Advanced Research on the Production, Transportation and Processing of High Waxy Oil. A Review

dc.citation.epage269
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage258
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLutsk National Technical University
dc.contributor.affiliationDanylo Halytsky Lviv National Medical University
dc.contributor.authorTopilnytskyy, Petro
dc.contributor.authorShyshchak, Oleh
dc.contributor.authorTkachuk, Valentyna
dc.contributor.authorPalianytsia, Liubov
dc.contributor.authorChupashko, Olesya
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:47Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractСвітовий попит на сиру нафту значно зріс за останні два десятиліття. Однак, видобуток звичайної легкої сирої нафти зменшується, і все більше розробляються поклади важкої нафти, включаючи високопарафінисті, що породжує нові технологічні проблеми на кожному рівні процесу, від видобутку до транспортування та перероблення. Серед різноманітних проблем основною є відкладення парафіну. Оскільки витрати на технічне обслуговування, ремонт і досягнення необхідних низькотемпературних властивостей товарних нафтопродуктів дуже високі, вирішення зазначеної проблеми стає критичним. У роботі розглянуто наявні проблеми видобутку, транспортування і перероблення високопарафінистих нафт, а також проаналізовано методи їхнього вирішення.
dc.description.abstractGlobal demand for crude oil has grown significantly over the past two decades. However, conventional light crude oil production is declining, and more and more deposits of heavy and waxy oil, including high waxy ones, are being developed, creating new technological challenges at every level of the process, from production to transportation and refining. Among the various problems, the main one is wax deposition. Since the costs of maintenance, repair, and achieving the required low-temperature properties of commercial oil products are very high, solving this problem becomes critical. The paper discusses the existing problems of production, transportation, and refining of waxy crude oil and analyzes the methods of their solution.
dc.format.extent258-269
dc.format.pages12
dc.identifier.citationAdvanced Research on the Production, Transportation and Processing of High Waxy Oil. A Review / Petro Topilnytskyy, Oleh Shyshchak, Valentyna Tkachuk, Liubov Palianytsia, Olesya Chupashko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 258–269.
dc.identifier.citationenAdvanced Research on the Production, Transportation and Processing of High Waxy Oil. A Review / Petro Topilnytskyy, Oleh Shyshchak, Valentyna Tkachuk, Liubov Palianytsia, Olesya Chupashko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 258–269.
dc.identifier.doidoi.org/10.23939/chcht18.02.258
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111788
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Yarmola, T; Topilnytskyy, P.; Romanchuk, V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17, 195–202. https://doi.org/10.23939/chcht17.01.195
dc.relation.references[2] Yarmola, T.V.; Topilnytskyy, P.I.; Skorokhoda V.J.; Korchak, B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 2023(1), 40–49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
dc.relation.references[3] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem Chem Technol. 2022; 16, 461–468. https://doi.org/10.23939/chcht16.03.461
dc.relation.references[4] Chen, X.; Hou, L.; Wei, X.; Bedrov, D. Transport Properties of Waxy Crude Oil: A Molecular Dynamics Simulation Study. CS Omega 2020, 5, 18557–18564. https://doi.org/10.1021/acsomega.0c00070
dc.relation.references[5] Rehan, M.; Nizami A.-S.; Taylan, O.; Al-Sasi B.O. et al. Determination of Wax Content in Crude Oil. Pet. Sci. Technol. 2016, 34, 799–804. https://doi.org/10.1080/10916466.2016.1169287
dc.relation.references[6] Chala, G.T.; Sulaiman, S.A.; Japper-Jaafar, A. Flow Start-Up and Transportation of Waxy Crude Oil in Pipelines-A Review. J. Non-Newton. Fluid Mech., 2018, 251, 69–87. https://doi.org/10.1016/j.jnnfm.2017.11.008
dc.relation.references[7] Vinay, G.; Bhaskoro, P.T.; Hénaut, I.; Sariman, M.Z.; Anuar, A.; Shafian, S.R.M. A Methodology to Investigate Factors Governing the Restart Pressure of a Malaysian Waxy Crude Oil Pipeline. J. Pet. Sci. Eng. Part E, 2022, 208, 109785. https://doi.org/10.1016/j.petrol.2021.109785
dc.relation.references[8] López, D.; Ríos, A.A.; Marín, J.D.; Zabala, R.D.; Rincon, J.A.; Lopera, S.H.; Franco, C.A.; Cortés, F.B. SiO2-Based Nanofluids for the Inhibition of Wax Precipitation in Production Pipelines. ACS Omega 2023, 8(37), 33289–33298. https://doi.org/10.1021/acsomega.3c00802. PMID: 37744863; PMCID: PMC10515383
dc.relation.references[9] Hao, L.Z.; Al-Salim, H.S.; Ridzuan, N. A Review of the Mechanism and Role of Wax Inhibitors. Pertanika J. Sci. Technol. 2019, 27(1), 499–526.
dc.relation.references[10] Sousa, A.M.; Ribeiro, T.P.; Pereira, M.J.; Matos H.A. Review of the Economic and Environmental Impacts of Producing Waxy Crude Oils. Energies 2023, 16(1), 120. https://doi.org/10.3390/en16010120
dc.relation.references[11] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. http://hdl.handle.net/10454/17283
dc.relation.references[12] Waxy Crude Oil Market Report 2022. Waxy Crude Oil Market Report 2022. https://www.businessresearchinsights.com/market-reports/waxy-crude-oil-market-100432
dc.relation.references[13] Biletskyy, V. (Ed.). Mala Hirnycha Encyclopedia, vol. 2; Donbas, 2007.
dc.relation.references[14] Mykhailov, V.A.; Karpenko, O.M.; Kurylo, M.M. et al. Horiuchi Korysni Kopalyny Ukrainy ta Yikhnia Heoloho-Ekonomichna Otsinka; Kyivskyi Universytet, 2018.
dc.relation.references[15] de Oliveira, M.; Vieira, L.; Miranda, L.; Miranda, D.; Marques, L.C.C. On the Influence of Micro- and Macro-Cristalline Waxs on the Physical and Rheological Properties of Crude Oil and Organic Solvents. Chem.Сhem. Technol. 2016, 10, 451–458. https://doi.org/10.23939/chcht10.04.451
dc.relation.references[16] Serediuk, V.D. Laboratorni Doslidzhennia z Vykorystannia Reahentu Tvin 80 dlia Zapobihannia i Zmenshennia Asfaltenosmoloparafinovykh Vidkladiv u Naftovykh Sverdlovynakh. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch 2008, 2, 43–47.
