Removal of Fluoride from Drinking Water Using Protonated Glycerol Diglycidyl Ether Cross-Linked Chitosan Beads
dc.citation.epage | 216 | |
dc.citation.issue | 2 | |
dc.citation.spage | 205 | |
dc.contributor.affiliation | University of Kelaniya | |
dc.contributor.author | Pathirannehe, P. N. S. | |
dc.contributor.author | Fernando, T. D. | |
dc.contributor.author | Rajapakse, C. S. K. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T10:19:11Z | |
dc.date.available | 2024-01-09T10:19:11Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Одержано фізично та хімічно модифікований хітозан та протоновані хітозанові кульки зшиті дигліцидиловим етером (GDCLCB/H+). Характеристику продуктів отримано за допомогою Фур‘є-спектроскопії та скануючої електронної мікроскопії. Встановлено, що оптимальна дефлуоруюча здатність GDCLCB/H+ спостерігається за початкової концентрації йонів флуору 15 мг/л, дозі адсорбенту 0,6 г, часі 30 хв і рН розчину в межах 5-7 за температури 303 ± 2 К. Показано, що результати рівноважної адсорбції добре узгоджуються з моделями ізотерми Ленгмюра та Фрейндліха. З ізотерми Ленгмюра для F- адсорбції визначено максимальну адсорбційну здатність, 2000 мг/кг, що є значно вищою величиною, ніж для немодифікованого хітозану (192,3 мг/кг) та більшості сорбентів на основі хітозану, відомих з літератури. На прикладі зразків води, відібраних в одній з провінцій Шрі-Ланка, показано, що GDCLCB/H+ можна використовувати як ефективний засіб для дефлуорування. | |
dc.description.abstract | In this study, physically and chemically modified chitosan; protonated glycerol diglycidyl ether cross-linked chitosan beads (GDCLCB/H+) were prepared and characterized using FTIR and SEM. The optimum defluoridation capacity (DC) of GDCLCB/H+ was observed at the initial F - ion concentration of 15 mg/l, adsorbent dosage of 0.6 g, contact time of 30 min and pH of the solution was in the range of 5–7 at 303 ± 2 K. The equilibrium adsorption data fitted well with Langmuir and Freundlich isotherm models. The maximum adsorption capacity (q 0), obtained from Langmuir isotherm for Fadsorption was found to be 2000 mg/kg, which was significantly higher than that of unmodified chitosan (192.3 mg/kg) and most of the chitosan-based sorbents reported in the literature. Water samples collected from Medawachchiya, Sri Lanka, were treated with the adsorbents and the results suggested that GDCLCB/H+could be used as an effective defluoridation agent. | |
dc.format.extent | 205-216 | |
dc.format.pages | 12 | |
dc.identifier.citation | Pathirannehe P. N. S. Removal of Fluoride from Drinking Water Using Protonated Glycerol Diglycidyl Ether Cross-Linked Chitosan Beads / P. N. S. Pathirannehe, T. D. Fernando, C. S. K. Rajapakse // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 205–216. | |
dc.identifier.citationen | Pathirannehe P. N. S. Removal of Fluoride from Drinking Water Using Protonated Glycerol Diglycidyl Ether Cross-Linked Chitosan Beads / P. N. S. Pathirannehe, T. D. Fernando, C. S. K. Rajapakse // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 205–216. | |
dc.identifier.doi | doi.org/10.23939/chcht15.02.205 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60728 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (15), 2021 | |
dc.relation.references | [1] Dissanayake C.: J. Nat. Sci. Found. Sri Lanka, 2005, 33, 161. https://doi.org/10.4038/jnsfsr.v33i3.2322 | |
dc.relation.references | [2] Firempong C., Nsiah K., Awunyo-Vitor D., Dongsogo J.: Ghana Med. J., 2013, 47, 16. http://www.ncbi.nlm.nih.gov/pubmed/23661851%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3645181 | |
dc.relation.references | [3] Habuda-Stanić M., Ravančić M., Flanagan A.: Materials, 2014, 7, 6317. https://doi.org/10.3390/ma7096317 | |
dc.relation.references | [4] Gorchev H., Ozolins G.: WHO Chron., 1984, 38, 104. | |
dc.relation.references | [5] Kodama H., Kabay N.: Solid State Ionics, 2001, 141-142, 603. https://doi.org/10.1016/S0167-2738(01)00775-5 | |
dc.relation.references | [6] Khatibikamal V, Torabian A, Janpoor F, Hoshyaripour G.: J. Hazard. Mater, 2010, 179, 276. https://doi.org/10.1016/j.jhazmat.2010.02.089 | |
dc.relation.references | [7] Turner B. et al.: Water Res., 2014, 33, 3395. https://doi.org/10.1021/es0505090 | |
dc.relation.references | [8] Meenakshi, Maheshwari R.: J. Hazard. Mater., 2006, 137, 456. https://doi.org/10.1016/j.jhazmat.2006.02.024 | |
dc.relation.references | [9] Sehn P.: Desalination, 2008, 223, 73. https://doi.org/10.1016/j.desal.2007.02.077 | |
dc.relation.references | [10] Bhatnagar A., Kumar E., Sillanpää M.: Chem. Eng. J., 2011, 171, 811. https://doi.org/10.1016/j.cej.2011.05.028 | |
dc.relation.references | [11] Chakrabortty S., Roy M., Pal P.: Desalination, 2013, 313, 115. https://doi.org/10.1016/j.desal.2012.12.021 | |
dc.relation.references | [12] Owa F.: Int. Lett. Nat. Sci., 2015, 8, 1. https://doi.org/10.18052/www.scipress.com/ilns.8.1 | |
dc.relation.references | [13] Alagumuthu G., Rajan M.: Hemijska Industrija, 2010, 64, 295. https://doi.org/10.2298/hemind100307017a | |
dc.relation.references | [14] Malay DK, Attar S.: Res. J. Chem. Sci., 2011, 1, 68. | |
dc.relation.references | [15] Maliyekkal S., Shukla S., Philip L., Nambi I.: Chem. Eng. J., 2008, 140, 183. https://doi.org/10.1016/j.cej.2007.09.049 | |
dc.relation.references | [16] Sairam Sundaram C., Viswanathan N., Meenakshi S.: Biores. Technol., 2008, 99, 8226. https://doi.org/10.1016/j.biortech.2008.03.012 | |
dc.relation.references | [17] Meenakshi S., Viswanathan N.: J Colloid Interface Sci., 2007, 308, 438. https://doi.org/10.1016/j.jcis.2006.12.032 | |
dc.relation.references | [18] Alagumuthu G., Veeraputhiran V., Venkataraman R.: Hemijska Industrija, 2011, 65, 23. https://doi.org/10.2298/HEMIND100712052A | |
dc.relation.references | [19] Yadav A., Kaushik C., Haritash A. et al.: J. Hazard. Mater., 2006, 128, 289. https://doi.org/10.1016/j.jhazmat.2005.08.006 | |
dc.relation.references | [20] Malakootian M., Moosazadeh M., Yousefi N., Fatehizadeh, A.: African J. Environ. Sci. Technol., 2011, 5, 299. https://doi.org/10.5897/AJEST10.308 | |
dc.relation.references | [21] Chidambaram S., Ramanathan A., Vasudevan S.: Water SA, 2003, 29, 339. http://dx.doi.org/10.4314/wsa.v29i3.4936 | |
dc.relation.references | [22] Vardhan C., Karthikeyan J.: Fifteenth International Water Technology Conference, IWTC-15 2011, Alexandria, Egypt, 2011, I(2), 1. | |
dc.relation.references | [23] Chen N., Zhang Z., Feng C. et al.: Mater. Chem. Phys., 2011, 125, 293. https://doi.org/10.1016/j.matchemphys.2010.09.037 | |
dc.relation.references | [24] Shams M., Nodehi R., Dehghani M. et al.: Fluoride, 2010, 43, 61. http://www.fluorideresearch.org/431/fluoride | |
dc.relation.references | [25] Mohapatra M., Anand S., Mishra B. et al.: J. Environ. Manage., 2009, 91, 67. https://doi.org/10.1016/j.jenvman.2009.08.015 | |
dc.relation.references | [26] Viswanathan N., Meenakshi S.: Appl. Clay Sci., 2010, 48, 607. https://doi.org/10.1016/j.clay.2010.03.012 | |
dc.relation.references | [27] Assaad E., Azzouz A., Nistor D. et al.: Appl. Clay Sci., 2017, 37, 258. https://doi.org/10.1016/j.clay.2007.02.007 | |
dc.relation.references | [28] Mishra D., Tripathy J., Srivastava A. et al.: Carbohyd. Polym., 2008, 74, 632. https://doi.org/10.1016/j.carbpol.2008.04.015 | |
dc.relation.references | [29] Reddy D., Lee S.: Adv. Colloid Interface Sci., 2013, 201-202, 68. https://doi.org/10.1016/j.cis.2013.10.002 | |
dc.relation.references | [30] Muzzarelli R.., Weckx M., Filippini O., Sigon F.: Carbohyd. Polym., 1989, 11, 293. https://doi.org/10.1016/0144-8617(89)90004-0 | |
dc.relation.references | [31] Liu X., Zhang L.: Powder Technol., 2015, 277, 112. https://doi.org/10.1016/j.powtec.2015.02.055 | |
dc.relation.references | [32] Rajeswari A., Amalraj A., Pius A.: J. Environ. Chem. Eng., 2015, 3, 2331. https://doi.org/10.1016/j.jece.2015.08.022 | |
dc.relation.references | [33] Bozorgpour F., Ramandi H., Jafari P. et al.: Int. J. Biol. Macromol, 2016, 93, 557. https://doi.org/10.1016/j.ijbiomac.2016.09.015 | |
dc.relation.references | [34] Menkouchi Sahli M., Annouar S., Tahaikt M. et al.: Desalination, 2007, 212, 37. https://doi.org/10.1016/j.desal.2006.09.018 | |
dc.relation.references | [35] Kamble S., Jagtap S., Labhsetwar N. et al.:Chem. Eng. J., 2007, 129, 173. https://doi.org/10.1016/j.cej.2006.10.032 | |
dc.relation.references | [36]Jagtap S., Yenkie M., Labhsetwar N., Rayalu S.: Micropor. Mesopor. Mat., 2011,142, 454. https://doi.org/10.1016/j.micromeso.2010.12.028 | |
dc.relation.references | [37] Viswanathan N., Sundaram C., Meenakshi S.: J. Hazard. Mater., 2009 ,161, 423. https://doi.org/10.1016/j.jhazmat.2008.03.115 | |
dc.relation.references | [38] Queiroz M., Melo K., Sabry D. et al.: Marine Drugs, 2015, 13, 141. https://doi.org/10.3390/md13010141 | |
dc.relation.references | [39] Lim S., Hudson S.: Carbohyd. Res., 2004, 339, 313. https://doi.org/10.1016/j.carres.2003.10.024 | |
dc.relation.references | [40] Patnaik S., Mishra P., Nayak R., Giri A.: J. Anal. Bioanal. Tech., 2016, 7, 326. https://doi.org/10.4172/2155-9872.1000326 | |
dc.relation.references | [41] Rajapakse C., Martínez A., Naoulou B. et al.: Inorg. Chem., 2009, 48, 1122. https://doi.org/10.1021/ic802220w | |
dc.relation.references | [42] Viswanathan N., Meenakshi S.: J. Colloid Interf. Sci., 2008, 322, 375. https://doi.org/10.1016/j.jcis.2008.03.007 | |
dc.relation.references | [43] Swenson H., Stadie N.: Langmuir, 2019, 35, 5409. https://doi.org/10.1021/acs.langmuir.9b00154 | |
dc.relation.references | [44] Saadi R., Saadi Z., Fazaeli R., Fard N.: Korean J. Chem. Eng., 2015, 32, 787. https://doi.org/10.1007/s11814-015-0053-7 | |
dc.relation.references | [45] Swain S., Dey R., Islam M. et al.: Separ. Sci. Technol., 2009, 44, 2096. https://doi.org/10.1080/01496390902881212 | |
dc.relation.references | [46] Viswanathan N., Sundaram C. S., Meenakshi S.: Colloid Surface B, 2009, 68, 48. https://doi.org/10.1016/j.colsurfb.2008.09.009 | |
dc.relation.references | [47] Sri Lanka Standards for potable water – SLS 614: 2013. https://www.slsi.lk/images/downloads/other/accredited_tests_1.pdf | |
dc.relation.references | [48] Pontius F.: J. Am. Water Works Assoc., 2003, 95, 57. https://doi.org/10.1002/j.1551-8833.2003.tb10314.x | |
dc.relation.referencesen | [1] Dissanayake C., J. Nat. Sci. Found. Sri Lanka, 2005, 33, 161. https://doi.org/10.4038/jnsfsr.v33i3.2322 | |
dc.relation.referencesen | [2] Firempong C., Nsiah K., Awunyo-Vitor D., Dongsogo J., Ghana Med. J., 2013, 47, 16. http://www.ncbi.nlm.nih.gov/pubmed/23661851%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3645181 | |
dc.relation.referencesen | [3] Habuda-Stanić M., Ravančić M., Flanagan A., Materials, 2014, 7, 6317. https://doi.org/10.3390/ma7096317 | |
dc.relation.referencesen | [4] Gorchev H., Ozolins G., WHO Chron., 1984, 38, 104. | |
dc.relation.referencesen | [5] Kodama H., Kabay N., Solid State Ionics, 2001, 141-142, 603. https://doi.org/10.1016/S0167-2738(01)00775-5 | |
dc.relation.referencesen | [6] Khatibikamal V, Torabian A, Janpoor F, Hoshyaripour G., J. Hazard. Mater, 2010, 179, 276. https://doi.org/10.1016/j.jhazmat.2010.02.089 | |
dc.relation.referencesen | [7] Turner B. et al., Water Res., 2014, 33, 3395. https://doi.org/10.1021/es0505090 | |
dc.relation.referencesen | [8] Meenakshi, Maheshwari R., J. Hazard. Mater., 2006, 137, 456. https://doi.org/10.1016/j.jhazmat.2006.02.024 | |
dc.relation.referencesen | [9] Sehn P., Desalination, 2008, 223, 73. https://doi.org/10.1016/j.desal.2007.02.077 | |
dc.relation.referencesen | [10] Bhatnagar A., Kumar E., Sillanpää M., Chem. Eng. J., 2011, 171, 811. https://doi.org/10.1016/j.cej.2011.05.028 | |
dc.relation.referencesen | [11] Chakrabortty S., Roy M., Pal P., Desalination, 2013, 313, 115. https://doi.org/10.1016/j.desal.2012.12.021 | |
dc.relation.referencesen | [12] Owa F., Int. Lett. Nat. Sci., 2015, 8, 1. https://doi.org/10.18052/www.scipress.com/ilns.8.1 | |
dc.relation.referencesen | [13] Alagumuthu G., Rajan M., Hemijska Industrija, 2010, 64, 295. https://doi.org/10.2298/hemind100307017a | |
dc.relation.referencesen | [14] Malay DK, Attar S., Res. J. Chem. Sci., 2011, 1, 68. | |
dc.relation.referencesen | [15] Maliyekkal S., Shukla S., Philip L., Nambi I., Chem. Eng. J., 2008, 140, 183. https://doi.org/10.1016/j.cej.2007.09.049 | |
dc.relation.referencesen | [16] Sairam Sundaram C., Viswanathan N., Meenakshi S., Biores. Technol., 2008, 99, 8226. https://doi.org/10.1016/j.biortech.2008.03.012 | |
dc.relation.referencesen | [17] Meenakshi S., Viswanathan N., J Colloid Interface Sci., 2007, 308, 438. https://doi.org/10.1016/j.jcis.2006.12.032 | |
dc.relation.referencesen | [18] Alagumuthu G., Veeraputhiran V., Venkataraman R., Hemijska Industrija, 2011, 65, 23. https://doi.org/10.2298/HEMIND100712052A | |
dc.relation.referencesen | [19] Yadav A., Kaushik C., Haritash A. et al., J. Hazard. Mater., 2006, 128, 289. https://doi.org/10.1016/j.jhazmat.2005.08.006 | |
dc.relation.referencesen | [20] Malakootian M., Moosazadeh M., Yousefi N., Fatehizadeh, A., African J. Environ. Sci. Technol., 2011, 5, 299. https://doi.org/10.5897/AJEST10.308 | |
dc.relation.referencesen | [21] Chidambaram S., Ramanathan A., Vasudevan S., Water SA, 2003, 29, 339. http://dx.doi.org/10.4314/wsa.v29i3.4936 | |
dc.relation.referencesen | [22] Vardhan C., Karthikeyan J., Fifteenth International Water Technology Conference, IWTC-15 2011, Alexandria, Egypt, 2011, I(2), 1. | |
dc.relation.referencesen | [23] Chen N., Zhang Z., Feng C. et al., Mater. Chem. Phys., 2011, 125, 293. https://doi.org/10.1016/j.matchemphys.2010.09.037 | |
dc.relation.referencesen | [24] Shams M., Nodehi R., Dehghani M. et al., Fluoride, 2010, 43, 61. http://www.fluorideresearch.org/431/fluoride | |
dc.relation.referencesen | [25] Mohapatra M., Anand S., Mishra B. et al., J. Environ. Manage., 2009, 91, 67. https://doi.org/10.1016/j.jenvman.2009.08.015 | |
dc.relation.referencesen | [26] Viswanathan N., Meenakshi S., Appl. Clay Sci., 2010, 48, 607. https://doi.org/10.1016/j.clay.2010.03.012 | |
dc.relation.referencesen | [27] Assaad E., Azzouz A., Nistor D. et al., Appl. Clay Sci., 2017, 37, 258. https://doi.org/10.1016/j.clay.2007.02.007 | |
dc.relation.referencesen | [28] Mishra D., Tripathy J., Srivastava A. et al., Carbohyd. Polym., 2008, 74, 632. https://doi.org/10.1016/j.carbpol.2008.04.015 | |
dc.relation.referencesen | [29] Reddy D., Lee S., Adv. Colloid Interface Sci., 2013, 201-202, 68. https://doi.org/10.1016/j.cis.2013.10.002 | |
dc.relation.referencesen | [30] Muzzarelli R.., Weckx M., Filippini O., Sigon F., Carbohyd. Polym., 1989, 11, 293. https://doi.org/10.1016/0144-8617(89)90004-0 | |
dc.relation.referencesen | [31] Liu X., Zhang L., Powder Technol., 2015, 277, 112. https://doi.org/10.1016/j.powtec.2015.02.055 | |
dc.relation.referencesen | [32] Rajeswari A., Amalraj A., Pius A., J. Environ. Chem. Eng., 2015, 3, 2331. https://doi.org/10.1016/j.jece.2015.08.022 | |
dc.relation.referencesen | [33] Bozorgpour F., Ramandi H., Jafari P. et al., Int. J. Biol. Macromol, 2016, 93, 557. https://doi.org/10.1016/j.ijbiomac.2016.09.015 | |
dc.relation.referencesen | [34] Menkouchi Sahli M., Annouar S., Tahaikt M. et al., Desalination, 2007, 212, 37. https://doi.org/10.1016/j.desal.2006.09.018 | |
dc.relation.referencesen | [35] Kamble S., Jagtap S., Labhsetwar N. et al.:Chem. Eng. J., 2007, 129, 173. https://doi.org/10.1016/j.cej.2006.10.032 | |
dc.relation.referencesen | [36]Jagtap S., Yenkie M., Labhsetwar N., Rayalu S., Micropor. Mesopor. Mat., 2011,142, 454. https://doi.org/10.1016/j.micromeso.2010.12.028 | |
dc.relation.referencesen | [37] Viswanathan N., Sundaram C., Meenakshi S., J. Hazard. Mater., 2009 ,161, 423. https://doi.org/10.1016/j.jhazmat.2008.03.115 | |
dc.relation.referencesen | [38] Queiroz M., Melo K., Sabry D. et al., Marine Drugs, 2015, 13, 141. https://doi.org/10.3390/md13010141 | |
dc.relation.referencesen | [39] Lim S., Hudson S., Carbohyd. Res., 2004, 339, 313. https://doi.org/10.1016/j.carres.2003.10.024 | |
dc.relation.referencesen | [40] Patnaik S., Mishra P., Nayak R., Giri A., J. Anal. Bioanal. Tech., 2016, 7, 326. https://doi.org/10.4172/2155-9872.1000326 | |
dc.relation.referencesen | [41] Rajapakse C., Martínez A., Naoulou B. et al., Inorg. Chem., 2009, 48, 1122. https://doi.org/10.1021/ic802220w | |
dc.relation.referencesen | [42] Viswanathan N., Meenakshi S., J. Colloid Interf. Sci., 2008, 322, 375. https://doi.org/10.1016/j.jcis.2008.03.007 | |
dc.relation.referencesen | [43] Swenson H., Stadie N., Langmuir, 2019, 35, 5409. https://doi.org/10.1021/acs.langmuir.9b00154 | |
dc.relation.referencesen | [44] Saadi R., Saadi Z., Fazaeli R., Fard N., Korean J. Chem. Eng., 2015, 32, 787. https://doi.org/10.1007/s11814-015-0053-7 | |
dc.relation.referencesen | [45] Swain S., Dey R., Islam M. et al., Separ. Sci. Technol., 2009, 44, 2096. https://doi.org/10.1080/01496390902881212 | |
dc.relation.referencesen | [46] Viswanathan N., Sundaram C. S., Meenakshi S., Colloid Surface B, 2009, 68, 48. https://doi.org/10.1016/j.colsurfb.2008.09.009 | |
dc.relation.referencesen | [47] Sri Lanka Standards for potable water – SLS 614: 2013. https://www.slsi.lk/images/downloads/other/accredited_tests_1.pdf | |
dc.relation.referencesen | [48] Pontius F., J. Am. Water Works Assoc., 2003, 95, 57. https://doi.org/10.1002/j.1551-8833.2003.tb10314.x | |
dc.relation.uri | https://doi.org/10.4038/jnsfsr.v33i3.2322 | |
dc.relation.uri | http://www.ncbi.nlm.nih.gov/pubmed/23661851%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3645181 | |
dc.relation.uri | https://doi.org/10.3390/ma7096317 | |
dc.relation.uri | https://doi.org/10.1016/S0167-2738(01)00775-5 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2010.02.089 | |
dc.relation.uri | https://doi.org/10.1021/es0505090 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2006.02.024 | |
dc.relation.uri | https://doi.org/10.1016/j.desal.2007.02.077 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2011.05.028 | |
dc.relation.uri | https://doi.org/10.1016/j.desal.2012.12.021 | |
dc.relation.uri | https://doi.org/10.18052/www.scipress.com/ilns.8.1 | |
dc.relation.uri | https://doi.org/10.2298/hemind100307017a | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2007.09.049 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2008.03.012 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2006.12.032 | |
dc.relation.uri | https://doi.org/10.2298/HEMIND100712052A | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2005.08.006 | |
dc.relation.uri | https://doi.org/10.5897/AJEST10.308 | |
dc.relation.uri | http://dx.doi.org/10.4314/wsa.v29i3.4936 | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2010.09.037 | |
dc.relation.uri | http://www.fluorideresearch.org/431/fluoride | |
dc.relation.uri | https://doi.org/10.1016/j.jenvman.2009.08.015 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2010.03.012 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2007.02.007 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2008.04.015 | |
dc.relation.uri | https://doi.org/10.1016/j.cis.2013.10.002 | |
dc.relation.uri | https://doi.org/10.1016/0144-8617(89)90004-0 | |
dc.relation.uri | https://doi.org/10.1016/j.powtec.2015.02.055 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2015.08.022 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2016.09.015 | |
dc.relation.uri | https://doi.org/10.1016/j.desal.2006.09.018 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2006.10.032 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2010.12.028 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2008.03.115 | |
dc.relation.uri | https://doi.org/10.3390/md13010141 | |
dc.relation.uri | https://doi.org/10.1016/j.carres.2003.10.024 | |
dc.relation.uri | https://doi.org/10.4172/2155-9872.1000326 | |
dc.relation.uri | https://doi.org/10.1021/ic802220w | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2008.03.007 | |
dc.relation.uri | https://doi.org/10.1021/acs.langmuir.9b00154 | |
dc.relation.uri | https://doi.org/10.1007/s11814-015-0053-7 | |
dc.relation.uri | https://doi.org/10.1080/01496390902881212 | |
dc.relation.uri | https://doi.org/10.1016/j.colsurfb.2008.09.009 | |
dc.relation.uri | https://www.slsi.lk/images/downloads/other/accredited_tests_1.pdf | |
dc.relation.uri | https://doi.org/10.1002/j.1551-8833.2003.tb10314.x | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Pathirannehe PNS, Fernando TD, Rajapakse CSK, 2021 | |
dc.subject | дефлуоруюча здатність | |
dc.subject | флуор | |
dc.subject | GDCLCB/H+ | |
dc.subject | defluoridation capacity | |
dc.subject | fluoride | |
dc.subject | GDCLCB/H+ | |
dc.title | Removal of Fluoride from Drinking Water Using Protonated Glycerol Diglycidyl Ether Cross-Linked Chitosan Beads | |
dc.title.alternative | Видалення флуору з питної води з використанням протонованих хітозанових кульок зшитих дигліцидиловим етером | |
dc.type | Article |
Files
License bundle
1 - 1 of 1