Врахування перерозподілу навантаження між відновлюваними комунікаційними каналами системи із трьох з’єднаних трикутником ІоТ-пристроїв
dc.citation.epage | 49 | |
dc.citation.issue | 1 | |
dc.citation.spage | 42 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Щербовських, С. | |
dc.contributor.author | Стефанович, Т. | |
dc.contributor.author | Shcherbovskykh, S. | |
dc.contributor.author | Stefanovych, T. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2021-01-19T09:50:03Z | |
dc.date.available | 2021-01-19T09:50:03Z | |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.description.abstract | Сформовано k-термінальне динамічне дерево відмов для системи з трьох IoT-пристроїв, з’єднаних трикутником. На основі дерева відмов згенеровано діаграму станів і переходів. Запропонована модель адекватно враховує ефекти перерозподілу навантаження між відновлюваними каналами зв’язку. На основі методу Монте-Карло розраховано характеристики доступності та характеристики причин відмов, проведено порівняльний аналіз отриманих результатів. | |
dc.description.abstract | The k-terminal dynamic fault trees for a system of three IoT-devices connected by a triangle are formed. Based on the fault tree a state and transition diagram is generated. This model can take into account adequately) load-sharing effects between renewable communication channels. Availability characteristics and failure causes characteristics are calculated based on Monte-Carlo simulation and comparative analysis for obtained results is done. | |
dc.format.extent | 42-49 | |
dc.format.pages | 8 | |
dc.identifier.citation | Щербовських С. Врахування перерозподілу навантаження між відновлюваними комунікаційними каналами системи із трьох з’єднаних трикутником ІоТ-пристроїв / С. Щербовських, Т. Стефанович // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 42–49. | |
dc.identifier.citationen | Shcherbovskykh S. Load-sharing accounting between the renewable communication channels of the system of three IoT-devices connected by a triangle / S. Shcherbovskykh, T. Stefanovych // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 42–49. | |
dc.identifier.doi | doi.org/10.23939/cds2019.01.042 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55846 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (1), 2019 | |
dc.relation.references | 1. Kolisnyk M., Kharchenko V. A. Markov Model of IoT System Availability Considering DDoS Attacks, Patching and Energy Modes. Green IT Engineering: Social, Business and Industrial Application. 2019, Vol. 171. pр. 185–207. | |
dc.relation.references | 2. Ramupillai Sudhesh, Savitha P. Transient behaviour of three-heterogeneous servers queue with system disaster and server repair. RAIRO-Oper. Res. 2017, Vol. 51, No. 4. рp. 965–983. | |
dc.relation.references | 3. Yan-Hui Lin, Yan-Fu Li, Enrico Zio. A Reliability Assessment Framework for Systems With Degradation Dependency by Combining Binary Decision Diagrams and Monte Carlo Simulation. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2016, Vol. 46, No. 11, pр. 1556–1564. | |
dc.relation.references | 4. Peng Zhang, Ka Wing Chan. Reliability Evaluation of Phasor Measurement Unit Using Monte Carlo Dynamic Fault Tree Method. IEEE Transactions on Smart Grid. 2012, Vol. 3, No. 3, pр. 1235–1243. | |
dc.relation.references | 5. Kosobutskyy P., Lobur M., Shcherbovskykh S., Stefanovych T. Overlap estimation of two normally distributed systems based on Monte-Carlo simulation. Perspective Technologies and Methods in MEMS Design (MEMSTECH’2018), 2018, рp. 77–80. | |
dc.relation.references | 6. Shcherbovskykh S., Stefanovych T. Reliability model developing for protective fittings taking into account load-sharing effect. EasternEuropean Journal of Enterprise Technologies. 2015, Vol. 1, No. 3(73), pр. 37–44. | |
dc.relation.references | 7. Stefanovych T., Shcherbovskykh S. Accounting of switching device errors for system with sliding redundancy based on dynamic fault tree. Technology audit and production reserves. 2018, Vol. 4, No. 2(42), рp. 24–30. | |
dc.relation.referencesen | 1. Kolisnyk M., Kharchenko V. A. Markov Model of IoT System Availability Considering DDoS Attacks, Patching and Energy Modes. Green IT Engineering: Social, Business and Industrial Application. 2019, Vol. 171. pr. 185–207. | |
dc.relation.referencesen | 2. Ramupillai Sudhesh, Savitha P. Transient behaviour of three-heterogeneous servers queue with system disaster and server repair. RAIRO-Oper. Res. 2017, Vol. 51, No. 4. rp. 965–983. | |
dc.relation.referencesen | 3. Yan-Hui Lin, Yan-Fu Li, Enrico Zio. A Reliability Assessment Framework for Systems With Degradation Dependency by Combining Binary Decision Diagrams and Monte Carlo Simulation. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2016, Vol. 46, No. 11, pr. 1556–1564. | |
dc.relation.referencesen | 4. Peng Zhang, Ka Wing Chan. Reliability Evaluation of Phasor Measurement Unit Using Monte Carlo Dynamic Fault Tree Method. IEEE Transactions on Smart Grid. 2012, Vol. 3, No. 3, pr. 1235–1243. | |
dc.relation.referencesen | 5. Kosobutskyy P., Lobur M., Shcherbovskykh S., Stefanovych T. Overlap estimation of two normally distributed systems based on Monte-Carlo simulation. Perspective Technologies and Methods in MEMS Design (MEMSTECH’2018), 2018, rp. 77–80. | |
dc.relation.referencesen | 6. Shcherbovskykh S., Stefanovych T. Reliability model developing for protective fittings taking into account load-sharing effect. EasternEuropean Journal of Enterprise Technologies. 2015, Vol. 1, No. 3(73), pr. 37–44. | |
dc.relation.referencesen | 7. Stefanovych T., Shcherbovskykh S. Accounting of switching device errors for system with sliding redundancy based on dynamic fault tree. Technology audit and production reserves. 2018, Vol. 4, No. 2(42), rp. 24–30. | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Щербовських C., Стефанович Т., 2019 | |
dc.subject | кібербезпека | |
dc.subject | інтернет речей | |
dc.subject | доступність | |
dc.subject | динамічне дерево відмов | |
dc.subject | моделювання методом Монте-Карло | |
dc.subject | перерозподіл навантаження | |
dc.subject | cybersecurity | |
dc.subject | Internet of Things | |
dc.subject | availability | |
dc.subject | dynamic fault tree | |
dc.subject | Monte-Carlo simulation | |
dc.subject | load-sharing | |
dc.title | Врахування перерозподілу навантаження між відновлюваними комунікаційними каналами системи із трьох з’єднаних трикутником ІоТ-пристроїв | |
dc.title.alternative | Load-sharing accounting between the renewable communication channels of the system of three IoT-devices connected by a triangle | |
dc.type | Article |
Files
License bundle
1 - 1 of 1