dc.relation.references[17] Ragunathan, T.; Husin, H.; Wood, C.D. Wax Formation Mechanisms, Wax Chemical Inhibitors and Factors Affecting Chemical Inhibition. Appl. Sci. 2020, 10, 479. https://doi.org/10.3390/app10020479
dc.relation.references[18] Olajire, A.A. Review of Wax Deposition in Subsea Oil Pipeline Systems and Mitigation Technologies in the Petroleum Industry. Chem. Eng. J. Adv. 2021, 6, 100104. https://doi.org/10.1016/j.ceja.2021.100104
dc.relation.references[19] Pedersen, K. S.; Rønningsen, H. P. Influence of Wax Inhibitors on Wax Appearance Temperature, Pour Point, and Viscosity of Waxy Crude Oils. Energy Fuels 2003, 17, 321– 328, https://doi.org/10.1021/ef020142+
dc.relation.references[20] Kök, M.V.; Varfolomeev, M.A.; Nurgaliev, D.K. Wax Appearance Temperature (WAT) Determinations of Different Origin Crude Oils by Differential Scanning Calorimetry. J. Pet. Sci. Eng. 2018, 168, 542–545. https://doi.org/10.1016/j.petrol.2018.05.045
dc.relation.references[21] Behbahani, T.J.; Beigi, A.A.M.; Taheri, Z.; Ghanbari, B. Investigation of Wax Precipitation in Crude Oil: Experimental and Modeling. Petroleum 2015, 1, 223–230. https://doi.org/10.1016/j.petlm.2015.07.007
dc.relation.references[22] Mansoori, A. Wax/Wax and Waxy Crude Oil: The Role of Temperature on Heavy Organics Deposition from Petroleum Fluids, 2009. [Online]. https://mansoori.people.uic.edu/Wax.and.Waxy.Crude_html (accessed 2023-11-21).
dc.relation.references[23] Makwashi, N.; Zhao, D.; Abdulkadir, M.; Ahmed, T.; Muhammad, I. Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment. J.Pet. Sci. Eng. 2021, 204, 108734. https://doi.org/10.1016/j.petrol.2021.108734
dc.relation.references[24] Lira-Galeana, C.; Hammami, A. Wax Precipitation from Petroleum Fluids: A Review. In The, F.Y.; Chilingarian, G.V. (Eds.), Developments in Petroleum Science; Elsevier 2000, pp. 557–608. https://doi.org/10.1016/S0376-7361(09)70292-4
dc.relation.references[25] Pu, H.; Ai, M.; Miao, Q.; Yan, F. (2014). The Structural Characteristics of Low-Temperature Waxy Crude. Pet. Sci. Technol. 2014, 32, 646–653. https://doi.org/10.1080/10916466.2013.862267
dc.relation.references[26] Misra, S.; Baruah, S.; Singh, K. Wax Problems in Crude Oil Production and Transportation: A Review. SPE Prod. Facil. 1995, 10, 50–54. https://doi.org/10.2118/28181-PA
dc.relation.references[27] Garcia, M.; Urbina, A. Effect of Crude Oil Composition and Blending on Flowing Properties. Pet. Sci. Technol. 2003, 21, 863–878. https://doi.org/10.1081/LFT-120017454
dc.relation.references[28] Тarantino, G.B.; Vieira, L.C.; Pinheiro, S.B.; Mattedi, S.; Santos, L.C.L.; Pires, C.A.M.; Góis, L.M.N.; Santos, P.C.S. Characterization and Evaluation of Waxy Crude Oil Flow. Braz. J. Chem. Eng. 2016, 33, 1063– 1071. https://doi.org/10.1590/0104-6632.20160334s20150103
dc.relation.references[29] Olayiwola, S.O.; Dejam, M. Interfacial Energy for Solutions of Nanoparticles, Surfactants, and Electrolytes. AIChE J. 2020, 66, e1689. https://doi.org/10.1002/aic.16891
dc.relation.references[30] Olayiwola, S.O.; Dejam, M. Experimental Study on the Viscosity Behavior of Silica Nanofluids With Different Ions of Electrolytes. Ind. Eng. Chem. Res. 2020, 59, 3575–3583. https://doi.org/10.1021/acs.iecr.9b06275
dc.relation.references[31] Liu, J.; Zhao, Y. P.; Ren, S. L. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy Fuels 2015, 29, 1233– 1242, https://doi.org/10.1021/ef5019737
dc.relation.references[32] Yang, J.; Lu, Y., Daraboina, N.; Sarica, C. Wax Deposition Mechanisms: Is the Current Description Sufficient? Fuel 2020, 275, 17937. https://doi.org/10.1016/j.fuel.2020.117937
dc.relation.references[33] Melnyk, A.P..; Kryvulia, S.V.; Malik, S.G.; Dehtiarov, D.O. Doslidzhennia Vplyvu Reahentiv na Znyzhennia Temperatury Zastyhannia Nafty. Naftohazova Haluz Ukrainy 2015, 6, 18–21.
dc.relation.references[34] Gabayan, R.C.M.; Sulaimon, A.A.; Jufar, S.R. Application of Bio-Derived Alternatives for the Assured Flow of Waxy Crude Oil: A Review. Energies 2023, 16(9), 3652. https://doi.org/10.3390/en16093652
dc.relation.references[35] Kiyingi, W.; Guo, J.; Xiong, R.; Su, L.; Yang, X.; Zhang, S. (2022). Crude Oil Wax: A Review on Formation, Experimentation, Prediction, and Remediation Techniques. Pet. Sci. 2022, 19, 2343-2357. https://doi.org/10.1016/j.petsci.2022.08.008
dc.relation.references[36] El-Dalatony, M.M.; Jeon, B-H.; Salama, E-S.; Eraky, M.; Kim, W.B.; Wang, J.; Ahn, T. Occurrence and Characterization of Wax Wax Formed in Developing Wells and Pipelines. Energies 2019, 12(6), 967. https://doi.org/10.3390/en12060967
dc.relation.references[37] Thota, S.T.; Onyeanuna, C.C. Mitigation of Wax in Oil Pipelines. Int. j. Eng. Res. Rev. 2016, 4, 39–47.
dc.relation.references[38] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Al-Shehri, D.; Al-Nakhli, A. R.; Bataweel, M. A. Gas Production from Gas Condensate Reservoirs Using Sustainable Environmentally Friendly Chemicals. Sustainability 2019, 11, 2838. https://doi.org/10.3390/su11102838
dc.relation.references[39] Mahmoud, M. Well Clean-Up Using a Combined Thermochemical/Chelating Agent Fluid. J. Energy Resour. Technol. 2019, 141, 102905. https://doi.org/10.1115/1.4043612
dc.relation.references[40] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Elkatatny, S.; Al-Nakhli, A. R.; Bataweel, M. A. Novel Technique to Eliminate Gas Condensation in Gas Condensate Reservoirs Using Thermochemical Fluids. Energy Fuels 2018, 32, 12843–12850. https://doi.org/10.1021/acs.energyfuels.8b03604
dc.relation.references[41] Sousa, A.L.; Matos, H.A.; Guerreiro, L.P. Preventing and Removing Wax Deposition Inside Vertical Wells: A Review. J. Pet. Explor. Prod. Technol. 2019, 9, 2091–2107. https://doi.org/10.1007/s13202-019-0609-x
dc.relation.references[42] Golczynski, T.S.; Kempton, E.C. Understanding Wax Problems Leads to Deepwater Flow Assurance Solutions. World Oil 2006, 227, 7–10.
