Embedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation

dc.citation.epage511
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та обчислення
dc.citation.spage505
dc.citation.volume11
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationУніверситет Султана Мулая Слімана
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.affiliationUniversity of Sultan Moulay Slimane
dc.contributor.authorХарірі, І.
dc.contributor.authorРадід, А.
dc.contributor.authorРофір, К.
dc.contributor.authorHarir, I.
dc.contributor.authorRadid, A.
dc.contributor.authorRhofir, K.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T08:10:22Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДо складних задач математики належить задача розв’язування диференціальних рівнянь із частинними похідними (PDE). На сьогоднішній день не існує техніки чи методу, здатного розв’язати всі PDE, незважаючи на велику кількість запропонованих ефективних методів. У літературі можна знайти чисельні методи, такі як методи скінченних різниць, скінченних елементів, скінченних об’ємів та їх варіанти, напіваналітичні методи, такі як варіаційний ітеративний метод, новий ітеративний метод та інші. В останні роки ми стали свідками впровадження нейронних мереж у розв’язуванні PDE. У цій роботі пропонуємо адаптацію методу вбудовування деяких фізичних законів у нейронні мережі для розв’язання рівняння Бюргерса–Гакслі та виявлення динамічної поведінки рівняння безпосередньо з просторово-часових даних. Поєднуємо запропоновану техніку з методом адаптивного уточнення на основі нев’язок, щоб підвищити його точність. Наведено порівняння запропонованого методу з отриманими за допомогою нового ітераційного методу.
dc.description.abstractAmong the difficult problems in mathematics is the problem of solving partial differential equations (PDEs). To date, there is no technique or method capable of solving all PDEs despite the large number of effective methods proposed. One finds in the literature, numerical methods such as the methods of finite differences, finite elements, finite volumes and their variants, semi-analytical methods such as the Variational Iterative Method, New Iterative Method and others. In recent years, we have witnessed the introduction of neural networks in solving PDEs. In this work, we will propose an adaptation of the method of embedding some physical laws into neural networks for solving Burgers–Huxley equation and revealing the dynamic behavior of the equation directly from spatio-temporal data. We will combine our technique with the Residual-based Adaptive Refinement method to improve its accuracy. We will give a comparison of the proposed method with those obtained by the New Iterative Method.
dc.format.extent505-511
dc.format.pages7
dc.identifier.citationHarir I. Embedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation / I. Harir, A. Radid, K. Rhofir // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 505–511.
dc.identifier.citationenHarir I. Embedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation / I. Harir, A. Radid, K. Rhofir // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 505–511.
dc.identifier.doidoi.org/10.23939/mmc2024.02.505
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113810
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та обчислення, 2 (11), 2024
dc.relation.ispartofMathematical Modeling and Computing, 2 (11), 2024
dc.relation.references[1] Bateman H. Some recent researches on the motion of fluids. Monthly Weather Review. 43 (4), 163–170 (1915).
dc.relation.references[2] Whitham G. B. Linear and Nonlinear Waves. Wiley, New York (2011).
dc.relation.references[3] Burgers J. M. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics. 1, 171–199 (1948).
dc.relation.references[4] Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 117 (4), 500–544 (1952).
dc.relation.references[5] Batiha B., Ghanim F., Batiha K. Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation. Symmetry. 15 (3), 688 (2023).
dc.relation.references[6] Satsuma J. Topics in soliton theory and exactly solvable nonlinear equations. World Scientifc, Singapore (1987).
dc.relation.references[7] Inan B. Finite difference methods for the generalized Huxley and Burgers–Huxley equations. Kuwait Journal of Science. 44 (3), 20–27 (2017).
dc.relation.references[8] Batiha B., Noorani M. S. M., Hashim I. Application of variational iteration method to the generalized Burgers–Huxley equation. Chaos, Solitons & Fractals. 36 (3), 660–663 (2008).
dc.relation.references[9] Hashim I., Noorani M., Al-Hadidi M. S. Solving the generalized Burgers–Huxley equation using the Adomian decomposition method. Mathematical and Computer Modelling. 43 (11–12), 1404–1411 (2006).
dc.relation.references[10] Biazar J., Mohammadi F. Application of Differential Transform Method to the Generalized Burgers-Huxley Equation. Applications and Applied Mathematics: An International Journal. 05 (10), 1726-1740 (2011).
dc.relation.references[11] Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C. Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition. Knowledge-Based Systems. 229, 107340 (2021).
dc.relation.references[12] Gao Y., Mosalam K. M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering. 33 (9), 748–768 (2018).
dc.relation.references[13] Yang X., Zhang Y., Lv W., Wang D. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy. 163, 386-397 (2021).
dc.relation.references[14] Ruder S., Peters M. E., Swayamdipta S., Wolf T. Transfer Learning in Natural Language Processing. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15–18 (2019).
dc.relation.references[15] Wen Y., Chaolu T. Study of Burgers–Huxley Equation Using Neural Network Method. Axioms. 12 (5), 429 (2013).
dc.relation.references[16] Panghal S., Kumar M. Approximate Analytic Solution of Burger Huxley Equation Using Feed-Forward Artificial Neural Network. Neural Processing Letters. 53, 2147–2163 (2021).
dc.relation.references[17] Kumar H., Yadav N., Nagar A. K. Numerical solution of Generalized Burger–Huxley & Huxley’s equationusing Deep Galerkin neural network method. Engineering Applications of Artificial Intelligence. 115, 105289 (2022).
dc.relation.references[18] Raissi M., Perdikaris P., Karniadakis G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. 378, 686–707 (2019).
dc.relation.references[19] Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F. Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. Journal of Scientific Computing. 92, 88 (2022).
dc.relation.references[20] Wu C., Zhu M., Tan Q., Kartha Y., Lu L. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering. 403 (A), 115671 (2023).
dc.relation.referencesen[1] Bateman H. Some recent researches on the motion of fluids. Monthly Weather Review. 43 (4), 163–170 (1915).
dc.relation.referencesen[2] Whitham G. B. Linear and Nonlinear Waves. Wiley, New York (2011).
dc.relation.referencesen[3] Burgers J. M. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics. 1, 171–199 (1948).
dc.relation.referencesen[4] Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 117 (4), 500–544 (1952).
dc.relation.referencesen[5] Batiha B., Ghanim F., Batiha K. Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation. Symmetry. 15 (3), 688 (2023).
dc.relation.referencesen[6] Satsuma J. Topics in soliton theory and exactly solvable nonlinear equations. World Scientifc, Singapore (1987).
dc.relation.referencesen[7] Inan B. Finite difference methods for the generalized Huxley and Burgers–Huxley equations. Kuwait Journal of Science. 44 (3), 20–27 (2017).
dc.relation.referencesen[8] Batiha B., Noorani M. S. M., Hashim I. Application of variational iteration method to the generalized Burgers–Huxley equation. Chaos, Solitons & Fractals. 36 (3), 660–663 (2008).
dc.relation.referencesen[9] Hashim I., Noorani M., Al-Hadidi M. S. Solving the generalized Burgers–Huxley equation using the Adomian decomposition method. Mathematical and Computer Modelling. 43 (11–12), 1404–1411 (2006).
dc.relation.referencesen[10] Biazar J., Mohammadi F. Application of Differential Transform Method to the Generalized Burgers-Huxley Equation. Applications and Applied Mathematics: An International Journal. 05 (10), 1726-1740 (2011).
dc.relation.referencesen[11] Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C. Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition. Knowledge-Based Systems. 229, 107340 (2021).
dc.relation.referencesen[12] Gao Y., Mosalam K. M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering. 33 (9), 748–768 (2018).
dc.relation.referencesen[13] Yang X., Zhang Y., Lv W., Wang D. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy. 163, 386-397 (2021).
dc.relation.referencesen[14] Ruder S., Peters M. E., Swayamdipta S., Wolf T. Transfer Learning in Natural Language Processing. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15–18 (2019).
dc.relation.referencesen[15] Wen Y., Chaolu T. Study of Burgers–Huxley Equation Using Neural Network Method. Axioms. 12 (5), 429 (2013).
dc.relation.referencesen[16] Panghal S., Kumar M. Approximate Analytic Solution of Burger Huxley Equation Using Feed-Forward Artificial Neural Network. Neural Processing Letters. 53, 2147–2163 (2021).
dc.relation.referencesen[17] Kumar H., Yadav N., Nagar A. K. Numerical solution of Generalized Burger–Huxley & Huxley’s equationusing Deep Galerkin neural network method. Engineering Applications of Artificial Intelligence. 115, 105289 (2022).
dc.relation.referencesen[18] Raissi M., Perdikaris P., Karniadakis G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. 378, 686–707 (2019).
dc.relation.referencesen[19] Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F. Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. Journal of Scientific Computing. 92, 88 (2022).
dc.relation.referencesen[20] Wu C., Zhu M., Tan Q., Kartha Y., Lu L. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering. 403 (A), 115671 (2023).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectглибоке навчання
dc.subjectфізичні нейронні мережі
dc.subjectузагальнене рівняння Бюргерса–Хакслі
dc.subjectадаптивне уточнення на основі залишків
dc.subjectdeep learning
dc.subjectphysics-informed neural networks
dc.subjectgeneralized Burgers–Huxley equation
dc.subjectresidual-based adaptive refinement
dc.titleEmbedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation
dc.title.alternativeВбудовування фізичних законів у глибоку нейронну мережу для розв’язування узагальненого рівняння Бюргерса–Гакслі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v11n2_Harir_I-Embedding_physical_laws_into_505-511.pdf
Size:
923.9 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v11n2_Harir_I-Embedding_physical_laws_into_505-511__COVER.png
Size:
357.41 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: