Thermophysical Properties of Composite Metal-Filled Copolymers of Polyvinylpyrrolidone

dc.citation.epage43
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage37
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University of Kosice
dc.contributor.authorGrytsenko, Oleksandr
dc.contributor.authorMykhaylo Bratychak Jr.
dc.contributor.authorDulebova, Ludmila
dc.contributor.authorGajdoš, Ivan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:58Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractДосліджено вплив присутності дрібнодисперсних металевих наповнювачів різної природи (Zn, Co, Ni) на теплофізичні характеристики (теплостійкість за Віка, температура склування) блочних кополімерів полівінілпіролідону з 2-гідроксіетилметакрилатом. Встановлено, що теплостійкість одержаних композитів є значно вищою за теплостійкість ненаповнених кополімерів і лежить у межах 360-395К залежно від природи та вмісту металевого наповнювача. Зміна теплостійкості корелює зі зміною температури склування, яку оцінювали на основі результатів термомеханічного та динамічного механічного термічного аналізів. Результати роботи є додатковим джерелом характеристики структури металонаповнених кополімерів і підтверджують участь частинок металевого наповнювача у формуванні вузлів просторової сітки кополімеру, а також доводять факт утворення різної структури полімерної сітки в міжфазному шарі на поверхні металевої частинки і в об’ємі полімеру.
dc.description.abstractThe effect of the presence of finely dispersed metal fillers of various natures (Zn, Co, Ni) on the thermophysical characteristics (Vick heat resistance, glass transition temperature) of polyvinylpyrrolidone block copolymers with 2-hydroxyethylmethacrylate was studied. It was found that the heat resistance of the obtained composites significantly exceeds the heat resistance of unfilled copolymers and is in the range of 360-395K, depending on the nature and content of the metal filler. The change in heat resistance correlates with the change in glass transition temperature, which was evaluated according to the results of thermomechanical and dynamic mechanical thermal analyses. The results of this work are an additional source to characterize the structure of metal-filled copolymers: they confirm the participation of metal filler particles in the formation of the nodes of the copolymer spatial network, and also prove the formation of a different polymer network structure in the interfacial layer on the surface of the metal particle and in the polymer volume.
dc.format.extent37-43
dc.format.pages7
dc.identifier.citationThermophysical Properties of Composite Metal-Filled Copolymers of Polyvinylpyrrolidone / Oleksandr Grytsenko, Mykhaylo Bratychak Jr., Ludmila Dulebova, Ivan Gajdoš // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 37–43.
dc.identifier.citationenThermophysical Properties of Composite Metal-Filled Copolymers of Polyvinylpyrrolidone / Oleksandr Grytsenko, Mykhaylo Bratychak Jr., Ludmila Dulebova, Ivan Gajdoš // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 37–43.
dc.identifier.doidoi.org/10.23939/chcht18.01.037
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111782
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Nicolais, L.; Carotenuto, G. Metal-polymer nanocomposites; John Wiley & Sons: Hoboken, NJ, USA, 2005.
dc.relation.references[2] Kucherenko, A.; Nikitchuk, O.; Baran, N.; Dulebova, L.; Kuznetsova, M.; Moravskyi, V. Characteristics of Metallized Polymeric Raw Materials. In Proceedings of the 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP); IEEE: Odessa, 2021. https://doi.org/10.1109/NAP51885.2021.9568393
dc.relation.references[3] Saeed, A.; Zaaba, N.; Ismeel, H. A Review: Metal Filled Thermoplastic Composites. POLYM-PLAST TECH MAT 2021, 60, 1033–1050. https://doi.org/10.1080/25740881.2021.1882489
dc.relation.references[4] Hevus, I.; Kohut, A.; Voronov, A. Amphiphilic Invertible Polyurethanes: Synthesis and Properties. Macromolecules 2010, 43, 7488–7494. https://doi.org/10.1021/ma101175k
dc.relation.references[5] Los, P.; Lukomska, A.; Jeziorska, R. Metal-Polymer Composites for Electromagnetic Interference Shielding Applications. Polimery 2021, 61, 663–669. https://doi.org/10.14314/polimery.2016.663
dc.relation.references[6] Sapronov, O.; Buketov, A.; Yakushchenko, S.; Syzonenko, O.; Sapronova, А.; Sotsenko, V.; Vorobiov, P.; Lypian, Y.; Sieliverstov, I.; Dobrotvor, I. Application of Synthesized Iron/Titanium Carbide Mixture for Restoration of Water Transport Parts by Epoxy Composites. Composites: Mechanics, Computations, Applications: An International Journal 2021, 12, 23-35. https://doi.org/10.1615/CompMechComputApplIntJ.2021039175
dc.relation.references[7] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E. Obtainment and Characterization of Metal-Coated Polyethylene Granules as a Basis for the Development of Heat Storage Systems. Polymers 2022, 14, 218. https://doi.org/10.3390/polym14010218
dc.relation.references[8] Yaman, K. Fractal Characterization of Electrical Conductivity and Mechanical Properties of Copper Particulate Polyester Matrix Composites Using Image Processing. Polym. Bull. 2022, 79, 3309–3332. https://doi.org/10.1007/s00289-021-03665-2
dc.relation.references[9] Buketov, A.V.; Bagliuk, G.A.; Sizonenko, O.M.; Sapronov,O.O.; Smetankin, S.O.; Torpakov, A.S. Effect of Particulate Ti–Al–TiC Reinforcements on the Mechanical Properties of Epoxy Polymer Composites. Powder Metall. Met. Ceram. 2023, 61, 586–596. https://doi.org/10.1007/s11106-023-00347-8
dc.relation.references[10] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E.; Majerníková, J. Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials 2020, 13, 2856. https://doi.org/10.3390/ma13122856
dc.relation.references[11] Mehvari, S.; Sanchez-Vicente, Y.; González, S.; Lafdi, K. Conductivity Behaviour under Pressure of Copper Micro-Additive/Polyurethane Composites (Experimental and Modelling). Polymers 2022, 14, 1287. https://doi.org/10.3390/polym14071287
dc.relation.references[12] Wang, L.; Wang, H.; Huang, X.W.; Song, X.; Hu, M.; Tang, L.; Xue, H.; Gao, J. Superhydrophobic and Superelastic Conductive Rubber Composite for Wearable Strain Sensors with Ultrahigh Sensitivity and Excellent Anti-Corrosion Property. J. Mater. Chem. A 2018, 6, 24523–24533. https://doi.org/10.1039/c8ta07847e
dc.relation.references[13] Li, H.; Yang, P.; Pageni, P.; Tang, C. Recent Advances in Metal-Containing Polymer Hydrogels. Macromol. Rapid Commun. 2017, 38, 1700109. https://doi.org/10.1002/marc.201700109
dc.relation.references[14] Grytsenko, O.; Dulebova, L.; Spišák, E.; Pukach, P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers 2023, 15, 2259. https://doi.org/10.3390/polym15102259
dc.relation.references[15] Kucherenko, A.N.; Moravskyi, V.S.; Kuznetsova, M.Y.; Grytsenko, O.N.; Masyuk, A.S.; Dulebova, L. Regularities of Obtaining Metal-Filled Polymer Composites. In Nanomaterials in biomedical application and biosensors (NAP-2019); Pogrebnjak, A.; Pogorielov, M.; Viter, R., Eds; Springer Proceedings in Physics, vol. 244; Springer: Singapore, 2020; pp. 59–66. https://doi.org/10.1007/978-981-15-3996-1_6
dc.relation.references[16] Hevus, I.; Kohut, A.; Voronov, A. Micellar Assemblies from Amphiphilic Polyurethanes for Size-Controlled Synthesis of Silver Nanoparticles Dispersible both in Polar and Nonpolar Media. J. Nanopart. Res. 2012, 14, 820. https://doi.org/10.1007/s11051-012-0820-x.
dc.relation.references[17] El-Shamy, A.G. Polymer/Noble Metal Nanocomposites. In Nanocomposites – Recent Evolutions; Sivasankaran, S., Ed.; IntechOpen, London, 2019. https://doi.org/10.5772/intechopen.79016
dc.relation.references[18] Khatri, B.; Lappe, K.; Noetzel, D.; Pursche, K.; Hanemann, T. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite-Development and Characterization. Materials 2018, 11, 189. https://doi.org/10.3390/ma11020189
dc.relation.references[19] Burhannuddin, N.L.; Nordin, N.A.; Mazlan, S.A. Physicochemical Characterization and Rheological Properties of Magnetic Elastomers Containing Different Shapes of Corroded Carbonyl Iron Particles. Sci. Rep. 2021, 11, 868. https://doi.org/10.1038/s41598-020-80539-z
dc.relation.references[20] Amoabeng, D.; Velankar, S. A Review of Conductive Polymer Composites Filled with Low Melting Point Metal Alloys. Polym. Eng. Sci. 2017, 58, 1010–1019. https://doi.org/10.1002/pen.24774
dc.relation.references[21] Grujić, A.; Stajić-Trošić, J.; Stijepović, M.; Stevanović, J.; Aleksić, R. Magnetic and Dynamic Mechanical Properties of Nd-Fe-B Composite Materials with Polymer Matrix. In Metal, Ceramic and Polymeric Composites for Various Uses; Cuppoletti, J., Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 524–526. https://doi.org/10.5772/18599
dc.relation.references[22] Ranga Reddy, P.A.; Mohana Raju, K.; Subbarami Reddy, N. A Review on Polymer Nanocomposites: Monometallic and Bimetallic Nanoparticles for Biomedicial, Optical and Engineering Applications. Chem. Sci. Rev. Lett. 2013, 1, 228–235.
dc.relation.references[23] Rozik, N.; Asaad, J.; Mansour, S.; Gomaa, E. Effect of Aluminum and Aluminum/Nickel Hybrid Fillers on the Properties of Epoxy Composites. Proc. Inst. Mech. Eng. L 2016, 230, 550–557. https://doi.org/10.1177/1464420715581523
dc.relation.references[24] Kohut, A.; Voronov, A.; Samaryk, V.; Peukert, W. Amphiphilic Invertible Polyesters as Reducing and Stabilizing Agents in the Formation of Metal Nanoparticles. Macromol. Rapid Commun. 2007, 28, 1410–1414. https://doi.org/10.1002/marc.200700312
dc.relation.references[25] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dziaman, I.; Grytsenko, O.; Dulebova, L. Studying the Effect of Concentration Factors on the Process of Chemical Metallization of Powdered Polyvinylchloride. East. Eur. J. Enterp. Technol. 2018, 3, 40–47. https://doi.org/10.15587/1729-4061.2018.131446
dc.relation.references[26] Kuntyi, O.; Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., Pokynbroda, T.; Prokopalo, A. Electrochemical Synthesis of Silver Nanoparticles in Solutions of Rhamnolipid. Micro Nano Lett. 2020, 15, 802–807. https://doi.org/10.1049/mnl.2020.0195
dc.relation.references[27] Reverberi, A.P.; Salerno, M.; Lauciello, S.; Fabiano, B. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical REDUCTION with Vanadium (+2) Salts. Materials 2016, 9, 809. https://doi.org/10.3390/ma9100809
dc.relation.references[28] Tarnavchyk, I.; Voronov, A.; Kohut, A.; Nosova, N.; Varvarenko, S.; Samaryk, V.; Voronov, S. Reactive Hydrogel Networks for the Fabrication of Metal-Polymer Nanocomposites. Macromol. Rapid Commun. 2009, 30, 1564–1569. https://doi.org/10.1002/marc.200900285
dc.relation.references[29] Grytsenko, O.; Naumenko, O.; Suberlyak, O.; Dulebova, L.; Berezhnyy, B. Optimization of the Technological Parameters of the Graft Copolymerization of 2-Hydroxyethyl Methacrylate with Polyvinylpyrrolidone for Nickel Deposition from Salts. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 1, 25–32. https://doi.org/10.32434/0321-4095-2020-128-1-25-32
dc.relation.references[30] Moravskyi, V.; Dziaman, I.; Suberliak, S.; Grytsenko, O.; Kuznetsova, M. Features of the Production of Metal-Filled Composites by Metallization of Polymeric Raw Materials. In 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP); IEEE: Odessa, Ukraine, 2017. https://doi.org/10.1109/NAP.2017.8190265