dc.relation.references[43] Jovanović, S.; Tolmač, J.; Prvulovic, S.; Marković, M.; Lalović, B.; Tolmač, D. (2021). Analiza Obrade Visokoparafinskih Nafti Dodatkom Modifikatora Reoloških Osobina. Zbornik Međunarodnog Kongresa O Procesnoj Industriji – Procesing [S.l.] 2021, 34, 113-118. https://doi.org/10.24094//ptk.021.34.1.113
dc.relation.references[44] Maneeintr, K.; Ruengnam, T.; Taweeaphiradeemanee, T.; Tuntitanakij, T. Wax Inhibitor Performance Comparison for Waxy Crude Oil from Fang Oilfield. E3S Web of Conferences, 2021, 294, 06005. https://doi.org/10.1051/e3sconf/202129406005
dc.relation.references[45] Liu, T.; Fang, L.; Liu, X.; Zhang, X. Preparation of a Kind of Reactive Pour Point Depressant and its Action Mechanism. Fuel 2015, 143, 448–454, https://doi.org/10.1016/j.fuel.2014.11.094
dc.relation.references[46] Wijayanto, T.; Kurihara, M.; Kurniawan, T.; Muraza, O. Experimental Investigation of Aluminosilicate Nanoparticles for Enhanced Recovery of Waxy Crude Oil. Energy Fuels 2019, 33, 6076–6082. https://doi.org/10.1021/acs.energyfuels.9b00781
dc.relation.references[47] Liu, Y.; Jing, G.; Sun, Z. et al. A Mini-Review of Nanocomposite Pour Point Depressants. Pet. Chem. 2023, https://doi.org/10.1134/S0965544123050031
dc.relation.references[48] Huang, H.; Wang, W.; Peng, Z.; Ding, Y.; Li, K.; Li, Q.; Gong, J. The Influence of Nanocomposite Pour Point Depressant on the Crystallization of Waxy Oil. Fuel 2018, 221, 257–268. https://doi.org/10.1016/j.fuel.2018.01.040
dc.relation.references[49] Nalyvaiko, O.I.; Vynnykov, Yu.L.; Nalyvaiko, L.G.; Petrash, R.V.; Ichanska, N.V.; Chyhyriov V.V. Tekhnolohiia Vplyvu Mahnitnoho Polia na Vysokoparafinystu Naftu u Truboprovodakh Riznoho Diametru. Academic Journal Industrial Machine Building, Civil Engineering 2018, 1, 208–213. https://doi.org/10.26906/znp.2018.50.1077
dc.relation.references[50] Alnaimat, F.; Ziauddin, M.; Mathew, B. Wax Deposition in Crude Oil Transport Lines and Wax Estimation Methods. In Yi, Y. (Cindy) (Ed.) Intelligent System and Computing. IntechOpen 2020. https://doi.org/10.5772/intechopen.89459
dc.relation.references[51] Oh, K.; Jemmett, M.; Deo, M. Yield Behavior of Gelled Waxy Oil: Effect of Stress Application in Creep Ranges. Ind. Eng. Chem. Res. 2009, 48 (19), 8950–8953. https://doi.org/10.1021/ie9000597
dc.relation.references[52] Bai, C.; Zhang, J. Effect of Carbon Number Distribution of Wax on the Yield Stress of Waxy Oil Gels. Ind. Eng. Chem. Res. 2013, 52 (7), 2732–2739. https://doi.org/10.1021/ie303371c
dc.relation.references[53] Topilnytskyy, P.; Romanchuk, V., Yarmola, T; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412–419. https://doi.org/10.23939/chcht14.03.412
dc.relation.references[54] Janamatti, A.; Lu, Y.; Ravichandran, S.; Sarica, C.; Daraboina, N. Influence of Operating Temperatures on Long-Duration Wax Deposition in Flow Lines. J. Pet. Sci. Eng. 2019, 183, 106373, https://doi.org/10.1016/j.petrol.2019.106373
dc.relation.references[55] Mohyaldinn, M.E.; Husin, H.; Hasan, N.; Elmubarak, M.M.B.; Genefid, A.M.E.; Dheeb, M.E.A. (2019). Challenges during Operation and Shutdown of Waxy Crude Pipelines. In Gounder, R.M. (Ed.), Processing of Heavy Crude Oils – Challenges and Opportunities. IntechOpen 2019. https://doi.org/10.5772/intechopen.89489
dc.relation.references[56] Theyab, M.A. Wax Deposition Process: Mechanisms, Affecting Factors and Mitigation Methods. Open Access J. Sci. 2018, 2, 112–118. https://doi.org/10.15406/oajs.2018.02.00054
dc.relation.references[57] Pylypiv, L.D. Osoblyvosti Budovy Tverdykh Vuhlevodniv ta yikh Vplyv na Rukh Nafty Truboprovodamy. Naftohazova Enerhetyka 2013, 1, 60–67.
dc.relation.references[58] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. https://doi.org/10.1016/j.ces.2019.115212
dc.relation.references[59] Elkatory, M.R.; Soliman, E.A.; El Nemr, A.; Hassaan, M.A.; Ragab, S.; El-Nemr, M.A.; Pantaleo, A. Mitigation and Remediation Technologies of Waxy Crude Oils' Deposition within Transportation Pipelines: A Review. Polymers (Basel) 2022, 14, 3231. https://doi.org/10.3390/polym14163231
dc.relation.references[60] White, M.; Pierce, K.; Acharya, T. A Review of Wax-Formation/Mitigation Technologies in the Petroleum Industry. SPE Prod. Oper. 2017, 33, 1–10. https://doi.org/10.2118/189447-PA
dc.relation.references[61] Li, Y.F.; Tsai, T.H.; Yang, T.H. A Novel Strengthening Method for Damaged Pipeline Under High Temperature Using Inorganic Insulation Material and Carbon Fiber Reinforced Plastic Composite Material. Materials 2019, 12, 3484. https://doi.org/10.3390/ma12213484
dc.relation.references[62] Alade, O.S.; Hassan, A.; Mahmoud, M.; Al-Shehri, D.; Al-Majed, A. Novel Approach for Improving the Flow of Waxy Crude Oil Using Thermochemical Fluids: Experimental and Simulation Study. ACS Omega 2020, 5, 4313–4321. https://doi.org/10.1021/acsomega.9b04268
dc.relation.references[63] Kurniawan, M.; Norrman, J.; Paso, K. Pour Point Depressant Efficacy as a Function of Wax Chain-Length. J. Pet. Sci. Eng. 2022, 212, 110250. https://doi.org/10.1016/j.petrol.2022.110250
dc.relation.references[64] Ruwoldt, J.; Humborstad Sørland, G.; Simon, S.; Oschmann, H.-J.; Sjöblom, J. Inhibitor-Wax Interactions and PPD Effect on Wax Crystallization: New Approaches for GC/MS and NMR, and Comparison with DSC, CPM, and Rheometry. J. Pet. Sci. Eng. 2019, 177, 53–68. https://doi.org/10.1016/j.petrol.2019.02.046
dc.relation.references[65] Vakili, S.; Mohammadi, S.; Mirzaei Derazi, A.; Mahmoudi Alemi, F.; Hayatizadeh, N.; Ghanbarpour, O.; Rashidi, F. Effect of Metal Oxide Nanoparticles on Wax Formation, Morphology, and Rheological Behavior in Crude Oil: An Experimental Study. J. Mol. Liq. 2021, 343, 117566. https://doi.org/10.1016/j.molliq.2021.117566
dc.relation.references[66] Ridzuan, N.; Subramanie, P.; Uyop, M. Effect of Pour Point Depressant (PPD) and the Nanoparticles on the Wax Deposition, Viscosity and Shear Stress for Malaysian Crude Oil. Pet. Sci. Technol. 2020, 38, 929–935. https://doi.org/10.1080/10916466.2020.1730892
dc.relation.references[67] Wang, C.; Zhang, M.; Wang, W.; Ma, Q.; Zhang, S.; Huang, H.; Peng, Z.; Yao, H.; Li, Q.; Ding, Y. et al. Experimental Study of the Effects of a Nanocomposite Pour Point Depressant on Wax Deposition. Energy Fuels 2020, 34, 12239–12246. https://doi.org/10.1021/acs.energyfuels.0c02001
dc.relation.references[68] Mansourpoor, M.; Azin, R.; Osfouri, S.; Izadpanah, A.A. Experimental Investigation of Wax Deposition From Waxy Oil Mixtures. Appl. Petrochem. Res. 2019, 9, 77–90. https://doi.org/10.1007/s13203-019-0228-y
dc.relation.references[69] VijayaKumar, S.; Zakaria, J.; Ridzuan, N. The role of Gemini Surfactant and SiO2/SnO/Ni2O3 Nanoparticles as Flow Improver of Malaysian Crude Oil. J. King Saud Univ. Eng. Sci. 2022, 34, 384–390. https://doi.org/10.1016/j.jksues.2021.03.009
dc.relation.references[70] Sun, M.; Rezaei, N.; Firoozabadi, A. Mitigating Wax Wax Deposition by Dispersants and Crystal Modifiers in Flow Testing. Fuel 2022, 324, 124687. https://doi.org/10.1016/j.fuel.2022.124687
dc.relation.references[71] Ruwoldt, J., Kurniawan, M., Oschmann, H. Non-Linear Dependency of Wax Appearance Temperature on Cooling Rate. J. Pet. Sci. Eng. 2018, 165, 114–126. https://doi.org/10.1016/j.petrol.2018.02.011
dc.relation.references[72] Chi, Y.; Yang, J.; Sarica, C.; Daraboina, N. A Critical Review of Controlling Wax Deposition in Production Lines Using Chemicals. Energy Fuels 2019, 33, 2797–2809. https://doi.org/10.1021/acs.energyfuels.9b00316
dc.relation.references[73] Pylypiv, L.D. Doslidzhennia Vplyvu Termoobrobky Vysokoviazkoi Dolynskoi Nafty na yii Reolohichni ta Transportabelni Vlastyvosti. Naftohazova Haluz Ukrainy 2015, 1, 18−20.
dc.relation.references[74] Pylypiv, L.D. Analiz Efektyvnosti Vplyvu Termoobrobky Nafty na Hidravlichni Vtraty v Mahistralnomu Naftoprovodi. Mizhnarodnyi Naukovyi Zhurnal "Internauka" 2018, 10, 48−50.
dc.relation.references[75] Li, W.; Li, H.; Da, H.; Hu, K.; Zhang, Y.; Teng, L. Influence of Pour Point Depressants (PPDs) on Wax Deposition: A Study on Wax Deposit Characteristics and Pipeline Pigging. Fuel Process. Technol. 2021, 217, 106817. https://doi.org/10.1016/j.fuproc.2021.106817
dc.relation.references[76] Eke, W.I.; Kyei, S.K.; Ajienka, J. et al. Effect of Bio-Based Flow Improver on the Microscopic and Low-Temperature Flow Properties of Waxy Crude Oil. J. Petrol. Explor. Prod. Technol. 2021, 11, 711–724. https://doi.org/10.1007/s13202-020-01078-x
dc.relation.references[77] Akinyemi, O.P.; Udonne, J.D.; Efeovbokhan, V.E.; Ayoola, A.A. A study on the Use of Plant Seed Oils, Triethanolamine and Xylene as Flow Improvers of Nigerian Waxy Crude Oil. J. Appl. Res. Technol. 2016, 14. https://doi.org/10.22201/icat.16656423.2016.14.3.40
dc.relation.references[78] Tripathy, A.; Nath, G.; Paikaray, R. Ultrasonic Aided Dewaxing of Crude Oil in Petroleum Refinery. Mater. Today: Proc. 2018, 5, 25599-25604. https://doi.org/10.1016/j.matpr.2018.10.367
dc.relation.references[79] Fahim, M.A.; Alsahhaf, T.A.; Elkilani, A. Chapter 7 – Hydroconversion. In Fundamentals of Petroleum Refining, Elsevier, 2010; pp. 153–198. https://doi.org/10.1016/B978-0-444-52785-1.00007-3
dc.relation.references[80] Speight, J.G. Chapter 3 - Hydrocarbons from Crude Oil. In Handbook of Industrial Hydrocarbon Processes, 2nd ed. Gulf Professional Publishing, 2020; pp. 95–142. https://doi.org/10.1016/B978-0-12-809923-0.00003-5
dc.relation.referencesen[1] Yarmola, T; Topilnytskyy, P.; Romanchuk, V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17, 195–202. https://doi.org/10.23939/chcht17.01.195
dc.relation.referencesen[2] Yarmola, T.V.; Topilnytskyy, P.I.; Skorokhoda V.J.; Korchak, B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 2023(1), 40–49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
dc.relation.referencesen[3] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem Chem Technol. 2022; 16, 461–468. https://doi.org/10.23939/chcht16.03.461
dc.relation.referencesen[4] Chen, X.; Hou, L.; Wei, X.; Bedrov, D. Transport Properties of Waxy Crude Oil: A Molecular Dynamics Simulation Study. CS Omega 2020, 5, 18557–18564. https://doi.org/10.1021/acsomega.0c00070
dc.relation.referencesen[5] Rehan, M.; Nizami A.-S.; Taylan, O.; Al-Sasi B.O. et al. Determination of Wax Content in Crude Oil. Pet. Sci. Technol. 2016, 34, 799–804. https://doi.org/10.1080/10916466.2016.1169287
dc.relation.referencesen[6] Chala, G.T.; Sulaiman, S.A.; Japper-Jaafar, A. Flow Start-Up and Transportation of Waxy Crude Oil in Pipelines-A Review. J. Non-Newton. Fluid Mech., 2018, 251, 69–87. https://doi.org/10.1016/j.jnnfm.2017.11.008
dc.relation.referencesen[7] Vinay, G.; Bhaskoro, P.T.; Hénaut, I.; Sariman, M.Z.; Anuar, A.; Shafian, S.R.M. A Methodology to Investigate Factors Governing the Restart Pressure of a Malaysian Waxy Crude Oil Pipeline. J. Pet. Sci. Eng. Part E, 2022, 208, 109785. https://doi.org/10.1016/j.petrol.2021.109785
dc.relation.referencesen[8] López, D.; Ríos, A.A.; Marín, J.D.; Zabala, R.D.; Rincon, J.A.; Lopera, S.H.; Franco, C.A.; Cortés, F.B. SiO2-Based Nanofluids for the Inhibition of Wax Precipitation in Production Pipelines. ACS Omega 2023, 8(37), 33289–33298. https://doi.org/10.1021/acsomega.3c00802. PMID: 37744863; PMCID: PMC10515383
dc.relation.referencesen[9] Hao, L.Z.; Al-Salim, H.S.; Ridzuan, N. A Review of the Mechanism and Role of Wax Inhibitors. Pertanika J. Sci. Technol. 2019, 27(1), 499–526.
dc.relation.referencesen[10] Sousa, A.M.; Ribeiro, T.P.; Pereira, M.J.; Matos H.A. Review of the Economic and Environmental Impacts of Producing Waxy Crude Oils. Energies 2023, 16(1), 120. https://doi.org/10.3390/en16010120
dc.relation.referencesen[11] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. http://hdl.handle.net/10454/17283
dc.relation.referencesen[12] Waxy Crude Oil Market Report 2022. Waxy Crude Oil Market Report 2022. https://www.businessresearchinsights.com/market-reports/waxy-crude-oil-market-100432
dc.relation.referencesen[13] Biletskyy, V. (Ed.). Mala Hirnycha Encyclopedia, vol. 2; Donbas, 2007.
dc.relation.referencesen[14] Mykhailov, V.A.; Karpenko, O.M.; Kurylo, M.M. et al. Horiuchi Korysni Kopalyny Ukrainy ta Yikhnia Heoloho-Ekonomichna Otsinka; Kyivskyi Universytet, 2018.
dc.relation.referencesen[15] de Oliveira, M.; Vieira, L.; Miranda, L.; Miranda, D.; Marques, L.C.C. On the Influence of Micro- and Macro-Cristalline Waxs on the Physical and Rheological Properties of Crude Oil and Organic Solvents. Chem.Shem. Technol. 2016, 10, 451–458. https://doi.org/10.23939/chcht10.04.451
dc.relation.referencesen[16] Serediuk, V.D. Laboratorni Doslidzhennia z Vykorystannia Reahentu Tvin 80 dlia Zapobihannia i Zmenshennia Asfaltenosmoloparafinovykh Vidkladiv u Naftovykh Sverdlovynakh. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch 2008, 2, 43–47.
dc.relation.referencesen[17] Ragunathan, T.; Husin, H.; Wood, C.D. Wax Formation Mechanisms, Wax Chemical Inhibitors and Factors Affecting Chemical Inhibition. Appl. Sci. 2020, 10, 479. https://doi.org/10.3390/app10020479
dc.relation.referencesen[18] Olajire, A.A. Review of Wax Deposition in Subsea Oil Pipeline Systems and Mitigation Technologies in the Petroleum Industry. Chem. Eng. J. Adv. 2021, 6, 100104. https://doi.org/10.1016/j.ceja.2021.100104
dc.relation.referencesen[19] Pedersen, K. S.; Rønningsen, H. P. Influence of Wax Inhibitors on Wax Appearance Temperature, Pour Point, and Viscosity of Waxy Crude Oils. Energy Fuels 2003, 17, 321– 328, https://doi.org/10.1021/ef020142+
dc.relation.referencesen[20] Kök, M.V.; Varfolomeev, M.A.; Nurgaliev, D.K. Wax Appearance Temperature (WAT) Determinations of Different Origin Crude Oils by Differential Scanning Calorimetry. J. Pet. Sci. Eng. 2018, 168, 542–545. https://doi.org/10.1016/j.petrol.2018.05.045
dc.relation.referencesen[21] Behbahani, T.J.; Beigi, A.A.M.; Taheri, Z.; Ghanbari, B. Investigation of Wax Precipitation in Crude Oil: Experimental and Modeling. Petroleum 2015, 1, 223–230. https://doi.org/10.1016/j.petlm.2015.07.007
dc.relation.referencesen[22] Mansoori, A. Wax/Wax and Waxy Crude Oil: The Role of Temperature on Heavy Organics Deposition from Petroleum Fluids, 2009. [Online]. https://mansoori.people.uic.edu/Wax.and.Waxy.Crude_html (accessed 2023-11-21).
dc.relation.referencesen[23] Makwashi, N.; Zhao, D.; Abdulkadir, M.; Ahmed, T.; Muhammad, I. Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment. J.Pet. Sci. Eng. 2021, 204, 108734. https://doi.org/10.1016/j.petrol.2021.108734
dc.relation.referencesen[24] Lira-Galeana, C.; Hammami, A. Wax Precipitation from Petroleum Fluids: A Review. In The, F.Y.; Chilingarian, G.V. (Eds.), Developments in Petroleum Science; Elsevier 2000, pp. 557–608. https://doi.org/10.1016/S0376-7361(09)70292-4
dc.relation.referencesen[25] Pu, H.; Ai, M.; Miao, Q.; Yan, F. (2014). The Structural Characteristics of Low-Temperature Waxy Crude. Pet. Sci. Technol. 2014, 32, 646–653. https://doi.org/10.1080/10916466.2013.862267
dc.relation.referencesen[26] Misra, S.; Baruah, S.; Singh, K. Wax Problems in Crude Oil Production and Transportation: A Review. SPE Prod. Facil. 1995, 10, 50–54. https://doi.org/10.2118/28181-PA
dc.relation.referencesen[27] Garcia, M.; Urbina, A. Effect of Crude Oil Composition and Blending on Flowing Properties. Pet. Sci. Technol. 2003, 21, 863–878. https://doi.org/10.1081/LFT-120017454
dc.relation.referencesen[28] Tarantino, G.B.; Vieira, L.C.; Pinheiro, S.B.; Mattedi, S.; Santos, L.C.L.; Pires, C.A.M.; Góis, L.M.N.; Santos, P.C.S. Characterization and Evaluation of Waxy Crude Oil Flow. Braz. J. Chem. Eng. 2016, 33, 1063– 1071. https://doi.org/10.1590/0104-6632.20160334s20150103
dc.relation.referencesen[29] Olayiwola, S.O.; Dejam, M. Interfacial Energy for Solutions of Nanoparticles, Surfactants, and Electrolytes. AIChE J. 2020, 66, e1689. https://doi.org/10.1002/aic.16891
dc.relation.referencesen[30] Olayiwola, S.O.; Dejam, M. Experimental Study on the Viscosity Behavior of Silica Nanofluids With Different Ions of Electrolytes. Ind. Eng. Chem. Res. 2020, 59, 3575–3583. https://doi.org/10.1021/acs.iecr.9b06275
dc.relation.referencesen[31] Liu, J.; Zhao, Y. P.; Ren, S. L. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy Fuels 2015, 29, 1233– 1242, https://doi.org/10.1021/ef5019737
dc.relation.referencesen[32] Yang, J.; Lu, Y., Daraboina, N.; Sarica, C. Wax Deposition Mechanisms: Is the Current Description Sufficient? Fuel 2020, 275, 17937. https://doi.org/10.1016/j.fuel.2020.117937
dc.relation.referencesen[33] Melnyk, A.P..; Kryvulia, S.V.; Malik, S.G.; Dehtiarov, D.O. Doslidzhennia Vplyvu Reahentiv na Znyzhennia Temperatury Zastyhannia Nafty. Naftohazova Haluz Ukrainy 2015, 6, 18–21.
dc.relation.referencesen[34] Gabayan, R.C.M.; Sulaimon, A.A.; Jufar, S.R. Application of Bio-Derived Alternatives for the Assured Flow of Waxy Crude Oil: A Review. Energies 2023, 16(9), 3652. https://doi.org/10.3390/en16093652
dc.relation.referencesen[35] Kiyingi, W.; Guo, J.; Xiong, R.; Su, L.; Yang, X.; Zhang, S. (2022). Crude Oil Wax: A Review on Formation, Experimentation, Prediction, and Remediation Techniques. Pet. Sci. 2022, 19, 2343-2357. https://doi.org/10.1016/j.petsci.2022.08.008
dc.relation.referencesen[36] El-Dalatony, M.M.; Jeon, B-H.; Salama, E-S.; Eraky, M.; Kim, W.B.; Wang, J.; Ahn, T. Occurrence and Characterization of Wax Wax Formed in Developing Wells and Pipelines. Energies 2019, 12(6), 967. https://doi.org/10.3390/en12060967
dc.relation.referencesen[37] Thota, S.T.; Onyeanuna, C.C. Mitigation of Wax in Oil Pipelines. Int. j. Eng. Res. Rev. 2016, 4, 39–47.
dc.relation.referencesen[38] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Al-Shehri, D.; Al-Nakhli, A. R.; Bataweel, M. A. Gas Production from Gas Condensate Reservoirs Using Sustainable Environmentally Friendly Chemicals. Sustainability 2019, 11, 2838. https://doi.org/10.3390/su11102838
dc.relation.referencesen[39] Mahmoud, M. Well Clean-Up Using a Combined Thermochemical/Chelating Agent Fluid. J. Energy Resour. Technol. 2019, 141, 102905. https://doi.org/10.1115/1.4043612
dc.relation.referencesen[40] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Elkatatny, S.; Al-Nakhli, A. R.; Bataweel, M. A. Novel Technique to Eliminate Gas Condensation in Gas Condensate Reservoirs Using Thermochemical Fluids. Energy Fuels 2018, 32, 12843–12850. https://doi.org/10.1021/acs.energyfuels.8b03604
dc.relation.referencesen[41] Sousa, A.L.; Matos, H.A.; Guerreiro, L.P. Preventing and Removing Wax Deposition Inside Vertical Wells: A Review. J. Pet. Explor. Prod. Technol. 2019, 9, 2091–2107. https://doi.org/10.1007/s13202-019-0609-x
dc.relation.referencesen[42] Golczynski, T.S.; Kempton, E.C. Understanding Wax Problems Leads to Deepwater Flow Assurance Solutions. World Oil 2006, 227, 7–10.
dc.relation.referencesen[43] Jovanović, S.; Tolmač, J.; Prvulovic, S.; Marković, M.; Lalović, B.; Tolmač, D. (2021). Analiza Obrade Visokoparafinskih Nafti Dodatkom Modifikatora Reoloških Osobina. Zbornik Međunarodnog Kongresa O Procesnoj Industriji – Procesing [S.l.] 2021, 34, 113-118. https://doi.org/10.24094//ptk.021.34.1.113
dc.relation.referencesen[44] Maneeintr, K.; Ruengnam, T.; Taweeaphiradeemanee, T.; Tuntitanakij, T. Wax Inhibitor Performance Comparison for Waxy Crude Oil from Fang Oilfield. E3S Web of Conferences, 2021, 294, 06005. https://doi.org/10.1051/e3sconf/202129406005
dc.relation.referencesen[45] Liu, T.; Fang, L.; Liu, X.; Zhang, X. Preparation of a Kind of Reactive Pour Point Depressant and its Action Mechanism. Fuel 2015, 143, 448–454, https://doi.org/10.1016/j.fuel.2014.11.094
dc.relation.referencesen[46] Wijayanto, T.; Kurihara, M.; Kurniawan, T.; Muraza, O. Experimental Investigation of Aluminosilicate Nanoparticles for Enhanced Recovery of Waxy Crude Oil. Energy Fuels 2019, 33, 6076–6082. https://doi.org/10.1021/acs.energyfuels.9b00781
dc.relation.referencesen[47] Liu, Y.; Jing, G.; Sun, Z. et al. A Mini-Review of Nanocomposite Pour Point Depressants. Pet. Chem. 2023, https://doi.org/10.1134/S0965544123050031
dc.relation.referencesen[48] Huang, H.; Wang, W.; Peng, Z.; Ding, Y.; Li, K.; Li, Q.; Gong, J. The Influence of Nanocomposite Pour Point Depressant on the Crystallization of Waxy Oil. Fuel 2018, 221, 257–268. https://doi.org/10.1016/j.fuel.2018.01.040
dc.relation.referencesen[49] Nalyvaiko, O.I.; Vynnykov, Yu.L.; Nalyvaiko, L.G.; Petrash, R.V.; Ichanska, N.V.; Chyhyriov V.V. Tekhnolohiia Vplyvu Mahnitnoho Polia na Vysokoparafinystu Naftu u Truboprovodakh Riznoho Diametru. Academic Journal Industrial Machine Building, Civil Engineering 2018, 1, 208–213. https://doi.org/10.26906/znp.2018.50.1077
dc.relation.referencesen[50] Alnaimat, F.; Ziauddin, M.; Mathew, B. Wax Deposition in Crude Oil Transport Lines and Wax Estimation Methods. In Yi, Y. (Cindy) (Ed.) Intelligent System and Computing. IntechOpen 2020. https://doi.org/10.5772/intechopen.89459
dc.relation.referencesen[51] Oh, K.; Jemmett, M.; Deo, M. Yield Behavior of Gelled Waxy Oil: Effect of Stress Application in Creep Ranges. Ind. Eng. Chem. Res. 2009, 48 (19), 8950–8953. https://doi.org/10.1021/ie9000597
dc.relation.referencesen[52] Bai, C.; Zhang, J. Effect of Carbon Number Distribution of Wax on the Yield Stress of Waxy Oil Gels. Ind. Eng. Chem. Res. 2013, 52 (7), 2732–2739. https://doi.org/10.1021/ie303371c
dc.relation.referencesen[53] Topilnytskyy, P.; Romanchuk, V., Yarmola, T; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412–419. https://doi.org/10.23939/chcht14.03.412
dc.relation.referencesen[54] Janamatti, A.; Lu, Y.; Ravichandran, S.; Sarica, C.; Daraboina, N. Influence of Operating Temperatures on Long-Duration Wax Deposition in Flow Lines. J. Pet. Sci. Eng. 2019, 183, 106373, https://doi.org/10.1016/j.petrol.2019.106373
dc.relation.referencesen[55] Mohyaldinn, M.E.; Husin, H.; Hasan, N.; Elmubarak, M.M.B.; Genefid, A.M.E.; Dheeb, M.E.A. (2019). Challenges during Operation and Shutdown of Waxy Crude Pipelines. In Gounder, R.M. (Ed.), Processing of Heavy Crude Oils – Challenges and Opportunities. IntechOpen 2019. https://doi.org/10.5772/intechopen.89489
dc.relation.referencesen[56] Theyab, M.A. Wax Deposition Process: Mechanisms, Affecting Factors and Mitigation Methods. Open Access J. Sci. 2018, 2, 112–118. https://doi.org/10.15406/oajs.2018.02.00054
dc.relation.referencesen[57] Pylypiv, L.D. Osoblyvosti Budovy Tverdykh Vuhlevodniv ta yikh Vplyv na Rukh Nafty Truboprovodamy. Naftohazova Enerhetyka 2013, 1, 60–67.
dc.relation.referencesen[58] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. https://doi.org/10.1016/j.ces.2019.115212
dc.relation.referencesen[59] Elkatory, M.R.; Soliman, E.A.; El Nemr, A.; Hassaan, M.A.; Ragab, S.; El-Nemr, M.A.; Pantaleo, A. Mitigation and Remediation Technologies of Waxy Crude Oils' Deposition within Transportation Pipelines: A Review. Polymers (Basel) 2022, 14, 3231. https://doi.org/10.3390/polym14163231
dc.relation.referencesen[60] White, M.; Pierce, K.; Acharya, T. A Review of Wax-Formation/Mitigation Technologies in the Petroleum Industry. SPE Prod. Oper. 2017, 33, 1–10. https://doi.org/10.2118/189447-PA
dc.relation.referencesen[61] Li, Y.F.; Tsai, T.H.; Yang, T.H. A Novel Strengthening Method for Damaged Pipeline Under High Temperature Using Inorganic Insulation Material and Carbon Fiber Reinforced Plastic Composite Material. Materials 2019, 12, 3484. https://doi.org/10.3390/ma12213484
dc.relation.referencesen[62] Alade, O.S.; Hassan, A.; Mahmoud, M.; Al-Shehri, D.; Al-Majed, A. Novel Approach for Improving the Flow of Waxy Crude Oil Using Thermochemical Fluids: Experimental and Simulation Study. ACS Omega 2020, 5, 4313–4321. https://doi.org/10.1021/acsomega.9b04268
dc.relation.referencesen[63] Kurniawan, M.; Norrman, J.; Paso, K. Pour Point Depressant Efficacy as a Function of Wax Chain-Length. J. Pet. Sci. Eng. 2022, 212, 110250. https://doi.org/10.1016/j.petrol.2022.110250
dc.relation.referencesen[64] Ruwoldt, J.; Humborstad Sørland, G.; Simon, S.; Oschmann, H.-J.; Sjöblom, J. Inhibitor-Wax Interactions and PPD Effect on Wax Crystallization: New Approaches for GC/MS and NMR, and Comparison with DSC, CPM, and Rheometry. J. Pet. Sci. Eng. 2019, 177, 53–68. https://doi.org/10.1016/j.petrol.2019.02.046
dc.relation.referencesen[65] Vakili, S.; Mohammadi, S.; Mirzaei Derazi, A.; Mahmoudi Alemi, F.; Hayatizadeh, N.; Ghanbarpour, O.; Rashidi, F. Effect of Metal Oxide Nanoparticles on Wax Formation, Morphology, and Rheological Behavior in Crude Oil: An Experimental Study. J. Mol. Liq. 2021, 343, 117566. https://doi.org/10.1016/j.molliq.2021.117566
dc.relation.referencesen[66] Ridzuan, N.; Subramanie, P.; Uyop, M. Effect of Pour Point Depressant (PPD) and the Nanoparticles on the Wax Deposition, Viscosity and Shear Stress for Malaysian Crude Oil. Pet. Sci. Technol. 2020, 38, 929–935. https://doi.org/10.1080/10916466.2020.1730892
dc.relation.referencesen[67] Wang, C.; Zhang, M.; Wang, W.; Ma, Q.; Zhang, S.; Huang, H.; Peng, Z.; Yao, H.; Li, Q.; Ding, Y. et al. Experimental Study of the Effects of a Nanocomposite Pour Point Depressant on Wax Deposition. Energy Fuels 2020, 34, 12239–12246. https://doi.org/10.1021/acs.energyfuels.0c02001
dc.relation.referencesen[68] Mansourpoor, M.; Azin, R.; Osfouri, S.; Izadpanah, A.A. Experimental Investigation of Wax Deposition From Waxy Oil Mixtures. Appl. Petrochem. Res. 2019, 9, 77–90. https://doi.org/10.1007/s13203-019-0228-y
dc.relation.referencesen[69] VijayaKumar, S.; Zakaria, J.; Ridzuan, N. The role of Gemini Surfactant and SiO2/SnO/Ni2O3 Nanoparticles as Flow Improver of Malaysian Crude Oil. J. King Saud Univ. Eng. Sci. 2022, 34, 384–390. https://doi.org/10.1016/j.jksues.2021.03.009
dc.relation.referencesen[70] Sun, M.; Rezaei, N.; Firoozabadi, A. Mitigating Wax Wax Deposition by Dispersants and Crystal Modifiers in Flow Testing. Fuel 2022, 324, 124687. https://doi.org/10.1016/j.fuel.2022.124687
dc.relation.referencesen[71] Ruwoldt, J., Kurniawan, M., Oschmann, H. Non-Linear Dependency of Wax Appearance Temperature on Cooling Rate. J. Pet. Sci. Eng. 2018, 165, 114–126. https://doi.org/10.1016/j.petrol.2018.02.011
dc.relation.referencesen[72] Chi, Y.; Yang, J.; Sarica, C.; Daraboina, N. A Critical Review of Controlling Wax Deposition in Production Lines Using Chemicals. Energy Fuels 2019, 33, 2797–2809. https://doi.org/10.1021/acs.energyfuels.9b00316
dc.relation.referencesen[73] Pylypiv, L.D. Doslidzhennia Vplyvu Termoobrobky Vysokoviazkoi Dolynskoi Nafty na yii Reolohichni ta Transportabelni Vlastyvosti. Naftohazova Haluz Ukrainy 2015, 1, 18−20.
dc.relation.referencesen[74] Pylypiv, L.D. Analiz Efektyvnosti Vplyvu Termoobrobky Nafty na Hidravlichni Vtraty v Mahistralnomu Naftoprovodi. Mizhnarodnyi Naukovyi Zhurnal "Internauka" 2018, 10, 48−50.
dc.relation.referencesen[75] Li, W.; Li, H.; Da, H.; Hu, K.; Zhang, Y.; Teng, L. Influence of Pour Point Depressants (PPDs) on Wax Deposition: A Study on Wax Deposit Characteristics and Pipeline Pigging. Fuel Process. Technol. 2021, 217, 106817. https://doi.org/10.1016/j.fuproc.2021.106817
dc.relation.referencesen[76] Eke, W.I.; Kyei, S.K.; Ajienka, J. et al. Effect of Bio-Based Flow Improver on the Microscopic and Low-Temperature Flow Properties of Waxy Crude Oil. J. Petrol. Explor. Prod. Technol. 2021, 11, 711–724. https://doi.org/10.1007/s13202-020-01078-x
dc.relation.referencesen[77] Akinyemi, O.P.; Udonne, J.D.; Efeovbokhan, V.E.; Ayoola, A.A. A study on the Use of Plant Seed Oils, Triethanolamine and Xylene as Flow Improvers of Nigerian Waxy Crude Oil. J. Appl. Res. Technol. 2016, 14. https://doi.org/10.22201/icat.16656423.2016.14.3.40
dc.relation.referencesen[78] Tripathy, A.; Nath, G.; Paikaray, R. Ultrasonic Aided Dewaxing of Crude Oil in Petroleum Refinery. Mater. Today: Proc. 2018, 5, 25599-25604. https://doi.org/10.1016/j.matpr.2018.10.367
dc.relation.referencesen[79] Fahim, M.A.; Alsahhaf, T.A.; Elkilani, A. Chapter 7 – Hydroconversion. In Fundamentals of Petroleum Refining, Elsevier, 2010; pp. 153–198. https://doi.org/10.1016/B978-0-444-52785-1.00007-3
dc.relation.referencesen[80] Speight, J.G. Chapter 3 - Hydrocarbons from Crude Oil. In Handbook of Industrial Hydrocarbon Processes, 2nd ed. Gulf Professional Publishing, 2020; pp. 95–142. https://doi.org/10.1016/B978-0-12-809923-0.00003-5
dc.relation.urihttps://doi.org/10.23939/chcht17.01.195
dc.relation.urihttps://doi.org/10.32434/0321-4095-2023-146-1-40-49
dc.relation.urihttps://doi.org/10.23939/chcht16.03.461
dc.relation.urihttps://doi.org/10.1021/acsomega.0c00070
dc.relation.urihttps://doi.org/10.1080/10916466.2016.1169287
dc.relation.urihttps://doi.org/10.1016/j.jnnfm.2017.11.008
dc.relation.urihttps://doi.org/10.1016/j.petrol.2021.109785
dc.relation.urihttps://doi.org/10.1021/acsomega.3c00802
dc.relation.urihttps://doi.org/10.3390/en16010120
dc.relation.urihttp://hdl.handle.net/10454/17283
dc.relation.urihttps://www.businessresearchinsights.com/market-reports/waxy-crude-oil-market-100432
dc.relation.urihttps://doi.org/10.23939/chcht10.04.451
dc.relation.urihttps://doi.org/10.3390/app10020479
dc.relation.urihttps://doi.org/10.1016/j.ceja.2021.100104
dc.relation.urihttps://doi.org/10.1021/ef020142+
dc.relation.urihttps://doi.org/10.1016/j.petrol.2018.05.045
dc.relation.urihttps://doi.org/10.1016/j.petlm.2015.07.007
dc.relation.urihttps://mansoori.people.uic.edu/Wax.and.Waxy.Crude_html
dc.relation.urihttps://doi.org/10.1016/j.petrol.2021.108734
dc.relation.urihttps://doi.org/10.1016/S0376-7361(09)70292-4
dc.relation.urihttps://doi.org/10.1080/10916466.2013.862267
dc.relation.urihttps://doi.org/10.2118/28181-PA
dc.relation.urihttps://doi.org/10.1081/LFT-120017454
dc.relation.urihttps://doi.org/10.1590/0104-6632.20160334s20150103
dc.relation.urihttps://doi.org/10.1002/aic.16891
dc.relation.urihttps://doi.org/10.1021/acs.iecr.9b06275
dc.relation.urihttps://doi.org/10.1021/ef5019737
dc.relation.urihttps://doi.org/10.1016/j.fuel.2020.117937
dc.relation.urihttps://doi.org/10.3390/en16093652
dc.relation.urihttps://doi.org/10.1016/j.petsci.2022.08.008
dc.relation.urihttps://doi.org/10.3390/en12060967
dc.relation.urihttps://doi.org/10.3390/su11102838
dc.relation.urihttps://doi.org/10.1115/1.4043612
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.8b03604
dc.relation.urihttps://doi.org/10.1007/s13202-019-0609-x
dc.relation.urihttps://doi.org/10.24094//ptk.021.34.1.113
dc.relation.urihttps://doi.org/10.1051/e3sconf/202129406005
dc.relation.urihttps://doi.org/10.1016/j.fuel.2014.11.094
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.9b00781
dc.relation.urihttps://doi.org/10.1134/S0965544123050031
dc.relation.urihttps://doi.org/10.1016/j.fuel.2018.01.040
dc.relation.urihttps://doi.org/10.26906/znp.2018.50.1077
dc.relation.urihttps://doi.org/10.5772/intechopen.89459
dc.relation.urihttps://doi.org/10.1021/ie9000597
dc.relation.urihttps://doi.org/10.1021/ie303371c
dc.relation.urihttps://doi.org/10.23939/chcht14.03.412
dc.relation.urihttps://doi.org/10.1016/j.petrol.2019.106373
dc.relation.urihttps://doi.org/10.5772/intechopen.89489
dc.relation.urihttps://doi.org/10.15406/oajs.2018.02.00054
dc.relation.urihttps://doi.org/10.1016/j.ces.2019.115212
dc.relation.urihttps://doi.org/10.3390/polym14163231
dc.relation.urihttps://doi.org/10.2118/189447-PA
dc.relation.urihttps://doi.org/10.3390/ma12213484
dc.relation.urihttps://doi.org/10.1021/acsomega.9b04268
dc.relation.urihttps://doi.org/10.1016/j.petrol.2022.110250
dc.relation.urihttps://doi.org/10.1016/j.petrol.2019.02.046
dc.relation.urihttps://doi.org/10.1016/j.molliq.2021.117566
dc.relation.urihttps://doi.org/10.1080/10916466.2020.1730892
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.0c02001
dc.relation.urihttps://doi.org/10.1007/s13203-019-0228-y
dc.relation.urihttps://doi.org/10.1016/j.jksues.2021.03.009
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.124687
dc.relation.urihttps://doi.org/10.1016/j.petrol.2018.02.011
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.9b00316
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2021.106817
dc.relation.urihttps://doi.org/10.1007/s13202-020-01078-x
dc.relation.urihttps://doi.org/10.22201/icat.16656423.2016.14.3.40
dc.relation.urihttps://doi.org/10.1016/j.matpr.2018.10.367
dc.relation.urihttps://doi.org/10.1016/B978-0-444-52785-1.00007-3
dc.relation.urihttps://doi.org/10.1016/B978-0-12-809923-0.00003-5
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Topilnytskyy, P., Shyshchak, O., Tkachuk, V., Palianytsia L., Chupashko О. 2024
dc.subjectпарафін
dc.subjectвідкладення
dc.subjectнафта
dc.subjectзабезпечення потоку
dc.subjectреологічні властивості
dc.subjectтемпература початку кристалізації
dc.subjectwax
dc.subjectdeposits
dc.subjectoil
dc.subjectflow assurance
dc.subjectrheological properties
dc.subjectWAT
dc.titleAdvanced Research on the Production, Transportation and Processing of High Waxy Oil. A Review
dc.title.alternativeСучасні дослдження видобутку, транспортування і перероблення високопарафінистих нафт. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Topilnytskyy_P-Advanced_Research_258-269.pdf
Size:
723.01 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Topilnytskyy_P-Advanced_Research_258-269__COVER.png
Size:
548.42 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: