury, UK, 2009. | |
dc.relation.referencesen | [11] Ahn, S.; Kim, S.; Kim, B. et al. Mechanical Properties of Silica Nanoparticle Reinforced Poly(ethylene2,6-naphthalate). Macromol. Res., 2004, 12, 293-302. https://doi.org/10.1007/BF03218403 | |
dc.relation.referencesen | [12] Ekengwu, I.; Utu, O.; Okafor, C. Nanotechnology in Automotive Industry: The Potential of Graphene. Iconic Res. Eng. J., 2019, 3, 31-37. https://irejournals.com/formatedpaper/1701322.pdf | |
dc.relation.referencesen | [13] Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon. 2020. https://doi.org/10.1007/s12633-020-00792-9 | |
dc.relation.referencesen | [14] White, J.; Kim, K. Thermoplastic and Rubber Compounds. Technology and Physical Chemistry; Hanser Publications: Ohio, 2012. | |
dc.relation.referencesen | [15] Bhattacharya, M.; Bhowmick A. Synergy in Carbon Black-Filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45, 6126-6138. https://doi.org/10.1007/s10853-010-4699-6 | |
dc.relation.referencesen | [16] Ten Brinke, A. Silica Reinforced Tyre Rubbers. PhD thesis, University of Twente, the Netherlands, 2002. | |
dc.relation.referencesen | [17] Kumbul, A.; Gokturk, E.; Sahmetlioglu, E. Synthesis, Characterization, Thermal Stability and Electrochemical Properties of Ortho-Imine-Functionalized Oligophenol via Enzymatic Oxidative Polycondensation. J. Polym. Res. 2016, 23, 52. https://doi.org/10.1007/s10965-016-0953-1 | |
dc.relation.referencesen | [18] Pal, K.; Rajasekar, R.; Kang, D. et al. Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear. Mater. Des. 2010, 31, 677-686. https://doi.org/10.1016/j.matdes.2009.08.014 | |
dc.relation.referencesen | [19] Kaewsakul, W. Silica-Reinforced Natural Rubber for Low Rolling Resistance, Energy-Saving Tires: Aspects of Mixing, Formulation and Compatibilization. PhD thesis, University of Twente, the Netherlands, 2013. | |
dc.relation.referencesen | [20] Xia, L.; Song, J.; Wang, H.; Kan, Z. Silica Nanoparticles Reinforced Natural Rubber Latex Composites: The Effects of Silica Dimension and Polydispersity on Performance. J. Appl. Polym. Sci., 2019, 136, 47449. https://doi.org/10.1002/app.47449 | |
dc.relation.referencesen | [21] Tancharernrat, T.; Rempel, G.; Prasassarakich, P. Preparation of Styrene Butadiene Copolymer-Silica Nanocomposites via Differential Microemulsion Polymerization and NR/SBR–SiO2 Membranes for Pervaporation of Water-Ethanol Mixtures. Chem. Eng. J. 2014, 258, 290-300. https://doi.org/10.1016/j.cej.2014.05.151 | |
dc.relation.referencesen | [22] Rubber Nanocomposites: Preparation, Properties, and Applications; Thomas, S., Stephen, R., Eds.; John Wiley & Sons, 2010. https://doi.org/10.1002/9780470823477 | |
dc.relation.referencesen | [23] Park, S.; Jin, S.; Kaang, S. Influence of Thermal Treatment of Nano-Scaled Silica on Interfacial Adhesion Properties of the Silica/Rubber Compounding. Mater. Sci. Eng. A. 2005, 398, 137-141. https://doi.org/10.1016/j.msea.2005.03.012 | |
dc.relation.referencesen | [24] Chen, Y.; Peng, Z.; Kong, L. et al. Natural Rubber Nanocomposite Reinforced with Nano Silica. Polym. Eng. Sci. 2008, 48, 1674-1677. https://doi.org/10.1002/pen.20997 | |
dc.relation.referencesen | [25] Mathew, L.; Narayanankutty, S. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite. J. Appl. Polym. Sci. 2009, 112, 2203-2212. https://doi.org/10.1002/app.29718 | |
dc.relation.referencesen | [26] Meera, A.; Said, S.; Grohens, Y. et al. Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 2009, 48, 3410-3416. https://doi.org/10.1021/ie801494s | |
dc.relation.referencesen | [27] Chayan, D.; Kapgate Bharat, P. Preparation and Studies of Nitrile Rubber Nanocomposites with Silane Modified Silica Nanoparticles. Res. J. Recent Sci. 2012, 1, 357-360. http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf | |
dc.relation.referencesen | [28] Yusof, N.; Noguchi, K.; Fukuhara, L. et al. Preparation and Properties of Natural Rubber with Filler Nanomatrix Structure. Colloid Polym. Sci. 2015, 293, 2249-2256. https://doi.org/10.1007/s00396-015-3615-7 | |
dc.relation.referencesen | [29] Ahmed, J.; Al-Maamori, M.; Ali, H. Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite. Int. J. Mater. Sci. Appl., 2015, 4, 15-20. https://doi.org/10.11648/j.ijmsa.s.2015040201.14 | |
dc.relation.referencesen | [30] Advanced Rubber Composites; Heinrich, G., Ed.; Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-19504-4 | |
dc.relation.referencesen | [31] Dileep, P.; Narayanankutty, S. Styrenated Phenol Modified Nanosilica for Improved Thermo-Oxidative and Mechanical Properties of Natural Rubber. Polym. Test., 2020, 82, 106302. https://doi.org/10.1016/j.polymertesting.2019.106302 | |
dc.relation.referencesen | [32] Dileep, P.; Narayanankutty, S. A Novel Method for Preparation of Nanosilica from Bamboo Leaves and Its Green Modification as a Multi-Functional Additive in Styrene Butadiene Rubber. Mater. Today Commun. 2020, 24, 100957. https://doi.org/10.1016/j.mtcomm.2020.100957 | |
dc.relation.referencesen | [33] Hawleyown, S. Physical Testing of Rubber-Third Edition: By R. P. Brown. Chapman and Hall, London, 1996. 352 pp. ISBN 0-412-60890-1. Polym. Test. 1996, 5, 501-502. https://doi.org/10.1016/0142-9418(96)00024-4 | |
dc.relation.referencesen | [34] Ramarad, S.; Khalid, M.; Ratnam, C. et al. Waste Tire Rubber in Polymer Blends: a Review on the Evolution, Properties and Future. Prog. Mater. Sci. 2015, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2015.04.006 | |
dc.relation.uri | https://doi.org/10.1021/cen-v087n046.p010 | |
dc.relation.uri | https://doi.org/10.1080/10426910902967087 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2008.04.017 | |
dc.relation.uri | https://doi.org/10.1080/10426910701235900 | |
dc.relation.uri | https://doi.org/10.1080/03602559.2017.1329432 | |
dc.relation.uri | https://doi.org/10.1007/s40571-019-00257-w | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2019.02.108 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2018.03.081 | |
dc.relation.uri | https://doi.org/10.1007/BF03218403 | |
dc.relation.uri | https://irejournals.com/formatedpaper/1701322.pdf | |
dc.relation.uri | https://doi.org/10.1007/s12633-020-00792-9 | |
dc.relation.uri | https://doi.org/10.1007/s10853-010-4699-6 | |
dc.relation.uri | https://doi.org/10.1007/s10965-016-0953-1 | |
dc.relation.uri | https://doi.org/10.1016/j.matdes.2009.08.014 | |
dc.relation.uri | https://doi.org/10.1002/app.47449 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2014.05.151 | |
dc.relation.uri | https://doi.org/10.1002/9780470823477 | |
dc.relation.uri | https://doi.org/10.1016/j.msea.2005.03.012 | |
dc.relation.uri | https://doi.org/10.1002/pen.20997 | |
dc.relation.uri | https://doi.org/10.1002/app.29718 | |
dc.relation.uri | https://doi.org/10.1021/ie801494s | |
dc.relation.uri | http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf | |
dc.relation.uri | https://doi.org/10.1007/s00396-015-3615-7 | |
dc.relation.uri | https://doi.org/10.11648/j.ijmsa.s.2015040201.14 | |
dc.relation.uri | https://doi.org/10.1007/978-3-642-19504-4 | |
dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2019.106302 | |
dc.relation.uri | https://doi.org/10.1016/j.mtcomm.2020.100957 | |
dc.relation.uri | https://doi.org/10.1016/0142-9418(96)00024-4 | |
dc.relation.uri | https://doi.org/10.1016/j.pmatsci.2015.02.004 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Dortaj N., Mohebbi A., Bagheri H., Aman-Alikhani, M., Yazdi M. R., 2022 | |
dc.subject | наповнювач гуми | |
dc.subject | механічні властивості | |
dc.subject | гідрофільні наночастинки кремнезему | |
dc.subject | метод змішування розплаву | |
dc.subject | стійкість до стирання | |
dc.subject | rubber filler | |
dc.subject | mechanical properties | |
dc.subject | hydrophilic silica nanoparticles | |
dc.subject | melt mixing method | |
dc.subject | abrasion resistance | |
dc.title | Effects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound | |
dc.title.alternative | Вплив наночастинок гідрофільного кремнезему на морфологію та механічні властивості компонентів типових шин | |
dc.type | Article |
Files
License bundle
1 - 1 of 1