dc.relation.references[31] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Demchuk, Y.; Astakhova, O.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
dc.relation.references[32] Sahiner, N.; Butun, S.; Ozay, O.; Dibek, B. Utilization of Smart Hydrogel-Metal Composites as Catalysis Media. J. Colloid Interface Sci. 2012, 373, 122–128. https://doi.org/10.1016/j.jcis.2011.08.080
dc.relation.references[33] Veerubhotla, K.; Lee, C.H. Design of Biodegradable 3D-Printed Cardiovascular Stent. Bioprinting 2022, 26, e00204. https://doi.org/10.1016/j.bprint.2022.e00204
dc.relation.references[34] Echeverria, C.; Fernandes, S.N.; Godinho, M.H.; Borges, J.P.; Soares, P.I.P. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018, 4, 54. https://doi.org/10.3390/gels4020054
dc.relation.references[35] Pablos, J.L.; Jiménez-Holguín, J.; Salcedo, S.S.; Salinas, A.J.; Corrales, T.; Vallet-Regí, M. New Photocrosslinked 3D Foamed Scaffolds Based on Gelma Copolymers: Potential Application in Bone Tissue Engineering. Gels 2023, 9, 403. https://doi.org/10.3390/gels9050403
dc.relation.references[36] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen: London, United Kingdom, 2018; pp. 136–214. https://doi.org/10.5772/intechopen.72082
dc.relation.references[37] Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. Insight into Hydrogels. Des Monomers Polym 2016, 19, 456–478. http://dx.doi.org/10.1080/15685551.2016.1169380
dc.relation.references[38] Jumadilov, T.; Abilov, Z.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov. A. Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9, 459–462. https://doi.org/10.23939/chcht09.04.459
dc.relation.references[39] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297–304. https://doi.org/10.23939/chcht04.04.297
dc.relation.references[40] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І.; Stasiuk, A.; Samaryk, V.; Voronov, S. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45–54.
dc.relation.references[41] Majcher, M.J.; Hoare, T. Applications of Hydrogels. In Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer, Cham. 2019; pp 453–490. https://doi.org/10.1007/978-3-319-95990-0_17
dc.relation.references[42] Bercea, M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers 2022, 14, 2365. https://doi.org/10.3390/polym14122365
dc.relation.references[43] Zhang, Y.S; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, eaaf3627. https://doi.org/10.1126/science.aaf3627
dc.relation.references[44] Dong, W.; Yao, D.; Yang, L. Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring. Sensors 2020, 20, 1641. https://doi.org/10.3390/s20061641
dc.relation.references[45] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical Properties of Hydrogels Filled with Dispersed Nanoparticles. Chem. Chem. Technol. 2017, 11, 449–453. https://doi.org/10.23939/chcht11.04.449
dc.relation.references[46] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of Structure and Properties of pHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 4580. https://doi.org/10.3390/ma13204580
dc.relation.references[47] Grytsenko, O.; Dulebova, L.; Spišák, E.; Berezhnyy, B. New Materials Based on Polyvinylpyrrolidone-Containing Copolymers with Ferromagnetic Fillers. Materials 2022, 15, 5183. https://doi.org/10.3390/ma15155183
dc.relation.references[48] Grytsenko, О.; Pukach, P.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. The Scheffe’s Method in the Study of Mathematical Model of the Polymeric Hydrogels Composite Structures Optimization. Math. Model. Comput. 2019, 6, 258–267. https://doi.org/10.23939/mmc2019.02.258
dc.relation.references[49] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič Jr., V. Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics 2021, 10, 620. https://doi.org/10.3390/electronics10050620
dc.relation.references[50] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312–317. https://doi.org/10.23939/chcht14.03.312
dc.relation.referencesen[1] Nicolais, L.; Carotenuto, G. Metal-polymer nanocomposites; John Wiley & Sons: Hoboken, NJ, USA, 2005.
dc.relation.referencesen[2] Kucherenko, A.; Nikitchuk, O.; Baran, N.; Dulebova, L.; Kuznetsova, M.; Moravskyi, V. Characteristics of Metallized Polymeric Raw Materials. In Proceedings of the 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP); IEEE: Odessa, 2021. https://doi.org/10.1109/NAP51885.2021.9568393
dc.relation.referencesen[3] Saeed, A.; Zaaba, N.; Ismeel, H. A Review: Metal Filled Thermoplastic Composites. POLYM-PLAST TECH MAT 2021, 60, 1033–1050. https://doi.org/10.1080/25740881.2021.1882489
dc.relation.referencesen[4] Hevus, I.; Kohut, A.; Voronov, A. Amphiphilic Invertible Polyurethanes: Synthesis and Properties. Macromolecules 2010, 43, 7488–7494. https://doi.org/10.1021/ma101175k
dc.relation.referencesen[5] Los, P.; Lukomska, A.; Jeziorska, R. Metal-Polymer Composites for Electromagnetic Interference Shielding Applications. Polimery 2021, 61, 663–669. https://doi.org/10.14314/polimery.2016.663
dc.relation.referencesen[6] Sapronov, O.; Buketov, A.; Yakushchenko, S.; Syzonenko, O.; Sapronova, A.; Sotsenko, V.; Vorobiov, P.; Lypian, Y.; Sieliverstov, I.; Dobrotvor, I. Application of Synthesized Iron/Titanium Carbide Mixture for Restoration of Water Transport Parts by Epoxy Composites. Composites: Mechanics, Computations, Applications: An International Journal 2021, 12, 23-35. https://doi.org/10.1615/CompMechComputApplIntJ.2021039175
dc.relation.referencesen[7] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E. Obtainment and Characterization of Metal-Coated Polyethylene Granules as a Basis for the Development of Heat Storage Systems. Polymers 2022, 14, 218. https://doi.org/10.3390/polym14010218
dc.relation.referencesen[8] Yaman, K. Fractal Characterization of Electrical Conductivity and Mechanical Properties of Copper Particulate Polyester Matrix Composites Using Image Processing. Polym. Bull. 2022, 79, 3309–3332. https://doi.org/10.1007/s00289-021-03665-2
dc.relation.referencesen[9] Buketov, A.V.; Bagliuk, G.A.; Sizonenko, O.M.; Sapronov,O.O.; Smetankin, S.O.; Torpakov, A.S. Effect of Particulate Ti–Al–TiC Reinforcements on the Mechanical Properties of Epoxy Polymer Composites. Powder Metall. Met. Ceram. 2023, 61, 586–596. https://doi.org/10.1007/s11106-023-00347-8
dc.relation.referencesen[10] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E.; Majerníková, J. Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials 2020, 13, 2856. https://doi.org/10.3390/ma13122856
dc.relation.referencesen[11] Mehvari, S.; Sanchez-Vicente, Y.; González, S.; Lafdi, K. Conductivity Behaviour under Pressure of Copper Micro-Additive/Polyurethane Composites (Experimental and Modelling). Polymers 2022, 14, 1287. https://doi.org/10.3390/polym14071287
dc.relation.referencesen[12] Wang, L.; Wang, H.; Huang, X.W.; Song, X.; Hu, M.; Tang, L.; Xue, H.; Gao, J. Superhydrophobic and Superelastic Conductive Rubber Composite for Wearable Strain Sensors with Ultrahigh Sensitivity and Excellent Anti-Corrosion Property. J. Mater. Chem. A 2018, 6, 24523–24533. https://doi.org/10.1039/P.8ta07847e
dc.relation.referencesen[13] Li, H.; Yang, P.; Pageni, P.; Tang, C. Recent Advances in Metal-Containing Polymer Hydrogels. Macromol. Rapid Commun. 2017, 38, 1700109. https://doi.org/10.1002/marc.201700109
dc.relation.referencesen[14] Grytsenko, O.; Dulebova, L.; Spišák, E.; Pukach, P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers 2023, 15, 2259. https://doi.org/10.3390/polym15102259
dc.relation.referencesen[15] Kucherenko, A.N.; Moravskyi, V.S.; Kuznetsova, M.Y.; Grytsenko, O.N.; Masyuk, A.S.; Dulebova, L. Regularities of Obtaining Metal-Filled Polymer Composites. In Nanomaterials in biomedical application and biosensors (NAP-2019); Pogrebnjak, A.; Pogorielov, M.; Viter, R., Eds; Springer Proceedings in Physics, vol. 244; Springer: Singapore, 2020; pp. 59–66. https://doi.org/10.1007/978-981-15-3996-1_6
dc.relation.referencesen[16] Hevus, I.; Kohut, A.; Voronov, A. Micellar Assemblies from Amphiphilic Polyurethanes for Size-Controlled Synthesis of Silver Nanoparticles Dispersible both in Polar and Nonpolar Media. J. Nanopart. Res. 2012, 14, 820. https://doi.org/10.1007/s11051-012-0820-x.
dc.relation.referencesen[17] El-Shamy, A.G. Polymer/Noble Metal Nanocomposites. In Nanocomposites – Recent Evolutions; Sivasankaran, S., Ed.; IntechOpen, London, 2019. https://doi.org/10.5772/intechopen.79016
dc.relation.referencesen[18] Khatri, B.; Lappe, K.; Noetzel, D.; Pursche, K.; Hanemann, T. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite-Development and Characterization. Materials 2018, 11, 189. https://doi.org/10.3390/ma11020189
dc.relation.referencesen[19] Burhannuddin, N.L.; Nordin, N.A.; Mazlan, S.A. Physicochemical Characterization and Rheological Properties of Magnetic Elastomers Containing Different Shapes of Corroded Carbonyl Iron Particles. Sci. Rep. 2021, 11, 868. https://doi.org/10.1038/s41598-020-80539-z
dc.relation.referencesen[20] Amoabeng, D.; Velankar, S. A Review of Conductive Polymer Composites Filled with Low Melting Point Metal Alloys. Polym. Eng. Sci. 2017, 58, 1010–1019. https://doi.org/10.1002/pen.24774
dc.relation.referencesen[21] Grujić, A.; Stajić-Trošić, J.; Stijepović, M.; Stevanović, J.; Aleksić, R. Magnetic and Dynamic Mechanical Properties of Nd-Fe-B Composite Materials with Polymer Matrix. In Metal, Ceramic and Polymeric Composites for Various Uses; Cuppoletti, J., Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 524–526. https://doi.org/10.5772/18599
dc.relation.referencesen[22] Ranga Reddy, P.A.; Mohana Raju, K.; Subbarami Reddy, N. A Review on Polymer Nanocomposites: Monometallic and Bimetallic Nanoparticles for Biomedicial, Optical and Engineering Applications. Chem. Sci. Rev. Lett. 2013, 1, 228–235.
dc.relation.referencesen[23] Rozik, N.; Asaad, J.; Mansour, S.; Gomaa, E. Effect of Aluminum and Aluminum/Nickel Hybrid Fillers on the Properties of Epoxy Composites. Proc. Inst. Mech. Eng. L 2016, 230, 550–557. https://doi.org/10.1177/1464420715581523
dc.relation.referencesen[24] Kohut, A.; Voronov, A.; Samaryk, V.; Peukert, W. Amphiphilic Invertible Polyesters as Reducing and Stabilizing Agents in the Formation of Metal Nanoparticles. Macromol. Rapid Commun. 2007, 28, 1410–1414. https://doi.org/10.1002/marc.200700312
dc.relation.referencesen[25] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dziaman, I.; Grytsenko, O.; Dulebova, L. Studying the Effect of Concentration Factors on the Process of Chemical Metallization of Powdered Polyvinylchloride. East. Eur. J. Enterp. Technol. 2018, 3, 40–47. https://doi.org/10.15587/1729-4061.2018.131446
dc.relation.referencesen[26] Kuntyi, O.; Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., Pokynbroda, T.; Prokopalo, A. Electrochemical Synthesis of Silver Nanoparticles in Solutions of Rhamnolipid. Micro Nano Lett. 2020, 15, 802–807. https://doi.org/10.1049/mnl.2020.0195
dc.relation.referencesen[27] Reverberi, A.P.; Salerno, M.; Lauciello, S.; Fabiano, B. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical REDUCTION with Vanadium (+2) Salts. Materials 2016, 9, 809. https://doi.org/10.3390/ma9100809
dc.relation.referencesen[28] Tarnavchyk, I.; Voronov, A.; Kohut, A.; Nosova, N.; Varvarenko, S.; Samaryk, V.; Voronov, S. Reactive Hydrogel Networks for the Fabrication of Metal-Polymer Nanocomposites. Macromol. Rapid Commun. 2009, 30, 1564–1569. https://doi.org/10.1002/marc.200900285
dc.relation.referencesen[29] Grytsenko, O.; Naumenko, O.; Suberlyak, O.; Dulebova, L.; Berezhnyy, B. Optimization of the Technological Parameters of the Graft Copolymerization of 2-Hydroxyethyl Methacrylate with Polyvinylpyrrolidone for Nickel Deposition from Salts. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 1, 25–32. https://doi.org/10.32434/0321-4095-2020-128-1-25-32
dc.relation.referencesen[30] Moravskyi, V.; Dziaman, I.; Suberliak, S.; Grytsenko, O.; Kuznetsova, M. Features of the Production of Metal-Filled Composites by Metallization of Polymeric Raw Materials. In 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP); IEEE: Odessa, Ukraine, 2017. https://doi.org/10.1109/NAP.2017.8190265
dc.relation.referencesen[31] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Demchuk, Y.; Astakhova, O.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
dc.relation.referencesen[32] Sahiner, N.; Butun, S.; Ozay, O.; Dibek, B. Utilization of Smart Hydrogel-Metal Composites as Catalysis Media. J. Colloid Interface Sci. 2012, 373, 122–128. https://doi.org/10.1016/j.jcis.2011.08.080
dc.relation.referencesen[33] Veerubhotla, K.; Lee, C.H. Design of Biodegradable 3D-Printed Cardiovascular Stent. Bioprinting 2022, 26, e00204. https://doi.org/10.1016/j.bprint.2022.e00204
dc.relation.referencesen[34] Echeverria, C.; Fernandes, S.N.; Godinho, M.H.; Borges, J.P.; Soares, P.I.P. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018, 4, 54. https://doi.org/10.3390/gels4020054
dc.relation.referencesen[35] Pablos, J.L.; Jiménez-Holguín, J.; Salcedo, S.S.; Salinas, A.J.; Corrales, T.; Vallet-Regí, M. New Photocrosslinked 3D Foamed Scaffolds Based on Gelma Copolymers: Potential Application in Bone Tissue Engineering. Gels 2023, 9, 403. https://doi.org/10.3390/gels9050403
dc.relation.referencesen[36] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen: London, United Kingdom, 2018; pp. 136–214. https://doi.org/10.5772/intechopen.72082
dc.relation.referencesen[37] Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. Insight into Hydrogels. Des Monomers Polym 2016, 19, 456–478. http://dx.doi.org/10.1080/15685551.2016.1169380
dc.relation.referencesen[38] Jumadilov, T.; Abilov, Z.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov. A. Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9, 459–462. https://doi.org/10.23939/chcht09.04.459
dc.relation.referencesen[39] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297–304. https://doi.org/10.23939/chcht04.04.297
dc.relation.referencesen[40] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, I.; Stasiuk, A.; Samaryk, V.; Voronov, S. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45–54.
dc.relation.referencesen[41] Majcher, M.J.; Hoare, T. Applications of Hydrogels. In Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer, Cham. 2019; pp 453–490. https://doi.org/10.1007/978-3-319-95990-0_17
dc.relation.referencesen[42] Bercea, M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers 2022, 14, 2365. https://doi.org/10.3390/polym14122365
dc.relation.referencesen[43] Zhang, Y.S; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, eaaf3627. https://doi.org/10.1126/science.aaf3627
dc.relation.referencesen[44] Dong, W.; Yao, D.; Yang, L. Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring. Sensors 2020, 20, 1641. https://doi.org/10.3390/s20061641
dc.relation.referencesen[45] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical Properties of Hydrogels Filled with Dispersed Nanoparticles. Chem. Chem. Technol. 2017, 11, 449–453. https://doi.org/10.23939/chcht11.04.449
dc.relation.referencesen[46] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of Structure and Properties of pHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 4580. https://doi.org/10.3390/ma13204580
dc.relation.referencesen[47] Grytsenko, O.; Dulebova, L.; Spišák, E.; Berezhnyy, B. New Materials Based on Polyvinylpyrrolidone-Containing Copolymers with Ferromagnetic Fillers. Materials 2022, 15, 5183. https://doi.org/10.3390/ma15155183
dc.relation.referencesen[48] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. The Scheffe’s Method in the Study of Mathematical Model of the Polymeric Hydrogels Composite Structures Optimization. Math. Model. Comput. 2019, 6, 258–267. https://doi.org/10.23939/mmc2019.02.258
dc.relation.referencesen[49] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič Jr., V. Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics 2021, 10, 620. https://doi.org/10.3390/electronics10050620
dc.relation.referencesen[50] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312–317. https://doi.org/10.23939/chcht14.03.312
dc.relation.urihttps://doi.org/10.1109/NAP51885.2021.9568393
dc.relation.urihttps://doi.org/10.1080/25740881.2021.1882489
dc.relation.urihttps://doi.org/10.1021/ma101175k
dc.relation.urihttps://doi.org/10.14314/polimery.2016.663
dc.relation.urihttps://doi.org/10.1615/CompMechComputApplIntJ.2021039175
dc.relation.urihttps://doi.org/10.3390/polym14010218
dc.relation.urihttps://doi.org/10.1007/s00289-021-03665-2
dc.relation.urihttps://doi.org/10.1007/s11106-023-00347-8
dc.relation.urihttps://doi.org/10.3390/ma13122856
dc.relation.urihttps://doi.org/10.3390/polym14071287
dc.relation.urihttps://doi.org/10.1039/c8ta07847e
dc.relation.urihttps://doi.org/10.1002/marc.201700109
dc.relation.urihttps://doi.org/10.3390/polym15102259
dc.relation.urihttps://doi.org/10.1007/978-981-15-3996-1_6
dc.relation.urihttps://doi.org/10.1007/s11051-012-0820-x
dc.relation.urihttps://doi.org/10.5772/intechopen.79016
dc.relation.urihttps://doi.org/10.3390/ma11020189
dc.relation.urihttps://doi.org/10.1038/s41598-020-80539-z
dc.relation.urihttps://doi.org/10.1002/pen.24774
dc.relation.urihttps://doi.org/10.5772/18599
dc.relation.urihttps://doi.org/10.1177/1464420715581523
dc.relation.urihttps://doi.org/10.1002/marc.200700312
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.131446
dc.relation.urihttps://doi.org/10.1049/mnl.2020.0195
dc.relation.urihttps://doi.org/10.3390/ma9100809
dc.relation.urihttps://doi.org/10.1002/marc.200900285
dc.relation.urihttps://doi.org/10.32434/0321-4095-2020-128-1-25-32
dc.relation.urihttps://doi.org/10.1109/NAP.2017.8190265
dc.relation.urihttps://doi.org/10.3390/ma14051320
dc.relation.urihttps://doi.org/10.1016/j.jcis.2011.08.080
dc.relation.urihttps://doi.org/10.1016/j.bprint.2022.e00204
dc.relation.urihttps://doi.org/10.3390/gels4020054
dc.relation.urihttps://doi.org/10.3390/gels9050403
dc.relation.urihttps://doi.org/10.5772/intechopen.72082
dc.relation.urihttp://dx.doi.org/10.1080/15685551.2016.1169380
dc.relation.urihttps://doi.org/10.23939/chcht09.04.459
dc.relation.urihttps://doi.org/10.23939/chcht04.04.297
dc.relation.urihttps://doi.org/10.1007/978-3-319-95990-0_17
dc.relation.urihttps://doi.org/10.3390/polym14122365
dc.relation.urihttps://doi.org/10.1126/science.aaf3627
dc.relation.urihttps://doi.org/10.3390/s20061641
dc.relation.urihttps://doi.org/10.23939/chcht11.04.449
dc.relation.urihttps://doi.org/10.3390/ma13204580
dc.relation.urihttps://doi.org/10.3390/ma15155183
dc.relation.urihttps://doi.org/10.23939/mmc2019.02.258
dc.relation.urihttps://doi.org/10.3390/electronics10050620
dc.relation.urihttps://doi.org/10.23939/chcht14.03.312
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Grytsenko O., Bratychak Jr. M., Dulebova L., Gajdoš I., 2024
dc.subjectполівінілпіролідон
dc.subject2-гідроксіетилметакрилат
dc.subjectкополімери
dc.subjectметалонаповнені полімери
dc.subjectтеплостійкість
dc.subjectтемпература склування
dc.subjectpolyvinylpyrrolidone
dc.subject2-hydroxyethylmethacrylate
dc.subjectcopolymers
dc.subjectmetal-filled polymers
dc.subjectheat resistance
dc.subjectglass transition temperature
dc.titleThermophysical Properties of Composite Metal-Filled Copolymers of Polyvinylpyrrolidone
dc.title.alternativeТеплофізичні властивості композиційних металонаповнених кополімерів полівінілпіролідону
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Grytsenko_O-Thermophysical_Properties_37-43.pdf
Size:
4.87 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Grytsenko_O-Thermophysical_Properties_37-43__COVER.png
Size:
574.67 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: