Embedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation
| dc.citation.epage | 511 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Математичне моделювання та обчислення | |
| dc.citation.spage | 505 | |
| dc.citation.volume | 11 | |
| dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
| dc.contributor.affiliation | Університет Султана Мулая Слімана | |
| dc.contributor.affiliation | Hassan II University of Casablanca | |
| dc.contributor.affiliation | University of Sultan Moulay Slimane | |
| dc.contributor.author | Харірі, І. | |
| dc.contributor.author | Радід, А. | |
| dc.contributor.author | Рофір, К. | |
| dc.contributor.author | Harir, I. | |
| dc.contributor.author | Radid, A. | |
| dc.contributor.author | Rhofir, K. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T08:10:22Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | До складних задач математики належить задача розв’язування диференціальних рівнянь із частинними похідними (PDE). На сьогоднішній день не існує техніки чи методу, здатного розв’язати всі PDE, незважаючи на велику кількість запропонованих ефективних методів. У літературі можна знайти чисельні методи, такі як методи скінченних різниць, скінченних елементів, скінченних об’ємів та їх варіанти, напіваналітичні методи, такі як варіаційний ітеративний метод, новий ітеративний метод та інші. В останні роки ми стали свідками впровадження нейронних мереж у розв’язуванні PDE. У цій роботі пропонуємо адаптацію методу вбудовування деяких фізичних законів у нейронні мережі для розв’язання рівняння Бюргерса–Гакслі та виявлення динамічної поведінки рівняння безпосередньо з просторово-часових даних. Поєднуємо запропоновану техніку з методом адаптивного уточнення на основі нев’язок, щоб підвищити його точність. Наведено порівняння запропонованого методу з отриманими за допомогою нового ітераційного методу. | |
| dc.description.abstract | Among the difficult problems in mathematics is the problem of solving partial differential equations (PDEs). To date, there is no technique or method capable of solving all PDEs despite the large number of effective methods proposed. One finds in the literature, numerical methods such as the methods of finite differences, finite elements, finite volumes and their variants, semi-analytical methods such as the Variational Iterative Method, New Iterative Method and others. In recent years, we have witnessed the introduction of neural networks in solving PDEs. In this work, we will propose an adaptation of the method of embedding some physical laws into neural networks for solving Burgers–Huxley equation and revealing the dynamic behavior of the equation directly from spatio-temporal data. We will combine our technique with the Residual-based Adaptive Refinement method to improve its accuracy. We will give a comparison of the proposed method with those obtained by the New Iterative Method. | |
| dc.format.extent | 505-511 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Harir I. Embedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation / I. Harir, A. Radid, K. Rhofir // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 505–511. | |
| dc.identifier.citationen | Harir I. Embedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation / I. Harir, A. Radid, K. Rhofir // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 505–511. | |
| dc.identifier.doi | doi.org/10.23939/mmc2024.02.505 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113810 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Математичне моделювання та обчислення, 2 (11), 2024 | |
| dc.relation.ispartof | Mathematical Modeling and Computing, 2 (11), 2024 | |
| dc.relation.references | [1] Bateman H. Some recent researches on the motion of fluids. Monthly Weather Review. 43 (4), 163–170 (1915). | |
| dc.relation.references | [2] Whitham G. B. Linear and Nonlinear Waves. Wiley, New York (2011). | |
| dc.relation.references | [3] Burgers J. M. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics. 1, 171–199 (1948). | |
| dc.relation.references | [4] Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 117 (4), 500–544 (1952). | |
| dc.relation.references | [5] Batiha B., Ghanim F., Batiha K. Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation. Symmetry. 15 (3), 688 (2023). | |
| dc.relation.references | [6] Satsuma J. Topics in soliton theory and exactly solvable nonlinear equations. World Scientifc, Singapore (1987). | |
| dc.relation.references | [7] Inan B. Finite difference methods for the generalized Huxley and Burgers–Huxley equations. Kuwait Journal of Science. 44 (3), 20–27 (2017). | |
| dc.relation.references | [8] Batiha B., Noorani M. S. M., Hashim I. Application of variational iteration method to the generalized Burgers–Huxley equation. Chaos, Solitons & Fractals. 36 (3), 660–663 (2008). | |
| dc.relation.references | [9] Hashim I., Noorani M., Al-Hadidi M. S. Solving the generalized Burgers–Huxley equation using the Adomian decomposition method. Mathematical and Computer Modelling. 43 (11–12), 1404–1411 (2006). | |
| dc.relation.references | [10] Biazar J., Mohammadi F. Application of Differential Transform Method to the Generalized Burgers-Huxley Equation. Applications and Applied Mathematics: An International Journal. 05 (10), 1726-1740 (2011). | |
| dc.relation.references | [11] Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C. Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition. Knowledge-Based Systems. 229, 107340 (2021). | |
| dc.relation.references | [12] Gao Y., Mosalam K. M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering. 33 (9), 748–768 (2018). | |
| dc.relation.references | [13] Yang X., Zhang Y., Lv W., Wang D. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy. 163, 386-397 (2021). | |
| dc.relation.references | [14] Ruder S., Peters M. E., Swayamdipta S., Wolf T. Transfer Learning in Natural Language Processing. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15–18 (2019). | |
| dc.relation.references | [15] Wen Y., Chaolu T. Study of Burgers–Huxley Equation Using Neural Network Method. Axioms. 12 (5), 429 (2013). | |
| dc.relation.references | [16] Panghal S., Kumar M. Approximate Analytic Solution of Burger Huxley Equation Using Feed-Forward Artificial Neural Network. Neural Processing Letters. 53, 2147–2163 (2021). | |
| dc.relation.references | [17] Kumar H., Yadav N., Nagar A. K. Numerical solution of Generalized Burger–Huxley & Huxley’s equationusing Deep Galerkin neural network method. Engineering Applications of Artificial Intelligence. 115, 105289 (2022). | |
| dc.relation.references | [18] Raissi M., Perdikaris P., Karniadakis G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. 378, 686–707 (2019). | |
| dc.relation.references | [19] Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F. Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. Journal of Scientific Computing. 92, 88 (2022). | |
| dc.relation.references | [20] Wu C., Zhu M., Tan Q., Kartha Y., Lu L. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering. 403 (A), 115671 (2023). | |
| dc.relation.referencesen | [1] Bateman H. Some recent researches on the motion of fluids. Monthly Weather Review. 43 (4), 163–170 (1915). | |
| dc.relation.referencesen | [2] Whitham G. B. Linear and Nonlinear Waves. Wiley, New York (2011). | |
| dc.relation.referencesen | [3] Burgers J. M. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics. 1, 171–199 (1948). | |
| dc.relation.referencesen | [4] Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 117 (4), 500–544 (1952). | |
| dc.relation.referencesen | [5] Batiha B., Ghanim F., Batiha K. Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation. Symmetry. 15 (3), 688 (2023). | |
| dc.relation.referencesen | [6] Satsuma J. Topics in soliton theory and exactly solvable nonlinear equations. World Scientifc, Singapore (1987). | |
| dc.relation.referencesen | [7] Inan B. Finite difference methods for the generalized Huxley and Burgers–Huxley equations. Kuwait Journal of Science. 44 (3), 20–27 (2017). | |
| dc.relation.referencesen | [8] Batiha B., Noorani M. S. M., Hashim I. Application of variational iteration method to the generalized Burgers–Huxley equation. Chaos, Solitons & Fractals. 36 (3), 660–663 (2008). | |
| dc.relation.referencesen | [9] Hashim I., Noorani M., Al-Hadidi M. S. Solving the generalized Burgers–Huxley equation using the Adomian decomposition method. Mathematical and Computer Modelling. 43 (11–12), 1404–1411 (2006). | |
| dc.relation.referencesen | [10] Biazar J., Mohammadi F. Application of Differential Transform Method to the Generalized Burgers-Huxley Equation. Applications and Applied Mathematics: An International Journal. 05 (10), 1726-1740 (2011). | |
| dc.relation.referencesen | [11] Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C. Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition. Knowledge-Based Systems. 229, 107340 (2021). | |
| dc.relation.referencesen | [12] Gao Y., Mosalam K. M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering. 33 (9), 748–768 (2018). | |
| dc.relation.referencesen | [13] Yang X., Zhang Y., Lv W., Wang D. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy. 163, 386-397 (2021). | |
| dc.relation.referencesen | [14] Ruder S., Peters M. E., Swayamdipta S., Wolf T. Transfer Learning in Natural Language Processing. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15–18 (2019). | |
| dc.relation.referencesen | [15] Wen Y., Chaolu T. Study of Burgers–Huxley Equation Using Neural Network Method. Axioms. 12 (5), 429 (2013). | |
| dc.relation.referencesen | [16] Panghal S., Kumar M. Approximate Analytic Solution of Burger Huxley Equation Using Feed-Forward Artificial Neural Network. Neural Processing Letters. 53, 2147–2163 (2021). | |
| dc.relation.referencesen | [17] Kumar H., Yadav N., Nagar A. K. Numerical solution of Generalized Burger–Huxley & Huxley’s equationusing Deep Galerkin neural network method. Engineering Applications of Artificial Intelligence. 115, 105289 (2022). | |
| dc.relation.referencesen | [18] Raissi M., Perdikaris P., Karniadakis G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. 378, 686–707 (2019). | |
| dc.relation.referencesen | [19] Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F. Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. Journal of Scientific Computing. 92, 88 (2022). | |
| dc.relation.referencesen | [20] Wu C., Zhu M., Tan Q., Kartha Y., Lu L. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering. 403 (A), 115671 (2023). | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | глибоке навчання | |
| dc.subject | фізичні нейронні мережі | |
| dc.subject | узагальнене рівняння Бюргерса–Хакслі | |
| dc.subject | адаптивне уточнення на основі залишків | |
| dc.subject | deep learning | |
| dc.subject | physics-informed neural networks | |
| dc.subject | generalized Burgers–Huxley equation | |
| dc.subject | residual-based adaptive refinement | |
| dc.title | Embedding physical laws into Deep Neural Networks for solving generalized Burgers-Huxley equation | |
| dc.title.alternative | Вбудовування фізичних законів у глибоку нейронну мережу для розв’язування узагальненого рівняння Бюргерса–Гакслі | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1