Рухливість електронів у CdSe0.35Te0.65: поєднання Ab Initio підходу з принципом близькодії

dc.citation.epage17
dc.citation.issue1
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМалик, Орест
dc.contributor.authorПетрович, Ігор
dc.contributor.authorКеньо, Галина
dc.contributor.authorЮркевич, Юрій
dc.contributor.authorВашкурак, Юрій
dc.contributor.authorMalyk, Orest
dc.contributor.authorPetrovych, Ihor
dc.contributor.authorKenyo, Halyna
dc.contributor.authorYurkevych, Yurii
dc.contributor.authorVashkurak, Yurii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-11T09:15:10Z
dc.date.available2024-04-11T09:15:10Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ роботі розглянуто проблему впливу точкових дефектів на явища перенесення у кристалах CdSexTe1-x (x=0,35). Вперше виконано розрахунок електронного спектра, хвильової функції та потенціальної енергії електрона в зразках CdSe0.35Te0.65 за заданої температури. За допомогою методу суперкомірки встановлено типи точкових дефектів, а також температурну залежність їх енергій іонізації в досліджуваному інтервалі температур. Виявлено температурні залежності констант деформації оптичного та акустичного потенціалів розсіяння, а також розраховано температурні залежності констант розсіяння електронів на різних кристалічних точкових дефектах. На основі моделей розсіювання із короткодіючим потенціалом встановлено температурні залежності рухливості та холлівського фактора електронів.
dc.description.abstractThis study examines the problem of influence of point defects on transport phenomena in CdSexTe1-x (x=0.35) crystals. For the first time, the calculation of the electronic spectrum, wave function and potential energy of the electron in CdSe0.35Te0.65 samples at a prearranged temperature was carried out. Using the supercell method, the types of point defects were established, as well as the temperature dependence of their ionization energies in the studied temperature range. The temperature dependences of the deformation constants of the optical and acoustic scattering potentials were detected and also calculated the dependences on temperature of electron scattering constants on different crystal point defects. Temperature dependences of the mobility and Hall factor of electrons were found based on the scattering models on the short-range potential.
dc.format.extent9-17
dc.format.pages9
dc.identifier.citationРухливість електронів у CdSe0.35Te0.65: поєднання Ab Initio підходу з принципом близькодії / Орест Малик, Ігор Петрович, Галина Кеньо, Юрій Юркевич, Юрій Вашкурак // Обчислювальні проблеми електротехніки. — Львів : Видавництво Львівської політехніки, 2023. — Том 13. — № 1. — С. 9–17.
dc.identifier.citationenElectron Interaction with Point Defects in CdSe0.35Te0.65: Joining of ab Initio Approach with Short-Range Principle / Orest Malyk, Ihor Petrovych, Halyna Kenyo, Yurii Yurkevych, Yurii Vashkurak // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 13. — No 1. — P. 9–17.
dc.identifier.doidoi.org/10.23939/jcpee2023.01.009
dc.identifier.issn2224-0977
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61716
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 1 (13), 2023
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (13), 2023
dc.relation.references[1] I. Sankin and D. Krasikov, “Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers”, Phys. Status Solidi A, Vol. 215, pp. 1800887–1-11, 2019.
dc.relation.references[2] J. H. Yang, et al., “First-principles study of roles of Cu and Cl in polycrystalline CdTe”, J. Appl. Phys., Vol. 119, pp. 045104–1-17, 2016.
dc.relation.references[3] D. Krasikov, et al., “First-principles-based analysis of the influence of Cu on CdTe electronic properties”, Thin Solid Films, Vol. 535, pp. 322–325, 2013.
dc.relation.references[4] Ji-Hui Yang, et al., “Review on first-principles study of defect properties of CdTe as a solar cell absorber”, Semicond. Sci. Technol., Vol. 31, pp. 083002–1-22, 2016.
dc.relation.references[5] Ji-Hui Yang, et al., “Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe”, Phys. Rev. B, Vol. 90, pp. 245202–1-5, 2014.
dc.relation.references[6] V. Lordi, “Point defects in Cd(Zn)Te and TlBr: Theory”, J. Cryst. Growth, Vol. 379, pp. 84–92, 2013.
dc.relation.references[7] K. Biswas and M.H. Du, “What causes high resistivity in CdTe”, NewJ. Phys., Vol. 14, pp. 063020–1-20, 2012.
dc.relation.references[8] I. Sankin and D. Krasikov, “Defect interactions and the role of complexes in CdTe solar cell absorber”, J. Mater. Chem. A, Vol. 5, pp. 3503–3515, 2017.
dc.relation.references[9] A. Lindström et al., “High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies”, J. Phys. D: Appl. Phys., Vol. 49, pp. 035101–1-12, 2016.
dc.relation.references[10] A. Lindström, et al., “Cl-doping of Te-rich CdTe: Complex formation, self-compensation and selfpurification from first principles”, AIP Adv., Vol. 5, pp. 087101–1-11, 2015.
dc.relation.references[11] D. N. Krasikov, et al., “Theoretical analysis of nonradiative multiphonon recombination activity of intrinsic defects in CdTe”, J. Appl. Phys., Vol. 119, pp. 085706–1-10, 2016.
dc.relation.references[12] J. H. Yang, et al., “Non-radiative carrier recombination enhanced by two-level process: a first-principles study”, Sci. Rep., Vol. 6, pp. 21712–1-10, 2016.
dc.relation.references[13] O. P. Malyk, “Prediction of the kinetic properties of sphalerite CdSexTe1-x(0.1£x£0.5) solid solution: ab initio approach”, J. Electron. Mater., Vol. 49, pp. 3080–3088, 2020.
dc.relation.references[14] X. Gonze et al., “Recent developments in the ABINIT software package”, Comput. Phys. Commun., Vol. 205, pp. 106–131, 2016.
dc.relation.references[15] O. P. Malyk, “The local inelastic electron–polar opti-cal phonon interaction in mercury telluride”, Comput. Mater. Sci., Vol. 33, pp. 153–156, 2005.
dc.relation.references[16] O. P. Malyk, “Charge carrier scattering on the shortrange potential of the crystal lattice defects in ZnCdTe, ZnHgSe and ZnHgTe”, Physica B: Condensed Matter, Vol. 404, pp. 5022–5024, 2009.
dc.relation.references[17] O. P. Malyk, “Electron scattering on the short-range potential of the crystallattice defects in ZnO”, Can. J. Phys., Vol. 92, pp. 1372–1379, 2014.
dc.relation.references[18] O. Malyk and S. Syrotyuk, “New scheme for calculating the kinetic coefficients in CdTe based on firstprinciple wave function”, Comput. Mater. Sci., Vol. 139, pp. 387–394, 2017.
dc.relation.references[19] O. P. Malyk and S. V. Syrotyuk, “The local electron in-teraction with point defects in sphalerite zinc selenide: calculation from the first principles”, J. Electron. Mater., Vol. 47, pp. 4212–4218, 2018.
dc.relation.references[20] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett., Vol. 77, pp. 3865–3868 (1996).
dc.relation.references[21] P. Novák, et al, “Exact exchange for correlated electrons”, Phys. Status Solidi B, Vol. 243, pp. 563–572, 2006.
dc.relation.references[22] G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe”, J. Appl. Phys., Vol. 53, pp. 7099–7101, 1982.
dc.relation.references[23] R. Passler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors”, Phys. Status Solidi B, Vol. 216, pp. 975–1007, 1999.
dc.relation.references[24] A. Haug, “Zur statischen Näherung des Festkörperproblems”, Z. Physik, Vol. 175, pp. 166–171, 1963.
dc.relation.references[25] C. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978.
dc.relation.references[26] N. A. W. Holzwarth, A. R. Tackett, and G. E. Matthews, “A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions”, Computer Phys. Comm., Vol. 135, pp. 329–347, 2001.
dc.relation.references[27] A. R. Tackett, N. A. W. Holzwarth, and G. E. Matthews, “A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis”, Computer Phys. Comm., Vol. 135, pp. 348–376, 2001.
dc.relation.references[28] O. P. Malyk, “Nonelastic charge carrier scattering in mercury telluride”, J. Alloys Compd., Vol. 371/1-2 pp. 146–149, 2004.
dc.relation.references[29] N. Muthukumarasamy, et al., “Electrical conduction studies of hot wall deposited CdSexTe1−x thin films”, Sol. Energy Mater. Sol. Cells, Vol. 92, pp. 851–856, 2008.
dc.relation.referencesen[1] I. Sankin and D. Krasikov, "Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers", Phys. Status Solidi A, Vol. 215, pp. 1800887–1-11, 2019.
dc.relation.referencesen[2] J. H. Yang, et al., "First-principles study of roles of Cu and Cl in polycrystalline CdTe", J. Appl. Phys., Vol. 119, pp. 045104–1-17, 2016.
dc.relation.referencesen[3] D. Krasikov, et al., "First-principles-based analysis of the influence of Cu on CdTe electronic properties", Thin Solid Films, Vol. 535, pp. 322–325, 2013.
dc.relation.referencesen[4] Ji-Hui Yang, et al., "Review on first-principles study of defect properties of CdTe as a solar cell absorber", Semicond. Sci. Technol., Vol. 31, pp. 083002–1-22, 2016.
dc.relation.referencesen[5] Ji-Hui Yang, et al., "Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe", Phys. Rev. B, Vol. 90, pp. 245202–1-5, 2014.
dc.relation.referencesen[6] V. Lordi, "Point defects in Cd(Zn)Te and TlBr: Theory", J. Cryst. Growth, Vol. 379, pp. 84–92, 2013.
dc.relation.referencesen[7] K. Biswas and M.H. Du, "What causes high resistivity in CdTe", NewJ. Phys., Vol. 14, pp. 063020–1-20, 2012.
dc.relation.referencesen[8] I. Sankin and D. Krasikov, "Defect interactions and the role of complexes in CdTe solar cell absorber", J. Mater. Chem. A, Vol. 5, pp. 3503–3515, 2017.
dc.relation.referencesen[9] A. Lindström et al., "High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies", J. Phys. D: Appl. Phys., Vol. 49, pp. 035101–1-12, 2016.
dc.relation.referencesen[10] A. Lindström, et al., "Cl-doping of Te-rich CdTe: Complex formation, self-compensation and selfpurification from first principles", AIP Adv., Vol. 5, pp. 087101–1-11, 2015.
dc.relation.referencesen[11] D. N. Krasikov, et al., "Theoretical analysis of nonradiative multiphonon recombination activity of intrinsic defects in CdTe", J. Appl. Phys., Vol. 119, pp. 085706–1-10, 2016.
dc.relation.referencesen[12] J. H. Yang, et al., "Non-radiative carrier recombination enhanced by two-level process: a first-principles study", Sci. Rep., Vol. 6, pp. 21712–1-10, 2016.
dc.relation.referencesen[13] O. P. Malyk, "Prediction of the kinetic properties of sphalerite CdSexTe1-x(0.1£x£0.5) solid solution: ab initio approach", J. Electron. Mater., Vol. 49, pp. 3080–3088, 2020.
dc.relation.referencesen[14] X. Gonze et al., "Recent developments in the ABINIT software package", Comput. Phys. Commun., Vol. 205, pp. 106–131, 2016.
dc.relation.referencesen[15] O. P. Malyk, "The local inelastic electron–polar opti-cal phonon interaction in mercury telluride", Comput. Mater. Sci., Vol. 33, pp. 153–156, 2005.
dc.relation.referencesen[16] O. P. Malyk, "Charge carrier scattering on the shortrange potential of the crystal lattice defects in ZnCdTe, ZnHgSe and ZnHgTe", Physica B: Condensed Matter, Vol. 404, pp. 5022–5024, 2009.
dc.relation.referencesen[17] O. P. Malyk, "Electron scattering on the short-range potential of the crystallattice defects in ZnO", Can. J. Phys., Vol. 92, pp. 1372–1379, 2014.
dc.relation.referencesen[18] O. Malyk and S. Syrotyuk, "New scheme for calculating the kinetic coefficients in CdTe based on firstprinciple wave function", Comput. Mater. Sci., Vol. 139, pp. 387–394, 2017.
dc.relation.referencesen[19] O. P. Malyk and S. V. Syrotyuk, "The local electron in-teraction with point defects in sphalerite zinc selenide: calculation from the first principles", J. Electron. Mater., Vol. 47, pp. 4212–4218, 2018.
dc.relation.referencesen[20] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple", Phys. Rev. Lett., Vol. 77, pp. 3865–3868 (1996).
dc.relation.referencesen[21] P. Novák, et al, "Exact exchange for correlated electrons", Phys. Status Solidi B, Vol. 243, pp. 563–572, 2006.
dc.relation.referencesen[22] G. L. Hansen, J. L. Schmit, and T. N. Casselman, "Energy gap versus alloy composition and temperature in Hg1-xCdxTe", J. Appl. Phys., Vol. 53, pp. 7099–7101, 1982.
dc.relation.referencesen[23] R. Passler, "Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors", Phys. Status Solidi B, Vol. 216, pp. 975–1007, 1999.
dc.relation.referencesen[24] A. Haug, "Zur statischen Näherung des Festkörperproblems", Z. Physik, Vol. 175, pp. 166–171, 1963.
dc.relation.referencesen[25] C. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978.
dc.relation.referencesen[26] N. A. W. Holzwarth, A. R. Tackett, and G. E. Matthews, "A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions", Computer Phys. Comm., Vol. 135, pp. 329–347, 2001.
dc.relation.referencesen[27] A. R. Tackett, N. A. W. Holzwarth, and G. E. Matthews, "A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis", Computer Phys. Comm., Vol. 135, pp. 348–376, 2001.
dc.relation.referencesen[28] O. P. Malyk, "Nonelastic charge carrier scattering in mercury telluride", J. Alloys Compd., Vol. 371/1-2 pp. 146–149, 2004.
dc.relation.referencesen[29] N. Muthukumarasamy, et al., "Electrical conduction studies of hot wall deposited CdSexTe1−x thin films", Sol. Energy Mater. Sol. Cells, Vol. 92, pp. 851–856, 2008.
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectCdSe0.35Te0.65
dc.subjecttransport phenomena
dc.subjectdefects
dc.subjectab initio calculation
dc.subjectshort-range principle
dc.titleРухливість електронів у CdSe0.35Te0.65: поєднання Ab Initio підходу з принципом близькодії
dc.title.alternativeElectron Interaction with Point Defects in CdSe0.35Te0.65: Joining of ab Initio Approach with Short-Range Principle
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v13n1_Malyk_O-Electron_Interaction_with_Point_9-17.pdf
Size:
479.74 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v13n1_Malyk_O-Electron_Interaction_with_Point_9-17__COVER.png
Size:
556.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: