Effects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound

dc.citation.epage158
dc.citation.issue1
dc.citation.spage150
dc.contributor.affiliationShahid Bahonar University of Kerman
dc.contributor.affiliationCompound Development Manager, Barez Tyre Co.
dc.contributor.authorDortaj, Narjes
dc.contributor.authorMohebbi, Ali
dc.contributor.authorBagheri, Hamidreza
dc.contributor.authorAman-Alikhani, Majid
dc.contributor.authorYazdi, Maryamossadat Rohani
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:31Z
dc.date.available2024-01-22T10:41:31Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractВивчено вплив наночастинок гідрофільного кремнезему як нанонаповнювача на властивості протектора шин. Методом змішування розплаву виготовлено чотири сполуки, з кількістю нанонаповнювача 0, 1, 3 та 5 phr (частин наповнювача на сто частин гуми). Визначено фізико-механічні властивості одержаних сполук. За допомогою скануючої електронної мікроскопії з польовою емісією (Fe-SEM) встановлено структуру та морфологію поверхні. Доведено, що зразок, який містить 3 phr нанонаповнювача, має найкращі властивості. Це зумовлене вищою взаємодією між нанонаповнювачем та полімерними макромолекулами, що спричиняє кращу дисперсію наночастинок у полімерній матриці.
dc.description.abstractThis research aimed to study the effects of adding hydrophilic silica nanoparticles as nanofiller on tread properties of a typical tyre compound. In this respect, four compounds were prepared as a representative of the tread of the tyre. The amount of 0, 1, 3, and 5 phr (parts of filler per hundred parts of rubber) of nanofiller were added by melt mixing method. Physical and mechanical properties of compounds were measured. The structure and morphology of the fractured surface of the compounds were characterized using field emission scanning electron microscopy (Fe-SEM). The results of cure and mechanical analysis of the compound series showed that the sample containing 3 phr of nanofiller possesses better properties. This observation is due to higher interaction between nanofiller and polymer macromolecules that causes better dispersion of the nanoparticles in polymer matrix.
dc.format.extent150-158
dc.format.pages9
dc.identifier.citationEffects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound / Narjes Dortaj, Ali Mohebbi, Hamidreza Bagheri, Majid Aman-Alikhani, Maryamossadat Rohani Yazdi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 150–158.
dc.identifier.citationenEffects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound / Narjes Dortaj, Ali Mohebbi, Hamidreza Bagheri, Majid Aman-Alikhani, Maryamossadat Rohani Yazdi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 150–158.
dc.identifier.doidoi.org/10.23939/chcht16.01.150
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60952
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Rajarao, R.; Farzana, R., Khanna R.; Sahajwalla, V. Synthesis of SiC/Si3N4 Nanocomposite by Using Automotive Waste Tyres as Resource. J. Ind. Eng. Chem. 2015, 29, 35-38. https://doi.org/10.1016/j.jiec.2015.04.006
dc.relation.references[2] Tullo, A. Chemical Companies Hope Their Innovations Can Improve the Environmental Performance of Tires without Sacrificing Safety and Durability. Chem. Eng. News. 2009, 87, 10. https://doi.org/10.1021/cen-v087n046.p010
dc.relation.references[3] Marković, G.; Radovanović, B.; Marinović-Cincović, M.; Budinski-Simendić, J. The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Mater. Manuf. Process. 2009, 24, 1224-1228. https://doi.org/10.1080/10426910902967087
dc.relation.references[4] Paul, D.; Robeson, L. Polymer Nanotechnology: Nanocomposites. Polymer. 2008, 49, 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
dc.relation.references[5] Chawla, V.; Prakash, S.; Sidhu B. State of the Art: Applications of Mechanically Alloyed Nanomaterials – A Review. Mater. Manuf. Process. 2007, 22, 469-473. https://doi.org/10.1080/10426910701235900
dc.relation.references[6] Abdul Salim, Z.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57, 523-539. https://doi.org/10.1080/03602559.2017.1329432
dc.relation.references[7] Bagheri, H.; Hashemipour, H.; Ghader, S. Population Balance Modeling: Application in Nanoparticle Formation Through Rapid Expansion of Supercritical Solution. Comput. Part. Mech. 2019, 6, 721-737. https://doi.org/10.1007/s40571-019-00257-w
dc.relation.references[8] Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on Hydrodynamic and Formation of Nano Particle by RESS Process: The Numerical Study. J. Mol. Liq. 2019, 281, 490-505. https://doi.org/10.1016/j.molliq.2019.02.108
dc.relation.references[9] Bagheri, H.; Mansoori, G.; Hashemipour, H. A Novel Approach to Predict Drugs Solubility in Supercritical Solvents for RESS Process Using Various Cubic Eos-Mixing Rule. J. Mol. Liq. 2018, 261, 174-188. https://doi.org/10.1016/j.molliq.2018.03.081
dc.relation.references[10] Rubber Technologist’s Handbook, Vol. 2; De, S.; Naskar, K.; White, J., Eds.; Smithers Rapra Technology: Shawbury, UK, 2009.
dc.relation.references[11] Ahn, S.; Kim, S.; Kim, B. et al. Mechanical Properties of Silica Nanoparticle Reinforced Poly(ethylene2,6-naphthalate). Macromol. Res., 2004, 12, 293-302. https://doi.org/10.1007/BF03218403
dc.relation.references[12] Ekengwu, I.; Utu, O.; Okafor, C. Nanotechnology in Automotive Industry: The Potential of Graphene. Iconic Res. Eng. J., 2019, 3, 31-37. https://irejournals.com/formatedpaper/1701322.pdf
dc.relation.references[13] Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon. 2020. https://doi.org/10.1007/s12633-020-00792-9
dc.relation.references[14] White, J.; Kim, K. Thermoplastic and Rubber Compounds. Technology and Physical Chemistry; Hanser Publications: Ohio, 2012.
dc.relation.references[15] Bhattacharya, M.; Bhowmick A. Synergy in Carbon Black-Filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45, 6126-6138. https://doi.org/10.1007/s10853-010-4699-6
dc.relation.references[16] Ten Brinke, A. Silica Reinforced Tyre Rubbers. PhD thesis, University of Twente, the Netherlands, 2002.
dc.relation.references[17] Kumbul, A.; Gokturk, E.; Sahmetlioglu, E. Synthesis, Characterization, Thermal Stability and Electrochemical Properties of Ortho-Imine-Functionalized Oligophenol via Enzymatic Oxidative Polycondensation. J. Polym. Res. 2016, 23, 52. https://doi.org/10.1007/s10965-016-0953-1
dc.relation.references[18] Pal, K.; Rajasekar, R.; Kang, D. et al. Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear. Mater. Des. 2010, 31, 677-686. https://doi.org/10.1016/j.matdes.2009.08.014
dc.relation.references[19] Kaewsakul, W. Silica-Reinforced Natural Rubber for Low Rolling Resistance, Energy-Saving Tires: Aspects of Mixing, Formulation and Compatibilization. PhD thesis, University of Twente, the Netherlands, 2013.
dc.relation.references[20] Xia, L.; Song, J.; Wang, H.; Kan, Z. Silica Nanoparticles Reinforced Natural Rubber Latex Composites: The Effects of Silica Dimension and Polydispersity on Performance. J. Appl. Polym. Sci., 2019, 136, 47449. https://doi.org/10.1002/app.47449
dc.relation.references[21] Tancharernrat, T.; Rempel, G.; Prasassarakich, P. Preparation of Styrene Butadiene Copolymer-Silica Nanocomposites via Differential Microemulsion Polymerization and NR/SBR–SiO2 Membranes for Pervaporation of Water-Ethanol Mixtures. Chem. Eng. J. 2014, 258, 290-300. https://doi.org/10.1016/j.cej.2014.05.151
dc.relation.references[22] Rubber Nanocomposites: Preparation, Properties, and Applications; Thomas, S., Stephen, R., Eds.; John Wiley & Sons, 2010. https://doi.org/10.1002/9780470823477
dc.relation.references[23] Park, S.; Jin, S.; Kaang, S. Influence of Thermal Treatment of Nano-Scaled Silica on Interfacial Adhesion Properties of the Silica/Rubber Compounding. Mater. Sci. Eng. A. 2005, 398, 137-141. https://doi.org/10.1016/j.msea.2005.03.012
dc.relation.references[24] Chen, Y.; Peng, Z.; Kong, L. et al. Natural Rubber Nanocomposite Reinforced with Nano Silica. Polym. Eng. Sci. 2008, 48, 1674-1677. https://doi.org/10.1002/pen.20997
dc.relation.references[25] Mathew, L.; Narayanankutty, S. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite. J. Appl. Polym. Sci. 2009, 112, 2203-2212. https://doi.org/10.1002/app.29718
dc.relation.references[26] Meera, A.; Said, S.; Grohens, Y. et al. Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 2009, 48, 3410-3416. https://doi.org/10.1021/ie801494s
dc.relation.references[27] Chayan, D.; Kapgate Bharat, P. Preparation and Studies of Nitrile Rubber Nanocomposites with Silane Modified Silica Nanoparticles. Res. J. Recent Sci. 2012, 1, 357-360. http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf
dc.relation.references[28] Yusof, N.; Noguchi, K.; Fukuhara, L. et al. Preparation and Properties of Natural Rubber with Filler Nanomatrix Structure. Colloid Polym. Sci. 2015, 293, 2249-2256. https://doi.org/10.1007/s00396-015-3615-7
dc.relation.references[29] Ahmed, J.; Al-Maamori, M.; Ali, H. Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite. Int. J. Mater. Sci. Appl., 2015, 4, 15-20. https://doi.org/10.11648/j.ijmsa.s.2015040201.14
dc.relation.references[30] Advanced Rubber Composites; Heinrich, G., Ed.; Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-19504-4
dc.relation.references[31] Dileep, P.; Narayanankutty, S. Styrenated Phenol Modified Nanosilica for Improved Thermo-Oxidative and Mechanical Properties of Natural Rubber. Polym. Test., 2020, 82, 106302. https://doi.org/10.1016/j.polymertesting.2019.106302
dc.relation.references[32] Dileep, P.; Narayanankutty, S. A Novel Method for Preparation of Nanosilica from Bamboo Leaves and Its Green Modification as a Multi-Functional Additive in Styrene Butadiene Rubber. Mater. Today Commun. 2020, 24, 100957. https://doi.org/10.1016/j.mtcomm.2020.100957
dc.relation.references[33] Hawleyown, S. Physical Testing of Rubber-Third Edition: By R. P. Brown. Chapman and Hall, London, 1996. 352 pp. ISBN 0-412-60890-1. Polym. Test. 1996, 5, 501-502. https://doi.org/10.1016/0142-9418(96)00024-4
dc.relation.references[34] Ramarad, S.; Khalid, M.; Ratnam, C. et al. Waste Tire Rubber in Polymer Blends: a Review on the Evolution, Properties and Future. Prog. Mater. Sci. 2015, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004
dc.relation.referencesen[1] Rajarao, R.; Farzana, R., Khanna R.; Sahajwalla, V. Synthesis of SiC/Si3N4 Nanocomposite by Using Automotive Waste Tyres as Resource. J. Ind. Eng. Chem. 2015, 29, 35-38. https://doi.org/10.1016/j.jiec.2015.04.006
dc.relation.referencesen[2] Tullo, A. Chemical Companies Hope Their Innovations Can Improve the Environmental Performance of Tires without Sacrificing Safety and Durability. Chem. Eng. News. 2009, 87, 10. https://doi.org/10.1021/cen-v087n046.p010
dc.relation.referencesen[3] Marković, G.; Radovanović, B.; Marinović-Cincović, M.; Budinski-Simendić, J. The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Mater. Manuf. Process. 2009, 24, 1224-1228. https://doi.org/10.1080/10426910902967087
dc.relation.referencesen[4] Paul, D.; Robeson, L. Polymer Nanotechnology: Nanocomposites. Polymer. 2008, 49, 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
dc.relation.referencesen[5] Chawla, V.; Prakash, S.; Sidhu B. State of the Art: Applications of Mechanically Alloyed Nanomaterials – A Review. Mater. Manuf. Process. 2007, 22, 469-473. https://doi.org/10.1080/10426910701235900
dc.relation.referencesen[6] Abdul Salim, Z.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57, 523-539. https://doi.org/10.1080/03602559.2017.1329432
dc.relation.referencesen[7] Bagheri, H.; Hashemipour, H.; Ghader, S. Population Balance Modeling: Application in Nanoparticle Formation Through Rapid Expansion of Supercritical Solution. Comput. Part. Mech. 2019, 6, 721-737. https://doi.org/10.1007/s40571-019-00257-w
dc.relation.referencesen[8] Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on Hydrodynamic and Formation of Nano Particle by RESS Process: The Numerical Study. J. Mol. Liq. 2019, 281, 490-505. https://doi.org/10.1016/j.molliq.2019.02.108
dc.relation.referencesen[9] Bagheri, H.; Mansoori, G.; Hashemipour, H. A Novel Approach to Predict Drugs Solubility in Supercritical Solvents for RESS Process Using Various Cubic Eos-Mixing Rule. J. Mol. Liq. 2018, 261, 174-188. https://doi.org/10.1016/j.molliq.2018.03.081
dc.relation.referencesen[10] Rubber Technologist’s Handbook, Vol. 2; De, S.; Naskar, K.; White, J., Eds.; Smithers Rapra Technology: Shawbury, UK, 2009.
dc.relation.referencesen[11] Ahn, S.; Kim, S.; Kim, B. et al. Mechanical Properties of Silica Nanoparticle Reinforced Poly(ethylene2,6-naphthalate). Macromol. Res., 2004, 12, 293-302. https://doi.org/10.1007/BF03218403
dc.relation.referencesen[12] Ekengwu, I.; Utu, O.; Okafor, C. Nanotechnology in Automotive Industry: The Potential of Graphene. Iconic Res. Eng. J., 2019, 3, 31-37. https://irejournals.com/formatedpaper/1701322.pdf
dc.relation.referencesen[13] Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon. 2020. https://doi.org/10.1007/s12633-020-00792-9
dc.relation.referencesen[14] White, J.; Kim, K. Thermoplastic and Rubber Compounds. Technology and Physical Chemistry; Hanser Publications: Ohio, 2012.
dc.relation.referencesen[15] Bhattacharya, M.; Bhowmick A. Synergy in Carbon Black-Filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45, 6126-6138. https://doi.org/10.1007/s10853-010-4699-6
dc.relation.referencesen[16] Ten Brinke, A. Silica Reinforced Tyre Rubbers. PhD thesis, University of Twente, the Netherlands, 2002.
dc.relation.referencesen[17] Kumbul, A.; Gokturk, E.; Sahmetlioglu, E. Synthesis, Characterization, Thermal Stability and Electrochemical Properties of Ortho-Imine-Functionalized Oligophenol via Enzymatic Oxidative Polycondensation. J. Polym. Res. 2016, 23, 52. https://doi.org/10.1007/s10965-016-0953-1
dc.relation.referencesen[18] Pal, K.; Rajasekar, R.; Kang, D. et al. Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear. Mater. Des. 2010, 31, 677-686. https://doi.org/10.1016/j.matdes.2009.08.014
dc.relation.referencesen[19] Kaewsakul, W. Silica-Reinforced Natural Rubber for Low Rolling Resistance, Energy-Saving Tires: Aspects of Mixing, Formulation and Compatibilization. PhD thesis, University of Twente, the Netherlands, 2013.
dc.relation.referencesen[20] Xia, L.; Song, J.; Wang, H.; Kan, Z. Silica Nanoparticles Reinforced Natural Rubber Latex Composites: The Effects of Silica Dimension and Polydispersity on Performance. J. Appl. Polym. Sci., 2019, 136, 47449. https://doi.org/10.1002/app.47449
dc.relation.referencesen[21] Tancharernrat, T.; Rempel, G.; Prasassarakich, P. Preparation of Styrene Butadiene Copolymer-Silica Nanocomposites via Differential Microemulsion Polymerization and NR/SBR–SiO2 Membranes for Pervaporation of Water-Ethanol Mixtures. Chem. Eng. J. 2014, 258, 290-300. https://doi.org/10.1016/j.cej.2014.05.151
dc.relation.referencesen[22] Rubber Nanocomposites: Preparation, Properties, and Applications; Thomas, S., Stephen, R., Eds.; John Wiley & Sons, 2010. https://doi.org/10.1002/9780470823477
dc.relation.referencesen[23] Park, S.; Jin, S.; Kaang, S. Influence of Thermal Treatment of Nano-Scaled Silica on Interfacial Adhesion Properties of the Silica/Rubber Compounding. Mater. Sci. Eng. A. 2005, 398, 137-141. https://doi.org/10.1016/j.msea.2005.03.012
dc.relation.referencesen[24] Chen, Y.; Peng, Z.; Kong, L. et al. Natural Rubber Nanocomposite Reinforced with Nano Silica. Polym. Eng. Sci. 2008, 48, 1674-1677. https://doi.org/10.1002/pen.20997
dc.relation.referencesen[25] Mathew, L.; Narayanankutty, S. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite. J. Appl. Polym. Sci. 2009, 112, 2203-2212. https://doi.org/10.1002/app.29718
dc.relation.referencesen[26] Meera, A.; Said, S.; Grohens, Y. et al. Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 2009, 48, 3410-3416. https://doi.org/10.1021/ie801494s
dc.relation.referencesen[27] Chayan, D.; Kapgate Bharat, P. Preparation and Studies of Nitrile Rubber Nanocomposites with Silane Modified Silica Nanoparticles. Res. J. Recent Sci. 2012, 1, 357-360. http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf
dc.relation.referencesen[28] Yusof, N.; Noguchi, K.; Fukuhara, L. et al. Preparation and Properties of Natural Rubber with Filler Nanomatrix Structure. Colloid Polym. Sci. 2015, 293, 2249-2256. https://doi.org/10.1007/s00396-015-3615-7
dc.relation.referencesen[29] Ahmed, J.; Al-Maamori, M.; Ali, H. Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite. Int. J. Mater. Sci. Appl., 2015, 4, 15-20. https://doi.org/10.11648/j.ijmsa.s.2015040201.14
dc.relation.referencesen[30] Advanced Rubber Composites; Heinrich, G., Ed.; Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-19504-4
dc.relation.referencesen[31] Dileep, P.; Narayanankutty, S. Styrenated Phenol Modified Nanosilica for Improved Thermo-Oxidative and Mechanical Properties of Natural Rubber. Polym. Test., 2020, 82, 106302. https://doi.org/10.1016/j.polymertesting.2019.106302
dc.relation.referencesen[32] Dileep, P.; Narayanankutty, S. A Novel Method for Preparation of Nanosilica from Bamboo Leaves and Its Green Modification as a Multi-Functional Additive in Styrene Butadiene Rubber. Mater. Today Commun. 2020, 24, 100957. https://doi.org/10.1016/j.mtcomm.2020.100957
dc.relation.referencesen[33] Hawleyown, S. Physical Testing of Rubber-Third Edition: By R. P. Brown. Chapman and Hall, London, 1996. 352 pp. ISBN 0-412-60890-1. Polym. Test. 1996, 5, 501-502. https://doi.org/10.1016/0142-9418(96)00024-4
dc.relation.referencesen[34] Ramarad, S.; Khalid, M.; Ratnam, C. et al. Waste Tire Rubber in Polymer Blends: a Review on the Evolution, Properties and Future. Prog. Mater. Sci. 2015, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004
dc.relation.urihttps://doi.org/10.1016/j.jiec.2015.04.006
dc.relation.urihttps://doi.org/10.1021/cen-v087n046.p010
dc.relation.urihttps://doi.org/10.1080/10426910902967087
dc.relation.urihttps://doi.org/10.1016/j.polymer.2008.04.017
dc.relation.urihttps://doi.org/10.1080/10426910701235900
dc.relation.urihttps://doi.org/10.1080/03602559.2017.1329432
dc.relation.urihttps://doi.org/10.1007/s40571-019-00257-w
dc.relation.urihttps://doi.org/10.1016/j.molliq.2019.02.108
dc.relation.urihttps://doi.org/10.1016/j.molliq.2018.03.081
dc.relation.urihttps://doi.org/10.1007/BF03218403
dc.relation.urihttps://irejournals.com/formatedpaper/1701322.pdf
dc.relation.urihttps://doi.org/10.1007/s12633-020-00792-9
dc.relation.urihttps://doi.org/10.1007/s10853-010-4699-6
dc.relation.urihttps://doi.org/10.1007/s10965-016-0953-1
dc.relation.urihttps://doi.org/10.1016/j.matdes.2009.08.014
dc.relation.urihttps://doi.org/10.1002/app.47449
dc.relation.urihttps://doi.org/10.1016/j.cej.2014.05.151
dc.relation.urihttps://doi.org/10.1002/9780470823477
dc.relation.urihttps://doi.org/10.1016/j.msea.2005.03.012
dc.relation.urihttps://doi.org/10.1002/pen.20997
dc.relation.urihttps://doi.org/10.1002/app.29718
dc.relation.urihttps://doi.org/10.1021/ie801494s
dc.relation.urihttp://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf
dc.relation.urihttps://doi.org/10.1007/s00396-015-3615-7
dc.relation.urihttps://doi.org/10.11648/j.ijmsa.s.2015040201.14
dc.relation.urihttps://doi.org/10.1007/978-3-642-19504-4
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2019.106302
dc.relation.urihttps://doi.org/10.1016/j.mtcomm.2020.100957
dc.relation.urihttps://doi.org/10.1016/0142-9418(96)00024-4
dc.relation.urihttps://doi.org/10.1016/j.pmatsci.2015.02.004
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Dortaj N., Mohebbi A., Bagheri H., Aman-Alikhani, M., Yazdi M. R., 2022
dc.subjectнаповнювач гуми
dc.subjectмеханічні властивості
dc.subjectгідрофільні наночастинки кремнезему
dc.subjectметод змішування розплаву
dc.subjectстійкість до стирання
dc.subjectrubber filler
dc.subjectmechanical properties
dc.subjecthydrophilic silica nanoparticles
dc.subjectmelt mixing method
dc.subjectabrasion resistance
dc.titleEffects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound
dc.title.alternativeВплив наночастинок гідрофільного кремнезему на морфологію та механічні властивості компонентів типових шин
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n1_Dortaj_N-Effects_of_Hydrophilic_Silica_150-158.pdf
Size:
453.46 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n1_Dortaj_N-Effects_of_Hydrophilic_Silica_150-158__COVER.png
Size:
557.95 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: